Erster und einziger Commit. Nur für Pinbelegung erste Version. Archiv.

This commit is contained in:
AlphaCapella
2026-02-01 19:09:37 +01:00
commit 8fc971e0de
168 changed files with 185767 additions and 0 deletions

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,230 @@
/**
******************************************************************************
* @file stm32wbxx.h
* @author MCD Application Team
* @brief CMSIS STM32WBxx Device Peripheral Access Layer Header File.
*
* The file is the unique include file that the application programmer
* is using in the C source code, usually in main.c. This file contains:
* - Configuration section that allows to select:
* - The STM32WBxx device used in the target application
* - To use or not the peripheral's drivers in application code(i.e.
* code will be based on direct access to peripheral's registers
* rather than drivers API), this option is controlled by
* "#define USE_HAL_DRIVER"
*
******************************************************************************
* @attention
*
* Copyright (c) 2019-2021 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/** @addtogroup CMSIS
* @{
*/
/** @addtogroup stm32wbxx
* @{
*/
#ifndef __STM32WBxx_H
#define __STM32WBxx_H
#ifdef __cplusplus
extern "C" {
#endif /* __cplusplus */
/** @addtogroup Library_configuration_section
* @{
*/
/**
* @brief STM32 Family
*/
#if !defined (STM32WB)
#define STM32WB
#endif /* STM32WB */
/* Tip: To avoid modifying this file each time you need to switch between these
devices, you can define the device in your toolchain compiler preprocessor.
*/
#if !defined (USE_HAL_DRIVER)
/**
* @brief Comment the line below if you will not use the peripherals drivers.
In this case, these drivers will not be included and the application code will
be based on direct access to peripherals registers
*/
/*#define USE_HAL_DRIVER */
#endif /* USE_HAL_DRIVER */
/**
* @brief CMSIS Device version number
*/
#define __STM32WBxx_CMSIS_VERSION_MAIN (0x01U) /*!< [31:24] main version */
#define __STM32WBxx_CMSIS_VERSION_SUB1 (0x0CU) /*!< [23:16] sub1 version */
#define __STM32WBxx_CMSIS_VERSION_SUB2 (0x03U) /*!< [15:8] sub2 version */
#define __STM32WBxx_CMSIS_VERSION_RC (0x00U) /*!< [7:0] release candidate */
#define __STM32WBxx_CMSIS_DEVICE_VERSION ((__STM32WBxx_CMSIS_VERSION_MAIN << 24)\
|(__STM32WBxx_CMSIS_VERSION_SUB1 << 16)\
|(__STM32WBxx_CMSIS_VERSION_SUB2 << 8 )\
|(__STM32WBxx_CMSIS_VERSION_RC))
/**
* @}
*/
/** @addtogroup Device_Included
* @{
*/
#if defined(STM32WB55xx)
#include "stm32wb55xx.h"
#elif defined(STM32WB5Mxx)
#include "stm32wb5mxx.h"
#elif defined(STM32WB50xx)
#include "stm32wb50xx.h"
#elif defined(STM32WB35xx)
#include "stm32wb35xx.h"
#elif defined(STM32WB30xx)
#include "stm32wb30xx.h"
#elif defined(STM32WB15xx)
#include "stm32wb15xx.h"
#elif defined(STM32WB10xx)
#include "stm32wb10xx.h"
#elif defined(STM32WB1Mxx)
#include "stm32wb1mxx.h"
#else
#error "Please select first the target STM32WBxx device used in your application, for instance xxx (in stm32wbxx.h file)"
#endif
/**
* @}
*/
/** @addtogroup Exported_types
* @{
*/
typedef enum
{
RESET = 0,
SET = !RESET
} FlagStatus, ITStatus;
typedef enum
{
DISABLE = 0,
ENABLE = !DISABLE
} FunctionalState;
#define IS_FUNCTIONAL_STATE(STATE) (((STATE) == DISABLE) || ((STATE) == ENABLE))
typedef enum
{
SUCCESS = 0,
ERROR = !SUCCESS
} ErrorStatus;
/**
* @}
*/
/** @addtogroup Exported_macros
* @{
*/
#define SET_BIT(REG, BIT) ((REG) |= (BIT))
#define CLEAR_BIT(REG, BIT) ((REG) &= ~(BIT))
#define READ_BIT(REG, BIT) ((REG) & (BIT))
#define CLEAR_REG(REG) ((REG) = (0x0))
#define WRITE_REG(REG, VAL) ((REG) = (VAL))
#define READ_REG(REG) ((REG))
#define MODIFY_REG(REG, CLEARMASK, SETMASK) WRITE_REG((REG), (((READ_REG(REG)) & (~(CLEARMASK))) | (SETMASK)))
/* Use of CMSIS compiler intrinsics for register exclusive access */
/* Atomic 32-bit register access macro to set one or several bits */
#define ATOMIC_SET_BIT(REG, BIT) \
do { \
uint32_t val; \
do { \
val = __LDREXW((__IO uint32_t *)&(REG)) | (BIT); \
} while ((__STREXW(val,(__IO uint32_t *)&(REG))) != 0U); \
} while(0)
/* Atomic 32-bit register access macro to clear one or several bits */
#define ATOMIC_CLEAR_BIT(REG, BIT) \
do { \
uint32_t val; \
do { \
val = __LDREXW((__IO uint32_t *)&(REG)) & ~(BIT); \
} while ((__STREXW(val,(__IO uint32_t *)&(REG))) != 0U); \
} while(0)
/* Atomic 32-bit register access macro to clear and set one or several bits */
#define ATOMIC_MODIFY_REG(REG, CLEARMSK, SETMASK) \
do { \
uint32_t val; \
do { \
val = (__LDREXW((__IO uint32_t *)&(REG)) & ~(CLEARMSK)) | (SETMASK); \
} while ((__STREXW(val,(__IO uint32_t *)&(REG))) != 0U); \
} while(0)
/* Atomic 16-bit register access macro to set one or several bits */
#define ATOMIC_SETH_BIT(REG, BIT) \
do { \
uint16_t val; \
do { \
val = __LDREXH((__IO uint16_t *)&(REG)) | (BIT); \
} while ((__STREXH(val,(__IO uint16_t *)&(REG))) != 0U); \
} while(0)
/* Atomic 16-bit register access macro to clear one or several bits */
#define ATOMIC_CLEARH_BIT(REG, BIT) \
do { \
uint16_t val; \
do { \
val = __LDREXH((__IO uint16_t *)&(REG)) & ~(BIT); \
} while ((__STREXH(val,(__IO uint16_t *)&(REG))) != 0U); \
} while(0)
/* Atomic 16-bit register access macro to clear and set one or several bits */
#define ATOMIC_MODIFYH_REG(REG, CLEARMSK, SETMASK) \
do { \
uint16_t val; \
do { \
val = (__LDREXH((__IO uint16_t *)&(REG)) & ~(CLEARMSK)) | (SETMASK); \
} while ((__STREXH(val,(__IO uint16_t *)&(REG))) != 0U); \
} while(0)
#define POSITION_VAL(VAL) (__CLZ(__RBIT(VAL)))
/**
* @}
*/
#if defined (USE_HAL_DRIVER)
#include "stm32wbxx_hal.h"
#endif /* USE_HAL_DRIVER */
#ifdef __cplusplus
}
#endif /* __cplusplus */
#endif /* __STM32WBxx_H */
/**
* @}
*/
/**
* @}
*/

View File

@@ -0,0 +1,111 @@
/**
******************************************************************************
* @file system_stm32wbxx.h
* @author MCD Application Team
* @brief CMSIS Cortex Device System Source File for STM32WBxx devices.
******************************************************************************
* @attention
*
* Copyright (c) 2019-2021 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/** @addtogroup CMSIS
* @{
*/
/** @addtogroup stm32wbxx_system
* @{
*/
/**
* @brief Define to prevent recursive inclusion
*/
#ifndef __SYSTEM_STM32WBXX_H
#define __SYSTEM_STM32WBXX_H
#ifdef __cplusplus
extern "C" {
#endif
#include <stdint.h>
/** @addtogroup STM32WBxx_System_Includes
* @{
*/
/**
* @}
*/
/** @addtogroup STM32WBxx_System_Exported_types
* @{
*/
/* The SystemCoreClock variable is updated in three ways:
1) by calling CMSIS function SystemCoreClockUpdate()
2) by calling HAL API function HAL_RCC_GetSysClockFreq()
3) each time HAL_RCC_ClockConfig() is called to configure the system clock frequency
Note: If you use this function to configure the system clock; then there
is no need to call the 2 first functions listed above, since SystemCoreClock
variable is updated automatically.
*/
extern uint32_t SystemCoreClock; /*!< System Clock Frequency */
extern const uint32_t AHBPrescTable[16]; /*!< AHB prescalers table values */
extern const uint32_t APBPrescTable[8]; /*!< APB prescalers table values */
extern const uint32_t MSIRangeTable[16]; /*!< MSI ranges table values */
#if defined(STM32WB55xx) || defined(STM32WB5Mxx) || defined(STM32WB35xx) || defined (STM32WB15xx) || defined (STM32WB1Mxx)
extern const uint32_t SmpsPrescalerTable[4][6]; /*!< SMPS factor ranges table values */
#endif
/**
* @}
*/
/** @addtogroup STM32WBxx_System_Exported_Constants
* @{
*/
/**
* @}
*/
/** @addtogroup STM32WBxx_System_Exported_Macros
* @{
*/
/**
* @}
*/
/** @addtogroup STM32WBxx_System_Exported_Functions
* @{
*/
extern void SystemInit(void);
extern void SystemCoreClockUpdate(void);
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /*__SYSTEM_STM32WBXX_H */
/**
* @}
*/
/**
* @}
*/

View File

@@ -0,0 +1,6 @@
This software component is provided to you as part of a software package and
applicable license terms are in the Package_license file. If you received this
software component outside of a package or without applicable license terms,
the terms of the Apache-2.0 license shall apply.
You may obtain a copy of the Apache-2.0 at:
https://opensource.org/licenses/Apache-2.0

View File

@@ -0,0 +1,894 @@
/**************************************************************************//**
* @file cmsis_armcc.h
* @brief CMSIS compiler ARMCC (Arm Compiler 5) header file
* @version V5.1.0
* @date 08. May 2019
******************************************************************************/
/*
* Copyright (c) 2009-2019 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef __CMSIS_ARMCC_H
#define __CMSIS_ARMCC_H
#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 400677)
#error "Please use Arm Compiler Toolchain V4.0.677 or later!"
#endif
/* CMSIS compiler control architecture macros */
#if ((defined (__TARGET_ARCH_6_M ) && (__TARGET_ARCH_6_M == 1)) || \
(defined (__TARGET_ARCH_6S_M ) && (__TARGET_ARCH_6S_M == 1)) )
#define __ARM_ARCH_6M__ 1
#endif
#if (defined (__TARGET_ARCH_7_M ) && (__TARGET_ARCH_7_M == 1))
#define __ARM_ARCH_7M__ 1
#endif
#if (defined (__TARGET_ARCH_7E_M) && (__TARGET_ARCH_7E_M == 1))
#define __ARM_ARCH_7EM__ 1
#endif
/* __ARM_ARCH_8M_BASE__ not applicable */
/* __ARM_ARCH_8M_MAIN__ not applicable */
/* CMSIS compiler control DSP macros */
#if ((defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) )
#define __ARM_FEATURE_DSP 1
#endif
/* CMSIS compiler specific defines */
#ifndef __ASM
#define __ASM __asm
#endif
#ifndef __INLINE
#define __INLINE __inline
#endif
#ifndef __STATIC_INLINE
#define __STATIC_INLINE static __inline
#endif
#ifndef __STATIC_FORCEINLINE
#define __STATIC_FORCEINLINE static __forceinline
#endif
#ifndef __NO_RETURN
#define __NO_RETURN __declspec(noreturn)
#endif
#ifndef __USED
#define __USED __attribute__((used))
#endif
#ifndef __WEAK
#define __WEAK __attribute__((weak))
#endif
#ifndef __PACKED
#define __PACKED __attribute__((packed))
#endif
#ifndef __PACKED_STRUCT
#define __PACKED_STRUCT __packed struct
#endif
#ifndef __PACKED_UNION
#define __PACKED_UNION __packed union
#endif
#ifndef __UNALIGNED_UINT32 /* deprecated */
#define __UNALIGNED_UINT32(x) (*((__packed uint32_t *)(x)))
#endif
#ifndef __UNALIGNED_UINT16_WRITE
#define __UNALIGNED_UINT16_WRITE(addr, val) ((*((__packed uint16_t *)(addr))) = (val))
#endif
#ifndef __UNALIGNED_UINT16_READ
#define __UNALIGNED_UINT16_READ(addr) (*((const __packed uint16_t *)(addr)))
#endif
#ifndef __UNALIGNED_UINT32_WRITE
#define __UNALIGNED_UINT32_WRITE(addr, val) ((*((__packed uint32_t *)(addr))) = (val))
#endif
#ifndef __UNALIGNED_UINT32_READ
#define __UNALIGNED_UINT32_READ(addr) (*((const __packed uint32_t *)(addr)))
#endif
#ifndef __ALIGNED
#define __ALIGNED(x) __attribute__((aligned(x)))
#endif
#ifndef __RESTRICT
#define __RESTRICT __restrict
#endif
#ifndef __COMPILER_BARRIER
#define __COMPILER_BARRIER() __memory_changed()
#endif
/* ######################### Startup and Lowlevel Init ######################## */
#ifndef __PROGRAM_START
#define __PROGRAM_START __main
#endif
#ifndef __INITIAL_SP
#define __INITIAL_SP Image$$ARM_LIB_STACK$$ZI$$Limit
#endif
#ifndef __STACK_LIMIT
#define __STACK_LIMIT Image$$ARM_LIB_STACK$$ZI$$Base
#endif
#ifndef __VECTOR_TABLE
#define __VECTOR_TABLE __Vectors
#endif
#ifndef __VECTOR_TABLE_ATTRIBUTE
#define __VECTOR_TABLE_ATTRIBUTE __attribute((used, section("RESET")))
#endif
/* ########################### Core Function Access ########################### */
/** \ingroup CMSIS_Core_FunctionInterface
\defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions
@{
*/
/**
\brief Enable IRQ Interrupts
\details Enables IRQ interrupts by clearing the I-bit in the CPSR.
Can only be executed in Privileged modes.
*/
/* intrinsic void __enable_irq(); */
/**
\brief Disable IRQ Interrupts
\details Disables IRQ interrupts by setting the I-bit in the CPSR.
Can only be executed in Privileged modes.
*/
/* intrinsic void __disable_irq(); */
/**
\brief Get Control Register
\details Returns the content of the Control Register.
\return Control Register value
*/
__STATIC_INLINE uint32_t __get_CONTROL(void)
{
register uint32_t __regControl __ASM("control");
return(__regControl);
}
/**
\brief Set Control Register
\details Writes the given value to the Control Register.
\param [in] control Control Register value to set
*/
__STATIC_INLINE void __set_CONTROL(uint32_t control)
{
register uint32_t __regControl __ASM("control");
__regControl = control;
}
/**
\brief Get IPSR Register
\details Returns the content of the IPSR Register.
\return IPSR Register value
*/
__STATIC_INLINE uint32_t __get_IPSR(void)
{
register uint32_t __regIPSR __ASM("ipsr");
return(__regIPSR);
}
/**
\brief Get APSR Register
\details Returns the content of the APSR Register.
\return APSR Register value
*/
__STATIC_INLINE uint32_t __get_APSR(void)
{
register uint32_t __regAPSR __ASM("apsr");
return(__regAPSR);
}
/**
\brief Get xPSR Register
\details Returns the content of the xPSR Register.
\return xPSR Register value
*/
__STATIC_INLINE uint32_t __get_xPSR(void)
{
register uint32_t __regXPSR __ASM("xpsr");
return(__regXPSR);
}
/**
\brief Get Process Stack Pointer
\details Returns the current value of the Process Stack Pointer (PSP).
\return PSP Register value
*/
__STATIC_INLINE uint32_t __get_PSP(void)
{
register uint32_t __regProcessStackPointer __ASM("psp");
return(__regProcessStackPointer);
}
/**
\brief Set Process Stack Pointer
\details Assigns the given value to the Process Stack Pointer (PSP).
\param [in] topOfProcStack Process Stack Pointer value to set
*/
__STATIC_INLINE void __set_PSP(uint32_t topOfProcStack)
{
register uint32_t __regProcessStackPointer __ASM("psp");
__regProcessStackPointer = topOfProcStack;
}
/**
\brief Get Main Stack Pointer
\details Returns the current value of the Main Stack Pointer (MSP).
\return MSP Register value
*/
__STATIC_INLINE uint32_t __get_MSP(void)
{
register uint32_t __regMainStackPointer __ASM("msp");
return(__regMainStackPointer);
}
/**
\brief Set Main Stack Pointer
\details Assigns the given value to the Main Stack Pointer (MSP).
\param [in] topOfMainStack Main Stack Pointer value to set
*/
__STATIC_INLINE void __set_MSP(uint32_t topOfMainStack)
{
register uint32_t __regMainStackPointer __ASM("msp");
__regMainStackPointer = topOfMainStack;
}
/**
\brief Get Priority Mask
\details Returns the current state of the priority mask bit from the Priority Mask Register.
\return Priority Mask value
*/
__STATIC_INLINE uint32_t __get_PRIMASK(void)
{
register uint32_t __regPriMask __ASM("primask");
return(__regPriMask);
}
/**
\brief Set Priority Mask
\details Assigns the given value to the Priority Mask Register.
\param [in] priMask Priority Mask
*/
__STATIC_INLINE void __set_PRIMASK(uint32_t priMask)
{
register uint32_t __regPriMask __ASM("primask");
__regPriMask = (priMask);
}
#if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
(defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) )
/**
\brief Enable FIQ
\details Enables FIQ interrupts by clearing the F-bit in the CPSR.
Can only be executed in Privileged modes.
*/
#define __enable_fault_irq __enable_fiq
/**
\brief Disable FIQ
\details Disables FIQ interrupts by setting the F-bit in the CPSR.
Can only be executed in Privileged modes.
*/
#define __disable_fault_irq __disable_fiq
/**
\brief Get Base Priority
\details Returns the current value of the Base Priority register.
\return Base Priority register value
*/
__STATIC_INLINE uint32_t __get_BASEPRI(void)
{
register uint32_t __regBasePri __ASM("basepri");
return(__regBasePri);
}
/**
\brief Set Base Priority
\details Assigns the given value to the Base Priority register.
\param [in] basePri Base Priority value to set
*/
__STATIC_INLINE void __set_BASEPRI(uint32_t basePri)
{
register uint32_t __regBasePri __ASM("basepri");
__regBasePri = (basePri & 0xFFU);
}
/**
\brief Set Base Priority with condition
\details Assigns the given value to the Base Priority register only if BASEPRI masking is disabled,
or the new value increases the BASEPRI priority level.
\param [in] basePri Base Priority value to set
*/
__STATIC_INLINE void __set_BASEPRI_MAX(uint32_t basePri)
{
register uint32_t __regBasePriMax __ASM("basepri_max");
__regBasePriMax = (basePri & 0xFFU);
}
/**
\brief Get Fault Mask
\details Returns the current value of the Fault Mask register.
\return Fault Mask register value
*/
__STATIC_INLINE uint32_t __get_FAULTMASK(void)
{
register uint32_t __regFaultMask __ASM("faultmask");
return(__regFaultMask);
}
/**
\brief Set Fault Mask
\details Assigns the given value to the Fault Mask register.
\param [in] faultMask Fault Mask value to set
*/
__STATIC_INLINE void __set_FAULTMASK(uint32_t faultMask)
{
register uint32_t __regFaultMask __ASM("faultmask");
__regFaultMask = (faultMask & (uint32_t)1U);
}
#endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
(defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) */
/**
\brief Get FPSCR
\details Returns the current value of the Floating Point Status/Control register.
\return Floating Point Status/Control register value
*/
__STATIC_INLINE uint32_t __get_FPSCR(void)
{
#if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
(defined (__FPU_USED ) && (__FPU_USED == 1U)) )
register uint32_t __regfpscr __ASM("fpscr");
return(__regfpscr);
#else
return(0U);
#endif
}
/**
\brief Set FPSCR
\details Assigns the given value to the Floating Point Status/Control register.
\param [in] fpscr Floating Point Status/Control value to set
*/
__STATIC_INLINE void __set_FPSCR(uint32_t fpscr)
{
#if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
(defined (__FPU_USED ) && (__FPU_USED == 1U)) )
register uint32_t __regfpscr __ASM("fpscr");
__regfpscr = (fpscr);
#else
(void)fpscr;
#endif
}
/*@} end of CMSIS_Core_RegAccFunctions */
/* ########################## Core Instruction Access ######################### */
/** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface
Access to dedicated instructions
@{
*/
/**
\brief No Operation
\details No Operation does nothing. This instruction can be used for code alignment purposes.
*/
#define __NOP __nop
/**
\brief Wait For Interrupt
\details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs.
*/
#define __WFI __wfi
/**
\brief Wait For Event
\details Wait For Event is a hint instruction that permits the processor to enter
a low-power state until one of a number of events occurs.
*/
#define __WFE __wfe
/**
\brief Send Event
\details Send Event is a hint instruction. It causes an event to be signaled to the CPU.
*/
#define __SEV __sev
/**
\brief Instruction Synchronization Barrier
\details Instruction Synchronization Barrier flushes the pipeline in the processor,
so that all instructions following the ISB are fetched from cache or memory,
after the instruction has been completed.
*/
#define __ISB() do {\
__schedule_barrier();\
__isb(0xF);\
__schedule_barrier();\
} while (0U)
/**
\brief Data Synchronization Barrier
\details Acts as a special kind of Data Memory Barrier.
It completes when all explicit memory accesses before this instruction complete.
*/
#define __DSB() do {\
__schedule_barrier();\
__dsb(0xF);\
__schedule_barrier();\
} while (0U)
/**
\brief Data Memory Barrier
\details Ensures the apparent order of the explicit memory operations before
and after the instruction, without ensuring their completion.
*/
#define __DMB() do {\
__schedule_barrier();\
__dmb(0xF);\
__schedule_barrier();\
} while (0U)
/**
\brief Reverse byte order (32 bit)
\details Reverses the byte order in unsigned integer value. For example, 0x12345678 becomes 0x78563412.
\param [in] value Value to reverse
\return Reversed value
*/
#define __REV __rev
/**
\brief Reverse byte order (16 bit)
\details Reverses the byte order within each halfword of a word. For example, 0x12345678 becomes 0x34127856.
\param [in] value Value to reverse
\return Reversed value
*/
#ifndef __NO_EMBEDDED_ASM
__attribute__((section(".rev16_text"))) __STATIC_INLINE __ASM uint32_t __REV16(uint32_t value)
{
rev16 r0, r0
bx lr
}
#endif
/**
\brief Reverse byte order (16 bit)
\details Reverses the byte order in a 16-bit value and returns the signed 16-bit result. For example, 0x0080 becomes 0x8000.
\param [in] value Value to reverse
\return Reversed value
*/
#ifndef __NO_EMBEDDED_ASM
__attribute__((section(".revsh_text"))) __STATIC_INLINE __ASM int16_t __REVSH(int16_t value)
{
revsh r0, r0
bx lr
}
#endif
/**
\brief Rotate Right in unsigned value (32 bit)
\details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
\param [in] op1 Value to rotate
\param [in] op2 Number of Bits to rotate
\return Rotated value
*/
#define __ROR __ror
/**
\brief Breakpoint
\details Causes the processor to enter Debug state.
Debug tools can use this to investigate system state when the instruction at a particular address is reached.
\param [in] value is ignored by the processor.
If required, a debugger can use it to store additional information about the breakpoint.
*/
#define __BKPT(value) __breakpoint(value)
/**
\brief Reverse bit order of value
\details Reverses the bit order of the given value.
\param [in] value Value to reverse
\return Reversed value
*/
#if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
(defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) )
#define __RBIT __rbit
#else
__attribute__((always_inline)) __STATIC_INLINE uint32_t __RBIT(uint32_t value)
{
uint32_t result;
uint32_t s = (4U /*sizeof(v)*/ * 8U) - 1U; /* extra shift needed at end */
result = value; /* r will be reversed bits of v; first get LSB of v */
for (value >>= 1U; value != 0U; value >>= 1U)
{
result <<= 1U;
result |= value & 1U;
s--;
}
result <<= s; /* shift when v's highest bits are zero */
return result;
}
#endif
/**
\brief Count leading zeros
\details Counts the number of leading zeros of a data value.
\param [in] value Value to count the leading zeros
\return number of leading zeros in value
*/
#define __CLZ __clz
#if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
(defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) )
/**
\brief LDR Exclusive (8 bit)
\details Executes a exclusive LDR instruction for 8 bit value.
\param [in] ptr Pointer to data
\return value of type uint8_t at (*ptr)
*/
#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020)
#define __LDREXB(ptr) ((uint8_t ) __ldrex(ptr))
#else
#define __LDREXB(ptr) _Pragma("push") _Pragma("diag_suppress 3731") ((uint8_t ) __ldrex(ptr)) _Pragma("pop")
#endif
/**
\brief LDR Exclusive (16 bit)
\details Executes a exclusive LDR instruction for 16 bit values.
\param [in] ptr Pointer to data
\return value of type uint16_t at (*ptr)
*/
#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020)
#define __LDREXH(ptr) ((uint16_t) __ldrex(ptr))
#else
#define __LDREXH(ptr) _Pragma("push") _Pragma("diag_suppress 3731") ((uint16_t) __ldrex(ptr)) _Pragma("pop")
#endif
/**
\brief LDR Exclusive (32 bit)
\details Executes a exclusive LDR instruction for 32 bit values.
\param [in] ptr Pointer to data
\return value of type uint32_t at (*ptr)
*/
#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020)
#define __LDREXW(ptr) ((uint32_t ) __ldrex(ptr))
#else
#define __LDREXW(ptr) _Pragma("push") _Pragma("diag_suppress 3731") ((uint32_t ) __ldrex(ptr)) _Pragma("pop")
#endif
/**
\brief STR Exclusive (8 bit)
\details Executes a exclusive STR instruction for 8 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020)
#define __STREXB(value, ptr) __strex(value, ptr)
#else
#define __STREXB(value, ptr) _Pragma("push") _Pragma("diag_suppress 3731") __strex(value, ptr) _Pragma("pop")
#endif
/**
\brief STR Exclusive (16 bit)
\details Executes a exclusive STR instruction for 16 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020)
#define __STREXH(value, ptr) __strex(value, ptr)
#else
#define __STREXH(value, ptr) _Pragma("push") _Pragma("diag_suppress 3731") __strex(value, ptr) _Pragma("pop")
#endif
/**
\brief STR Exclusive (32 bit)
\details Executes a exclusive STR instruction for 32 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020)
#define __STREXW(value, ptr) __strex(value, ptr)
#else
#define __STREXW(value, ptr) _Pragma("push") _Pragma("diag_suppress 3731") __strex(value, ptr) _Pragma("pop")
#endif
/**
\brief Remove the exclusive lock
\details Removes the exclusive lock which is created by LDREX.
*/
#define __CLREX __clrex
/**
\brief Signed Saturate
\details Saturates a signed value.
\param [in] value Value to be saturated
\param [in] sat Bit position to saturate to (1..32)
\return Saturated value
*/
#define __SSAT __ssat
/**
\brief Unsigned Saturate
\details Saturates an unsigned value.
\param [in] value Value to be saturated
\param [in] sat Bit position to saturate to (0..31)
\return Saturated value
*/
#define __USAT __usat
/**
\brief Rotate Right with Extend (32 bit)
\details Moves each bit of a bitstring right by one bit.
The carry input is shifted in at the left end of the bitstring.
\param [in] value Value to rotate
\return Rotated value
*/
#ifndef __NO_EMBEDDED_ASM
__attribute__((section(".rrx_text"))) __STATIC_INLINE __ASM uint32_t __RRX(uint32_t value)
{
rrx r0, r0
bx lr
}
#endif
/**
\brief LDRT Unprivileged (8 bit)
\details Executes a Unprivileged LDRT instruction for 8 bit value.
\param [in] ptr Pointer to data
\return value of type uint8_t at (*ptr)
*/
#define __LDRBT(ptr) ((uint8_t ) __ldrt(ptr))
/**
\brief LDRT Unprivileged (16 bit)
\details Executes a Unprivileged LDRT instruction for 16 bit values.
\param [in] ptr Pointer to data
\return value of type uint16_t at (*ptr)
*/
#define __LDRHT(ptr) ((uint16_t) __ldrt(ptr))
/**
\brief LDRT Unprivileged (32 bit)
\details Executes a Unprivileged LDRT instruction for 32 bit values.
\param [in] ptr Pointer to data
\return value of type uint32_t at (*ptr)
*/
#define __LDRT(ptr) ((uint32_t ) __ldrt(ptr))
/**
\brief STRT Unprivileged (8 bit)
\details Executes a Unprivileged STRT instruction for 8 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
*/
#define __STRBT(value, ptr) __strt(value, ptr)
/**
\brief STRT Unprivileged (16 bit)
\details Executes a Unprivileged STRT instruction for 16 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
*/
#define __STRHT(value, ptr) __strt(value, ptr)
/**
\brief STRT Unprivileged (32 bit)
\details Executes a Unprivileged STRT instruction for 32 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
*/
#define __STRT(value, ptr) __strt(value, ptr)
#else /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
(defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) */
/**
\brief Signed Saturate
\details Saturates a signed value.
\param [in] value Value to be saturated
\param [in] sat Bit position to saturate to (1..32)
\return Saturated value
*/
__attribute__((always_inline)) __STATIC_INLINE int32_t __SSAT(int32_t val, uint32_t sat)
{
if ((sat >= 1U) && (sat <= 32U))
{
const int32_t max = (int32_t)((1U << (sat - 1U)) - 1U);
const int32_t min = -1 - max ;
if (val > max)
{
return max;
}
else if (val < min)
{
return min;
}
}
return val;
}
/**
\brief Unsigned Saturate
\details Saturates an unsigned value.
\param [in] value Value to be saturated
\param [in] sat Bit position to saturate to (0..31)
\return Saturated value
*/
__attribute__((always_inline)) __STATIC_INLINE uint32_t __USAT(int32_t val, uint32_t sat)
{
if (sat <= 31U)
{
const uint32_t max = ((1U << sat) - 1U);
if (val > (int32_t)max)
{
return max;
}
else if (val < 0)
{
return 0U;
}
}
return (uint32_t)val;
}
#endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
(defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) */
/*@}*/ /* end of group CMSIS_Core_InstructionInterface */
/* ################### Compiler specific Intrinsics ########################### */
/** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics
Access to dedicated SIMD instructions
@{
*/
#if ((defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) )
#define __SADD8 __sadd8
#define __QADD8 __qadd8
#define __SHADD8 __shadd8
#define __UADD8 __uadd8
#define __UQADD8 __uqadd8
#define __UHADD8 __uhadd8
#define __SSUB8 __ssub8
#define __QSUB8 __qsub8
#define __SHSUB8 __shsub8
#define __USUB8 __usub8
#define __UQSUB8 __uqsub8
#define __UHSUB8 __uhsub8
#define __SADD16 __sadd16
#define __QADD16 __qadd16
#define __SHADD16 __shadd16
#define __UADD16 __uadd16
#define __UQADD16 __uqadd16
#define __UHADD16 __uhadd16
#define __SSUB16 __ssub16
#define __QSUB16 __qsub16
#define __SHSUB16 __shsub16
#define __USUB16 __usub16
#define __UQSUB16 __uqsub16
#define __UHSUB16 __uhsub16
#define __SASX __sasx
#define __QASX __qasx
#define __SHASX __shasx
#define __UASX __uasx
#define __UQASX __uqasx
#define __UHASX __uhasx
#define __SSAX __ssax
#define __QSAX __qsax
#define __SHSAX __shsax
#define __USAX __usax
#define __UQSAX __uqsax
#define __UHSAX __uhsax
#define __USAD8 __usad8
#define __USADA8 __usada8
#define __SSAT16 __ssat16
#define __USAT16 __usat16
#define __UXTB16 __uxtb16
#define __UXTAB16 __uxtab16
#define __SXTB16 __sxtb16
#define __SXTAB16 __sxtab16
#define __SMUAD __smuad
#define __SMUADX __smuadx
#define __SMLAD __smlad
#define __SMLADX __smladx
#define __SMLALD __smlald
#define __SMLALDX __smlaldx
#define __SMUSD __smusd
#define __SMUSDX __smusdx
#define __SMLSD __smlsd
#define __SMLSDX __smlsdx
#define __SMLSLD __smlsld
#define __SMLSLDX __smlsldx
#define __SEL __sel
#define __QADD __qadd
#define __QSUB __qsub
#define __PKHBT(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0x0000FFFFUL) | \
((((uint32_t)(ARG2)) << (ARG3)) & 0xFFFF0000UL) )
#define __PKHTB(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0xFFFF0000UL) | \
((((uint32_t)(ARG2)) >> (ARG3)) & 0x0000FFFFUL) )
#define __SMMLA(ARG1,ARG2,ARG3) ( (int32_t)((((int64_t)(ARG1) * (ARG2)) + \
((int64_t)(ARG3) << 32U) ) >> 32U))
#endif /* ((defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) */
/*@} end of group CMSIS_SIMD_intrinsics */
#endif /* __CMSIS_ARMCC_H */

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,283 @@
/**************************************************************************//**
* @file cmsis_compiler.h
* @brief CMSIS compiler generic header file
* @version V5.1.0
* @date 09. October 2018
******************************************************************************/
/*
* Copyright (c) 2009-2018 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef __CMSIS_COMPILER_H
#define __CMSIS_COMPILER_H
#include <stdint.h>
/*
* Arm Compiler 4/5
*/
#if defined ( __CC_ARM )
#include "cmsis_armcc.h"
/*
* Arm Compiler 6.6 LTM (armclang)
*/
#elif defined (__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050) && (__ARMCC_VERSION < 6100100)
#include "cmsis_armclang_ltm.h"
/*
* Arm Compiler above 6.10.1 (armclang)
*/
#elif defined (__ARMCC_VERSION) && (__ARMCC_VERSION >= 6100100)
#include "cmsis_armclang.h"
/*
* GNU Compiler
*/
#elif defined ( __GNUC__ )
#include "cmsis_gcc.h"
/*
* IAR Compiler
*/
#elif defined ( __ICCARM__ )
#include <cmsis_iccarm.h>
/*
* TI Arm Compiler
*/
#elif defined ( __TI_ARM__ )
#include <cmsis_ccs.h>
#ifndef __ASM
#define __ASM __asm
#endif
#ifndef __INLINE
#define __INLINE inline
#endif
#ifndef __STATIC_INLINE
#define __STATIC_INLINE static inline
#endif
#ifndef __STATIC_FORCEINLINE
#define __STATIC_FORCEINLINE __STATIC_INLINE
#endif
#ifndef __NO_RETURN
#define __NO_RETURN __attribute__((noreturn))
#endif
#ifndef __USED
#define __USED __attribute__((used))
#endif
#ifndef __WEAK
#define __WEAK __attribute__((weak))
#endif
#ifndef __PACKED
#define __PACKED __attribute__((packed))
#endif
#ifndef __PACKED_STRUCT
#define __PACKED_STRUCT struct __attribute__((packed))
#endif
#ifndef __PACKED_UNION
#define __PACKED_UNION union __attribute__((packed))
#endif
#ifndef __UNALIGNED_UINT32 /* deprecated */
struct __attribute__((packed)) T_UINT32 { uint32_t v; };
#define __UNALIGNED_UINT32(x) (((struct T_UINT32 *)(x))->v)
#endif
#ifndef __UNALIGNED_UINT16_WRITE
__PACKED_STRUCT T_UINT16_WRITE { uint16_t v; };
#define __UNALIGNED_UINT16_WRITE(addr, val) (void)((((struct T_UINT16_WRITE *)(void*)(addr))->v) = (val))
#endif
#ifndef __UNALIGNED_UINT16_READ
__PACKED_STRUCT T_UINT16_READ { uint16_t v; };
#define __UNALIGNED_UINT16_READ(addr) (((const struct T_UINT16_READ *)(const void *)(addr))->v)
#endif
#ifndef __UNALIGNED_UINT32_WRITE
__PACKED_STRUCT T_UINT32_WRITE { uint32_t v; };
#define __UNALIGNED_UINT32_WRITE(addr, val) (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val))
#endif
#ifndef __UNALIGNED_UINT32_READ
__PACKED_STRUCT T_UINT32_READ { uint32_t v; };
#define __UNALIGNED_UINT32_READ(addr) (((const struct T_UINT32_READ *)(const void *)(addr))->v)
#endif
#ifndef __ALIGNED
#define __ALIGNED(x) __attribute__((aligned(x)))
#endif
#ifndef __RESTRICT
#define __RESTRICT __restrict
#endif
#ifndef __COMPILER_BARRIER
#warning No compiler specific solution for __COMPILER_BARRIER. __COMPILER_BARRIER is ignored.
#define __COMPILER_BARRIER() (void)0
#endif
/*
* TASKING Compiler
*/
#elif defined ( __TASKING__ )
/*
* The CMSIS functions have been implemented as intrinsics in the compiler.
* Please use "carm -?i" to get an up to date list of all intrinsics,
* Including the CMSIS ones.
*/
#ifndef __ASM
#define __ASM __asm
#endif
#ifndef __INLINE
#define __INLINE inline
#endif
#ifndef __STATIC_INLINE
#define __STATIC_INLINE static inline
#endif
#ifndef __STATIC_FORCEINLINE
#define __STATIC_FORCEINLINE __STATIC_INLINE
#endif
#ifndef __NO_RETURN
#define __NO_RETURN __attribute__((noreturn))
#endif
#ifndef __USED
#define __USED __attribute__((used))
#endif
#ifndef __WEAK
#define __WEAK __attribute__((weak))
#endif
#ifndef __PACKED
#define __PACKED __packed__
#endif
#ifndef __PACKED_STRUCT
#define __PACKED_STRUCT struct __packed__
#endif
#ifndef __PACKED_UNION
#define __PACKED_UNION union __packed__
#endif
#ifndef __UNALIGNED_UINT32 /* deprecated */
struct __packed__ T_UINT32 { uint32_t v; };
#define __UNALIGNED_UINT32(x) (((struct T_UINT32 *)(x))->v)
#endif
#ifndef __UNALIGNED_UINT16_WRITE
__PACKED_STRUCT T_UINT16_WRITE { uint16_t v; };
#define __UNALIGNED_UINT16_WRITE(addr, val) (void)((((struct T_UINT16_WRITE *)(void *)(addr))->v) = (val))
#endif
#ifndef __UNALIGNED_UINT16_READ
__PACKED_STRUCT T_UINT16_READ { uint16_t v; };
#define __UNALIGNED_UINT16_READ(addr) (((const struct T_UINT16_READ *)(const void *)(addr))->v)
#endif
#ifndef __UNALIGNED_UINT32_WRITE
__PACKED_STRUCT T_UINT32_WRITE { uint32_t v; };
#define __UNALIGNED_UINT32_WRITE(addr, val) (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val))
#endif
#ifndef __UNALIGNED_UINT32_READ
__PACKED_STRUCT T_UINT32_READ { uint32_t v; };
#define __UNALIGNED_UINT32_READ(addr) (((const struct T_UINT32_READ *)(const void *)(addr))->v)
#endif
#ifndef __ALIGNED
#define __ALIGNED(x) __align(x)
#endif
#ifndef __RESTRICT
#warning No compiler specific solution for __RESTRICT. __RESTRICT is ignored.
#define __RESTRICT
#endif
#ifndef __COMPILER_BARRIER
#warning No compiler specific solution for __COMPILER_BARRIER. __COMPILER_BARRIER is ignored.
#define __COMPILER_BARRIER() (void)0
#endif
/*
* COSMIC Compiler
*/
#elif defined ( __CSMC__ )
#include <cmsis_csm.h>
#ifndef __ASM
#define __ASM _asm
#endif
#ifndef __INLINE
#define __INLINE inline
#endif
#ifndef __STATIC_INLINE
#define __STATIC_INLINE static inline
#endif
#ifndef __STATIC_FORCEINLINE
#define __STATIC_FORCEINLINE __STATIC_INLINE
#endif
#ifndef __NO_RETURN
// NO RETURN is automatically detected hence no warning here
#define __NO_RETURN
#endif
#ifndef __USED
#warning No compiler specific solution for __USED. __USED is ignored.
#define __USED
#endif
#ifndef __WEAK
#define __WEAK __weak
#endif
#ifndef __PACKED
#define __PACKED @packed
#endif
#ifndef __PACKED_STRUCT
#define __PACKED_STRUCT @packed struct
#endif
#ifndef __PACKED_UNION
#define __PACKED_UNION @packed union
#endif
#ifndef __UNALIGNED_UINT32 /* deprecated */
@packed struct T_UINT32 { uint32_t v; };
#define __UNALIGNED_UINT32(x) (((struct T_UINT32 *)(x))->v)
#endif
#ifndef __UNALIGNED_UINT16_WRITE
__PACKED_STRUCT T_UINT16_WRITE { uint16_t v; };
#define __UNALIGNED_UINT16_WRITE(addr, val) (void)((((struct T_UINT16_WRITE *)(void *)(addr))->v) = (val))
#endif
#ifndef __UNALIGNED_UINT16_READ
__PACKED_STRUCT T_UINT16_READ { uint16_t v; };
#define __UNALIGNED_UINT16_READ(addr) (((const struct T_UINT16_READ *)(const void *)(addr))->v)
#endif
#ifndef __UNALIGNED_UINT32_WRITE
__PACKED_STRUCT T_UINT32_WRITE { uint32_t v; };
#define __UNALIGNED_UINT32_WRITE(addr, val) (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val))
#endif
#ifndef __UNALIGNED_UINT32_READ
__PACKED_STRUCT T_UINT32_READ { uint32_t v; };
#define __UNALIGNED_UINT32_READ(addr) (((const struct T_UINT32_READ *)(const void *)(addr))->v)
#endif
#ifndef __ALIGNED
#warning No compiler specific solution for __ALIGNED. __ALIGNED is ignored.
#define __ALIGNED(x)
#endif
#ifndef __RESTRICT
#warning No compiler specific solution for __RESTRICT. __RESTRICT is ignored.
#define __RESTRICT
#endif
#ifndef __COMPILER_BARRIER
#warning No compiler specific solution for __COMPILER_BARRIER. __COMPILER_BARRIER is ignored.
#define __COMPILER_BARRIER() (void)0
#endif
#else
#error Unknown compiler.
#endif
#endif /* __CMSIS_COMPILER_H */

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,964 @@
/**************************************************************************//**
* @file cmsis_iccarm.h
* @brief CMSIS compiler ICCARM (IAR Compiler for Arm) header file
* @version V5.1.0
* @date 08. May 2019
******************************************************************************/
//------------------------------------------------------------------------------
//
// Copyright (c) 2017-2019 IAR Systems
// Copyright (c) 2017-2019 Arm Limited. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License")
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
//------------------------------------------------------------------------------
#ifndef __CMSIS_ICCARM_H__
#define __CMSIS_ICCARM_H__
#ifndef __ICCARM__
#error This file should only be compiled by ICCARM
#endif
#pragma system_include
#define __IAR_FT _Pragma("inline=forced") __intrinsic
#if (__VER__ >= 8000000)
#define __ICCARM_V8 1
#else
#define __ICCARM_V8 0
#endif
#ifndef __ALIGNED
#if __ICCARM_V8
#define __ALIGNED(x) __attribute__((aligned(x)))
#elif (__VER__ >= 7080000)
/* Needs IAR language extensions */
#define __ALIGNED(x) __attribute__((aligned(x)))
#else
#warning No compiler specific solution for __ALIGNED.__ALIGNED is ignored.
#define __ALIGNED(x)
#endif
#endif
/* Define compiler macros for CPU architecture, used in CMSIS 5.
*/
#if __ARM_ARCH_6M__ || __ARM_ARCH_7M__ || __ARM_ARCH_7EM__ || __ARM_ARCH_8M_BASE__ || __ARM_ARCH_8M_MAIN__
/* Macros already defined */
#else
#if defined(__ARM8M_MAINLINE__) || defined(__ARM8EM_MAINLINE__)
#define __ARM_ARCH_8M_MAIN__ 1
#elif defined(__ARM8M_BASELINE__)
#define __ARM_ARCH_8M_BASE__ 1
#elif defined(__ARM_ARCH_PROFILE) && __ARM_ARCH_PROFILE == 'M'
#if __ARM_ARCH == 6
#define __ARM_ARCH_6M__ 1
#elif __ARM_ARCH == 7
#if __ARM_FEATURE_DSP
#define __ARM_ARCH_7EM__ 1
#else
#define __ARM_ARCH_7M__ 1
#endif
#endif /* __ARM_ARCH */
#endif /* __ARM_ARCH_PROFILE == 'M' */
#endif
/* Alternativ core deduction for older ICCARM's */
#if !defined(__ARM_ARCH_6M__) && !defined(__ARM_ARCH_7M__) && !defined(__ARM_ARCH_7EM__) && \
!defined(__ARM_ARCH_8M_BASE__) && !defined(__ARM_ARCH_8M_MAIN__)
#if defined(__ARM6M__) && (__CORE__ == __ARM6M__)
#define __ARM_ARCH_6M__ 1
#elif defined(__ARM7M__) && (__CORE__ == __ARM7M__)
#define __ARM_ARCH_7M__ 1
#elif defined(__ARM7EM__) && (__CORE__ == __ARM7EM__)
#define __ARM_ARCH_7EM__ 1
#elif defined(__ARM8M_BASELINE__) && (__CORE == __ARM8M_BASELINE__)
#define __ARM_ARCH_8M_BASE__ 1
#elif defined(__ARM8M_MAINLINE__) && (__CORE == __ARM8M_MAINLINE__)
#define __ARM_ARCH_8M_MAIN__ 1
#elif defined(__ARM8EM_MAINLINE__) && (__CORE == __ARM8EM_MAINLINE__)
#define __ARM_ARCH_8M_MAIN__ 1
#else
#error "Unknown target."
#endif
#endif
#if defined(__ARM_ARCH_6M__) && __ARM_ARCH_6M__==1
#define __IAR_M0_FAMILY 1
#elif defined(__ARM_ARCH_8M_BASE__) && __ARM_ARCH_8M_BASE__==1
#define __IAR_M0_FAMILY 1
#else
#define __IAR_M0_FAMILY 0
#endif
#ifndef __ASM
#define __ASM __asm
#endif
#ifndef __COMPILER_BARRIER
#define __COMPILER_BARRIER() __ASM volatile("":::"memory")
#endif
#ifndef __INLINE
#define __INLINE inline
#endif
#ifndef __NO_RETURN
#if __ICCARM_V8
#define __NO_RETURN __attribute__((__noreturn__))
#else
#define __NO_RETURN _Pragma("object_attribute=__noreturn")
#endif
#endif
#ifndef __PACKED
#if __ICCARM_V8
#define __PACKED __attribute__((packed, aligned(1)))
#else
/* Needs IAR language extensions */
#define __PACKED __packed
#endif
#endif
#ifndef __PACKED_STRUCT
#if __ICCARM_V8
#define __PACKED_STRUCT struct __attribute__((packed, aligned(1)))
#else
/* Needs IAR language extensions */
#define __PACKED_STRUCT __packed struct
#endif
#endif
#ifndef __PACKED_UNION
#if __ICCARM_V8
#define __PACKED_UNION union __attribute__((packed, aligned(1)))
#else
/* Needs IAR language extensions */
#define __PACKED_UNION __packed union
#endif
#endif
#ifndef __RESTRICT
#if __ICCARM_V8
#define __RESTRICT __restrict
#else
/* Needs IAR language extensions */
#define __RESTRICT restrict
#endif
#endif
#ifndef __STATIC_INLINE
#define __STATIC_INLINE static inline
#endif
#ifndef __FORCEINLINE
#define __FORCEINLINE _Pragma("inline=forced")
#endif
#ifndef __STATIC_FORCEINLINE
#define __STATIC_FORCEINLINE __FORCEINLINE __STATIC_INLINE
#endif
#ifndef __UNALIGNED_UINT16_READ
#pragma language=save
#pragma language=extended
__IAR_FT uint16_t __iar_uint16_read(void const *ptr)
{
return *(__packed uint16_t*)(ptr);
}
#pragma language=restore
#define __UNALIGNED_UINT16_READ(PTR) __iar_uint16_read(PTR)
#endif
#ifndef __UNALIGNED_UINT16_WRITE
#pragma language=save
#pragma language=extended
__IAR_FT void __iar_uint16_write(void const *ptr, uint16_t val)
{
*(__packed uint16_t*)(ptr) = val;;
}
#pragma language=restore
#define __UNALIGNED_UINT16_WRITE(PTR,VAL) __iar_uint16_write(PTR,VAL)
#endif
#ifndef __UNALIGNED_UINT32_READ
#pragma language=save
#pragma language=extended
__IAR_FT uint32_t __iar_uint32_read(void const *ptr)
{
return *(__packed uint32_t*)(ptr);
}
#pragma language=restore
#define __UNALIGNED_UINT32_READ(PTR) __iar_uint32_read(PTR)
#endif
#ifndef __UNALIGNED_UINT32_WRITE
#pragma language=save
#pragma language=extended
__IAR_FT void __iar_uint32_write(void const *ptr, uint32_t val)
{
*(__packed uint32_t*)(ptr) = val;;
}
#pragma language=restore
#define __UNALIGNED_UINT32_WRITE(PTR,VAL) __iar_uint32_write(PTR,VAL)
#endif
#ifndef __UNALIGNED_UINT32 /* deprecated */
#pragma language=save
#pragma language=extended
__packed struct __iar_u32 { uint32_t v; };
#pragma language=restore
#define __UNALIGNED_UINT32(PTR) (((struct __iar_u32 *)(PTR))->v)
#endif
#ifndef __USED
#if __ICCARM_V8
#define __USED __attribute__((used))
#else
#define __USED _Pragma("__root")
#endif
#endif
#ifndef __WEAK
#if __ICCARM_V8
#define __WEAK __attribute__((weak))
#else
#define __WEAK _Pragma("__weak")
#endif
#endif
#ifndef __PROGRAM_START
#define __PROGRAM_START __iar_program_start
#endif
#ifndef __INITIAL_SP
#define __INITIAL_SP CSTACK$$Limit
#endif
#ifndef __STACK_LIMIT
#define __STACK_LIMIT CSTACK$$Base
#endif
#ifndef __VECTOR_TABLE
#define __VECTOR_TABLE __vector_table
#endif
#ifndef __VECTOR_TABLE_ATTRIBUTE
#define __VECTOR_TABLE_ATTRIBUTE @".intvec"
#endif
#ifndef __ICCARM_INTRINSICS_VERSION__
#define __ICCARM_INTRINSICS_VERSION__ 0
#endif
#if __ICCARM_INTRINSICS_VERSION__ == 2
#if defined(__CLZ)
#undef __CLZ
#endif
#if defined(__REVSH)
#undef __REVSH
#endif
#if defined(__RBIT)
#undef __RBIT
#endif
#if defined(__SSAT)
#undef __SSAT
#endif
#if defined(__USAT)
#undef __USAT
#endif
#include "iccarm_builtin.h"
#define __disable_fault_irq __iar_builtin_disable_fiq
#define __disable_irq __iar_builtin_disable_interrupt
#define __enable_fault_irq __iar_builtin_enable_fiq
#define __enable_irq __iar_builtin_enable_interrupt
#define __arm_rsr __iar_builtin_rsr
#define __arm_wsr __iar_builtin_wsr
#define __get_APSR() (__arm_rsr("APSR"))
#define __get_BASEPRI() (__arm_rsr("BASEPRI"))
#define __get_CONTROL() (__arm_rsr("CONTROL"))
#define __get_FAULTMASK() (__arm_rsr("FAULTMASK"))
#if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
(defined (__FPU_USED ) && (__FPU_USED == 1U)) )
#define __get_FPSCR() (__arm_rsr("FPSCR"))
#define __set_FPSCR(VALUE) (__arm_wsr("FPSCR", (VALUE)))
#else
#define __get_FPSCR() ( 0 )
#define __set_FPSCR(VALUE) ((void)VALUE)
#endif
#define __get_IPSR() (__arm_rsr("IPSR"))
#define __get_MSP() (__arm_rsr("MSP"))
#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
(!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
// without main extensions, the non-secure MSPLIM is RAZ/WI
#define __get_MSPLIM() (0U)
#else
#define __get_MSPLIM() (__arm_rsr("MSPLIM"))
#endif
#define __get_PRIMASK() (__arm_rsr("PRIMASK"))
#define __get_PSP() (__arm_rsr("PSP"))
#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
(!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
// without main extensions, the non-secure PSPLIM is RAZ/WI
#define __get_PSPLIM() (0U)
#else
#define __get_PSPLIM() (__arm_rsr("PSPLIM"))
#endif
#define __get_xPSR() (__arm_rsr("xPSR"))
#define __set_BASEPRI(VALUE) (__arm_wsr("BASEPRI", (VALUE)))
#define __set_BASEPRI_MAX(VALUE) (__arm_wsr("BASEPRI_MAX", (VALUE)))
#define __set_CONTROL(VALUE) (__arm_wsr("CONTROL", (VALUE)))
#define __set_FAULTMASK(VALUE) (__arm_wsr("FAULTMASK", (VALUE)))
#define __set_MSP(VALUE) (__arm_wsr("MSP", (VALUE)))
#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
(!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
// without main extensions, the non-secure MSPLIM is RAZ/WI
#define __set_MSPLIM(VALUE) ((void)(VALUE))
#else
#define __set_MSPLIM(VALUE) (__arm_wsr("MSPLIM", (VALUE)))
#endif
#define __set_PRIMASK(VALUE) (__arm_wsr("PRIMASK", (VALUE)))
#define __set_PSP(VALUE) (__arm_wsr("PSP", (VALUE)))
#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
(!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
// without main extensions, the non-secure PSPLIM is RAZ/WI
#define __set_PSPLIM(VALUE) ((void)(VALUE))
#else
#define __set_PSPLIM(VALUE) (__arm_wsr("PSPLIM", (VALUE)))
#endif
#define __TZ_get_CONTROL_NS() (__arm_rsr("CONTROL_NS"))
#define __TZ_set_CONTROL_NS(VALUE) (__arm_wsr("CONTROL_NS", (VALUE)))
#define __TZ_get_PSP_NS() (__arm_rsr("PSP_NS"))
#define __TZ_set_PSP_NS(VALUE) (__arm_wsr("PSP_NS", (VALUE)))
#define __TZ_get_MSP_NS() (__arm_rsr("MSP_NS"))
#define __TZ_set_MSP_NS(VALUE) (__arm_wsr("MSP_NS", (VALUE)))
#define __TZ_get_SP_NS() (__arm_rsr("SP_NS"))
#define __TZ_set_SP_NS(VALUE) (__arm_wsr("SP_NS", (VALUE)))
#define __TZ_get_PRIMASK_NS() (__arm_rsr("PRIMASK_NS"))
#define __TZ_set_PRIMASK_NS(VALUE) (__arm_wsr("PRIMASK_NS", (VALUE)))
#define __TZ_get_BASEPRI_NS() (__arm_rsr("BASEPRI_NS"))
#define __TZ_set_BASEPRI_NS(VALUE) (__arm_wsr("BASEPRI_NS", (VALUE)))
#define __TZ_get_FAULTMASK_NS() (__arm_rsr("FAULTMASK_NS"))
#define __TZ_set_FAULTMASK_NS(VALUE)(__arm_wsr("FAULTMASK_NS", (VALUE)))
#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
(!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
// without main extensions, the non-secure PSPLIM is RAZ/WI
#define __TZ_get_PSPLIM_NS() (0U)
#define __TZ_set_PSPLIM_NS(VALUE) ((void)(VALUE))
#else
#define __TZ_get_PSPLIM_NS() (__arm_rsr("PSPLIM_NS"))
#define __TZ_set_PSPLIM_NS(VALUE) (__arm_wsr("PSPLIM_NS", (VALUE)))
#endif
#define __TZ_get_MSPLIM_NS() (__arm_rsr("MSPLIM_NS"))
#define __TZ_set_MSPLIM_NS(VALUE) (__arm_wsr("MSPLIM_NS", (VALUE)))
#define __NOP __iar_builtin_no_operation
#define __CLZ __iar_builtin_CLZ
#define __CLREX __iar_builtin_CLREX
#define __DMB __iar_builtin_DMB
#define __DSB __iar_builtin_DSB
#define __ISB __iar_builtin_ISB
#define __LDREXB __iar_builtin_LDREXB
#define __LDREXH __iar_builtin_LDREXH
#define __LDREXW __iar_builtin_LDREX
#define __RBIT __iar_builtin_RBIT
#define __REV __iar_builtin_REV
#define __REV16 __iar_builtin_REV16
__IAR_FT int16_t __REVSH(int16_t val)
{
return (int16_t) __iar_builtin_REVSH(val);
}
#define __ROR __iar_builtin_ROR
#define __RRX __iar_builtin_RRX
#define __SEV __iar_builtin_SEV
#if !__IAR_M0_FAMILY
#define __SSAT __iar_builtin_SSAT
#endif
#define __STREXB __iar_builtin_STREXB
#define __STREXH __iar_builtin_STREXH
#define __STREXW __iar_builtin_STREX
#if !__IAR_M0_FAMILY
#define __USAT __iar_builtin_USAT
#endif
#define __WFE __iar_builtin_WFE
#define __WFI __iar_builtin_WFI
#if __ARM_MEDIA__
#define __SADD8 __iar_builtin_SADD8
#define __QADD8 __iar_builtin_QADD8
#define __SHADD8 __iar_builtin_SHADD8
#define __UADD8 __iar_builtin_UADD8
#define __UQADD8 __iar_builtin_UQADD8
#define __UHADD8 __iar_builtin_UHADD8
#define __SSUB8 __iar_builtin_SSUB8
#define __QSUB8 __iar_builtin_QSUB8
#define __SHSUB8 __iar_builtin_SHSUB8
#define __USUB8 __iar_builtin_USUB8
#define __UQSUB8 __iar_builtin_UQSUB8
#define __UHSUB8 __iar_builtin_UHSUB8
#define __SADD16 __iar_builtin_SADD16
#define __QADD16 __iar_builtin_QADD16
#define __SHADD16 __iar_builtin_SHADD16
#define __UADD16 __iar_builtin_UADD16
#define __UQADD16 __iar_builtin_UQADD16
#define __UHADD16 __iar_builtin_UHADD16
#define __SSUB16 __iar_builtin_SSUB16
#define __QSUB16 __iar_builtin_QSUB16
#define __SHSUB16 __iar_builtin_SHSUB16
#define __USUB16 __iar_builtin_USUB16
#define __UQSUB16 __iar_builtin_UQSUB16
#define __UHSUB16 __iar_builtin_UHSUB16
#define __SASX __iar_builtin_SASX
#define __QASX __iar_builtin_QASX
#define __SHASX __iar_builtin_SHASX
#define __UASX __iar_builtin_UASX
#define __UQASX __iar_builtin_UQASX
#define __UHASX __iar_builtin_UHASX
#define __SSAX __iar_builtin_SSAX
#define __QSAX __iar_builtin_QSAX
#define __SHSAX __iar_builtin_SHSAX
#define __USAX __iar_builtin_USAX
#define __UQSAX __iar_builtin_UQSAX
#define __UHSAX __iar_builtin_UHSAX
#define __USAD8 __iar_builtin_USAD8
#define __USADA8 __iar_builtin_USADA8
#define __SSAT16 __iar_builtin_SSAT16
#define __USAT16 __iar_builtin_USAT16
#define __UXTB16 __iar_builtin_UXTB16
#define __UXTAB16 __iar_builtin_UXTAB16
#define __SXTB16 __iar_builtin_SXTB16
#define __SXTAB16 __iar_builtin_SXTAB16
#define __SMUAD __iar_builtin_SMUAD
#define __SMUADX __iar_builtin_SMUADX
#define __SMMLA __iar_builtin_SMMLA
#define __SMLAD __iar_builtin_SMLAD
#define __SMLADX __iar_builtin_SMLADX
#define __SMLALD __iar_builtin_SMLALD
#define __SMLALDX __iar_builtin_SMLALDX
#define __SMUSD __iar_builtin_SMUSD
#define __SMUSDX __iar_builtin_SMUSDX
#define __SMLSD __iar_builtin_SMLSD
#define __SMLSDX __iar_builtin_SMLSDX
#define __SMLSLD __iar_builtin_SMLSLD
#define __SMLSLDX __iar_builtin_SMLSLDX
#define __SEL __iar_builtin_SEL
#define __QADD __iar_builtin_QADD
#define __QSUB __iar_builtin_QSUB
#define __PKHBT __iar_builtin_PKHBT
#define __PKHTB __iar_builtin_PKHTB
#endif
#else /* __ICCARM_INTRINSICS_VERSION__ == 2 */
#if __IAR_M0_FAMILY
/* Avoid clash between intrinsics.h and arm_math.h when compiling for Cortex-M0. */
#define __CLZ __cmsis_iar_clz_not_active
#define __SSAT __cmsis_iar_ssat_not_active
#define __USAT __cmsis_iar_usat_not_active
#define __RBIT __cmsis_iar_rbit_not_active
#define __get_APSR __cmsis_iar_get_APSR_not_active
#endif
#if (!((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
(defined (__FPU_USED ) && (__FPU_USED == 1U)) ))
#define __get_FPSCR __cmsis_iar_get_FPSR_not_active
#define __set_FPSCR __cmsis_iar_set_FPSR_not_active
#endif
#ifdef __INTRINSICS_INCLUDED
#error intrinsics.h is already included previously!
#endif
#include <intrinsics.h>
#if __IAR_M0_FAMILY
/* Avoid clash between intrinsics.h and arm_math.h when compiling for Cortex-M0. */
#undef __CLZ
#undef __SSAT
#undef __USAT
#undef __RBIT
#undef __get_APSR
__STATIC_INLINE uint8_t __CLZ(uint32_t data)
{
if (data == 0U) { return 32U; }
uint32_t count = 0U;
uint32_t mask = 0x80000000U;
while ((data & mask) == 0U)
{
count += 1U;
mask = mask >> 1U;
}
return count;
}
__STATIC_INLINE uint32_t __RBIT(uint32_t v)
{
uint8_t sc = 31U;
uint32_t r = v;
for (v >>= 1U; v; v >>= 1U)
{
r <<= 1U;
r |= v & 1U;
sc--;
}
return (r << sc);
}
__STATIC_INLINE uint32_t __get_APSR(void)
{
uint32_t res;
__asm("MRS %0,APSR" : "=r" (res));
return res;
}
#endif
#if (!((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
(defined (__FPU_USED ) && (__FPU_USED == 1U)) ))
#undef __get_FPSCR
#undef __set_FPSCR
#define __get_FPSCR() (0)
#define __set_FPSCR(VALUE) ((void)VALUE)
#endif
#pragma diag_suppress=Pe940
#pragma diag_suppress=Pe177
#define __enable_irq __enable_interrupt
#define __disable_irq __disable_interrupt
#define __NOP __no_operation
#define __get_xPSR __get_PSR
#if (!defined(__ARM_ARCH_6M__) || __ARM_ARCH_6M__==0)
__IAR_FT uint32_t __LDREXW(uint32_t volatile *ptr)
{
return __LDREX((unsigned long *)ptr);
}
__IAR_FT uint32_t __STREXW(uint32_t value, uint32_t volatile *ptr)
{
return __STREX(value, (unsigned long *)ptr);
}
#endif
/* __CORTEX_M is defined in core_cm0.h, core_cm3.h and core_cm4.h. */
#if (__CORTEX_M >= 0x03)
__IAR_FT uint32_t __RRX(uint32_t value)
{
uint32_t result;
__ASM("RRX %0, %1" : "=r"(result) : "r" (value) : "cc");
return(result);
}
__IAR_FT void __set_BASEPRI_MAX(uint32_t value)
{
__asm volatile("MSR BASEPRI_MAX,%0"::"r" (value));
}
#define __enable_fault_irq __enable_fiq
#define __disable_fault_irq __disable_fiq
#endif /* (__CORTEX_M >= 0x03) */
__IAR_FT uint32_t __ROR(uint32_t op1, uint32_t op2)
{
return (op1 >> op2) | (op1 << ((sizeof(op1)*8)-op2));
}
#if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
(defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) )
__IAR_FT uint32_t __get_MSPLIM(void)
{
uint32_t res;
#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
(!defined (__ARM_FEATURE_CMSE ) || (__ARM_FEATURE_CMSE < 3)))
// without main extensions, the non-secure MSPLIM is RAZ/WI
res = 0U;
#else
__asm volatile("MRS %0,MSPLIM" : "=r" (res));
#endif
return res;
}
__IAR_FT void __set_MSPLIM(uint32_t value)
{
#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
(!defined (__ARM_FEATURE_CMSE ) || (__ARM_FEATURE_CMSE < 3)))
// without main extensions, the non-secure MSPLIM is RAZ/WI
(void)value;
#else
__asm volatile("MSR MSPLIM,%0" :: "r" (value));
#endif
}
__IAR_FT uint32_t __get_PSPLIM(void)
{
uint32_t res;
#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
(!defined (__ARM_FEATURE_CMSE ) || (__ARM_FEATURE_CMSE < 3)))
// without main extensions, the non-secure PSPLIM is RAZ/WI
res = 0U;
#else
__asm volatile("MRS %0,PSPLIM" : "=r" (res));
#endif
return res;
}
__IAR_FT void __set_PSPLIM(uint32_t value)
{
#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
(!defined (__ARM_FEATURE_CMSE ) || (__ARM_FEATURE_CMSE < 3)))
// without main extensions, the non-secure PSPLIM is RAZ/WI
(void)value;
#else
__asm volatile("MSR PSPLIM,%0" :: "r" (value));
#endif
}
__IAR_FT uint32_t __TZ_get_CONTROL_NS(void)
{
uint32_t res;
__asm volatile("MRS %0,CONTROL_NS" : "=r" (res));
return res;
}
__IAR_FT void __TZ_set_CONTROL_NS(uint32_t value)
{
__asm volatile("MSR CONTROL_NS,%0" :: "r" (value));
}
__IAR_FT uint32_t __TZ_get_PSP_NS(void)
{
uint32_t res;
__asm volatile("MRS %0,PSP_NS" : "=r" (res));
return res;
}
__IAR_FT void __TZ_set_PSP_NS(uint32_t value)
{
__asm volatile("MSR PSP_NS,%0" :: "r" (value));
}
__IAR_FT uint32_t __TZ_get_MSP_NS(void)
{
uint32_t res;
__asm volatile("MRS %0,MSP_NS" : "=r" (res));
return res;
}
__IAR_FT void __TZ_set_MSP_NS(uint32_t value)
{
__asm volatile("MSR MSP_NS,%0" :: "r" (value));
}
__IAR_FT uint32_t __TZ_get_SP_NS(void)
{
uint32_t res;
__asm volatile("MRS %0,SP_NS" : "=r" (res));
return res;
}
__IAR_FT void __TZ_set_SP_NS(uint32_t value)
{
__asm volatile("MSR SP_NS,%0" :: "r" (value));
}
__IAR_FT uint32_t __TZ_get_PRIMASK_NS(void)
{
uint32_t res;
__asm volatile("MRS %0,PRIMASK_NS" : "=r" (res));
return res;
}
__IAR_FT void __TZ_set_PRIMASK_NS(uint32_t value)
{
__asm volatile("MSR PRIMASK_NS,%0" :: "r" (value));
}
__IAR_FT uint32_t __TZ_get_BASEPRI_NS(void)
{
uint32_t res;
__asm volatile("MRS %0,BASEPRI_NS" : "=r" (res));
return res;
}
__IAR_FT void __TZ_set_BASEPRI_NS(uint32_t value)
{
__asm volatile("MSR BASEPRI_NS,%0" :: "r" (value));
}
__IAR_FT uint32_t __TZ_get_FAULTMASK_NS(void)
{
uint32_t res;
__asm volatile("MRS %0,FAULTMASK_NS" : "=r" (res));
return res;
}
__IAR_FT void __TZ_set_FAULTMASK_NS(uint32_t value)
{
__asm volatile("MSR FAULTMASK_NS,%0" :: "r" (value));
}
__IAR_FT uint32_t __TZ_get_PSPLIM_NS(void)
{
uint32_t res;
#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
(!defined (__ARM_FEATURE_CMSE ) || (__ARM_FEATURE_CMSE < 3)))
// without main extensions, the non-secure PSPLIM is RAZ/WI
res = 0U;
#else
__asm volatile("MRS %0,PSPLIM_NS" : "=r" (res));
#endif
return res;
}
__IAR_FT void __TZ_set_PSPLIM_NS(uint32_t value)
{
#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
(!defined (__ARM_FEATURE_CMSE ) || (__ARM_FEATURE_CMSE < 3)))
// without main extensions, the non-secure PSPLIM is RAZ/WI
(void)value;
#else
__asm volatile("MSR PSPLIM_NS,%0" :: "r" (value));
#endif
}
__IAR_FT uint32_t __TZ_get_MSPLIM_NS(void)
{
uint32_t res;
__asm volatile("MRS %0,MSPLIM_NS" : "=r" (res));
return res;
}
__IAR_FT void __TZ_set_MSPLIM_NS(uint32_t value)
{
__asm volatile("MSR MSPLIM_NS,%0" :: "r" (value));
}
#endif /* __ARM_ARCH_8M_MAIN__ or __ARM_ARCH_8M_BASE__ */
#endif /* __ICCARM_INTRINSICS_VERSION__ == 2 */
#define __BKPT(value) __asm volatile ("BKPT %0" : : "i"(value))
#if __IAR_M0_FAMILY
__STATIC_INLINE int32_t __SSAT(int32_t val, uint32_t sat)
{
if ((sat >= 1U) && (sat <= 32U))
{
const int32_t max = (int32_t)((1U << (sat - 1U)) - 1U);
const int32_t min = -1 - max ;
if (val > max)
{
return max;
}
else if (val < min)
{
return min;
}
}
return val;
}
__STATIC_INLINE uint32_t __USAT(int32_t val, uint32_t sat)
{
if (sat <= 31U)
{
const uint32_t max = ((1U << sat) - 1U);
if (val > (int32_t)max)
{
return max;
}
else if (val < 0)
{
return 0U;
}
}
return (uint32_t)val;
}
#endif
#if (__CORTEX_M >= 0x03) /* __CORTEX_M is defined in core_cm0.h, core_cm3.h and core_cm4.h. */
__IAR_FT uint8_t __LDRBT(volatile uint8_t *addr)
{
uint32_t res;
__ASM("LDRBT %0, [%1]" : "=r" (res) : "r" (addr) : "memory");
return ((uint8_t)res);
}
__IAR_FT uint16_t __LDRHT(volatile uint16_t *addr)
{
uint32_t res;
__ASM("LDRHT %0, [%1]" : "=r" (res) : "r" (addr) : "memory");
return ((uint16_t)res);
}
__IAR_FT uint32_t __LDRT(volatile uint32_t *addr)
{
uint32_t res;
__ASM("LDRT %0, [%1]" : "=r" (res) : "r" (addr) : "memory");
return res;
}
__IAR_FT void __STRBT(uint8_t value, volatile uint8_t *addr)
{
__ASM("STRBT %1, [%0]" : : "r" (addr), "r" ((uint32_t)value) : "memory");
}
__IAR_FT void __STRHT(uint16_t value, volatile uint16_t *addr)
{
__ASM("STRHT %1, [%0]" : : "r" (addr), "r" ((uint32_t)value) : "memory");
}
__IAR_FT void __STRT(uint32_t value, volatile uint32_t *addr)
{
__ASM("STRT %1, [%0]" : : "r" (addr), "r" (value) : "memory");
}
#endif /* (__CORTEX_M >= 0x03) */
#if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
(defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) )
__IAR_FT uint8_t __LDAB(volatile uint8_t *ptr)
{
uint32_t res;
__ASM volatile ("LDAB %0, [%1]" : "=r" (res) : "r" (ptr) : "memory");
return ((uint8_t)res);
}
__IAR_FT uint16_t __LDAH(volatile uint16_t *ptr)
{
uint32_t res;
__ASM volatile ("LDAH %0, [%1]" : "=r" (res) : "r" (ptr) : "memory");
return ((uint16_t)res);
}
__IAR_FT uint32_t __LDA(volatile uint32_t *ptr)
{
uint32_t res;
__ASM volatile ("LDA %0, [%1]" : "=r" (res) : "r" (ptr) : "memory");
return res;
}
__IAR_FT void __STLB(uint8_t value, volatile uint8_t *ptr)
{
__ASM volatile ("STLB %1, [%0]" :: "r" (ptr), "r" (value) : "memory");
}
__IAR_FT void __STLH(uint16_t value, volatile uint16_t *ptr)
{
__ASM volatile ("STLH %1, [%0]" :: "r" (ptr), "r" (value) : "memory");
}
__IAR_FT void __STL(uint32_t value, volatile uint32_t *ptr)
{
__ASM volatile ("STL %1, [%0]" :: "r" (ptr), "r" (value) : "memory");
}
__IAR_FT uint8_t __LDAEXB(volatile uint8_t *ptr)
{
uint32_t res;
__ASM volatile ("LDAEXB %0, [%1]" : "=r" (res) : "r" (ptr) : "memory");
return ((uint8_t)res);
}
__IAR_FT uint16_t __LDAEXH(volatile uint16_t *ptr)
{
uint32_t res;
__ASM volatile ("LDAEXH %0, [%1]" : "=r" (res) : "r" (ptr) : "memory");
return ((uint16_t)res);
}
__IAR_FT uint32_t __LDAEX(volatile uint32_t *ptr)
{
uint32_t res;
__ASM volatile ("LDAEX %0, [%1]" : "=r" (res) : "r" (ptr) : "memory");
return res;
}
__IAR_FT uint32_t __STLEXB(uint8_t value, volatile uint8_t *ptr)
{
uint32_t res;
__ASM volatile ("STLEXB %0, %2, [%1]" : "=r" (res) : "r" (ptr), "r" (value) : "memory");
return res;
}
__IAR_FT uint32_t __STLEXH(uint16_t value, volatile uint16_t *ptr)
{
uint32_t res;
__ASM volatile ("STLEXH %0, %2, [%1]" : "=r" (res) : "r" (ptr), "r" (value) : "memory");
return res;
}
__IAR_FT uint32_t __STLEX(uint32_t value, volatile uint32_t *ptr)
{
uint32_t res;
__ASM volatile ("STLEX %0, %2, [%1]" : "=r" (res) : "r" (ptr), "r" (value) : "memory");
return res;
}
#endif /* __ARM_ARCH_8M_MAIN__ or __ARM_ARCH_8M_BASE__ */
#undef __IAR_FT
#undef __IAR_M0_FAMILY
#undef __ICCARM_V8
#pragma diag_default=Pe940
#pragma diag_default=Pe177
#endif /* __CMSIS_ICCARM_H__ */

View File

@@ -0,0 +1,39 @@
/**************************************************************************//**
* @file cmsis_version.h
* @brief CMSIS Core(M) Version definitions
* @version V5.0.3
* @date 24. June 2019
******************************************************************************/
/*
* Copyright (c) 2009-2019 ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#if defined ( __ICCARM__ )
#pragma system_include /* treat file as system include file for MISRA check */
#elif defined (__clang__)
#pragma clang system_header /* treat file as system include file */
#endif
#ifndef __CMSIS_VERSION_H
#define __CMSIS_VERSION_H
/* CMSIS Version definitions */
#define __CM_CMSIS_VERSION_MAIN ( 5U) /*!< [31:16] CMSIS Core(M) main version */
#define __CM_CMSIS_VERSION_SUB ( 3U) /*!< [15:0] CMSIS Core(M) sub version */
#define __CM_CMSIS_VERSION ((__CM_CMSIS_VERSION_MAIN << 16U) | \
__CM_CMSIS_VERSION_SUB ) /*!< CMSIS Core(M) version number */
#endif

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,952 @@
/**************************************************************************//**
* @file core_cm0.h
* @brief CMSIS Cortex-M0 Core Peripheral Access Layer Header File
* @version V5.0.6
* @date 13. March 2019
******************************************************************************/
/*
* Copyright (c) 2009-2019 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#if defined ( __ICCARM__ )
#pragma system_include /* treat file as system include file for MISRA check */
#elif defined (__clang__)
#pragma clang system_header /* treat file as system include file */
#endif
#ifndef __CORE_CM0_H_GENERIC
#define __CORE_CM0_H_GENERIC
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
#endif
/**
\page CMSIS_MISRA_Exceptions MISRA-C:2004 Compliance Exceptions
CMSIS violates the following MISRA-C:2004 rules:
\li Required Rule 8.5, object/function definition in header file.<br>
Function definitions in header files are used to allow 'inlining'.
\li Required Rule 18.4, declaration of union type or object of union type: '{...}'.<br>
Unions are used for effective representation of core registers.
\li Advisory Rule 19.7, Function-like macro defined.<br>
Function-like macros are used to allow more efficient code.
*/
/*******************************************************************************
* CMSIS definitions
******************************************************************************/
/**
\ingroup Cortex_M0
@{
*/
#include "cmsis_version.h"
/* CMSIS CM0 definitions */
#define __CM0_CMSIS_VERSION_MAIN (__CM_CMSIS_VERSION_MAIN) /*!< \deprecated [31:16] CMSIS HAL main version */
#define __CM0_CMSIS_VERSION_SUB (__CM_CMSIS_VERSION_SUB) /*!< \deprecated [15:0] CMSIS HAL sub version */
#define __CM0_CMSIS_VERSION ((__CM0_CMSIS_VERSION_MAIN << 16U) | \
__CM0_CMSIS_VERSION_SUB ) /*!< \deprecated CMSIS HAL version number */
#define __CORTEX_M (0U) /*!< Cortex-M Core */
/** __FPU_USED indicates whether an FPU is used or not.
This core does not support an FPU at all
*/
#define __FPU_USED 0U
#if defined ( __CC_ARM )
#if defined __TARGET_FPU_VFP
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined (__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)
#if defined __ARM_FP
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined ( __GNUC__ )
#if defined (__VFP_FP__) && !defined(__SOFTFP__)
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined ( __ICCARM__ )
#if defined __ARMVFP__
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined ( __TI_ARM__ )
#if defined __TI_VFP_SUPPORT__
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined ( __TASKING__ )
#if defined __FPU_VFP__
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined ( __CSMC__ )
#if ( __CSMC__ & 0x400U)
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#endif
#include "cmsis_compiler.h" /* CMSIS compiler specific defines */
#ifdef __cplusplus
}
#endif
#endif /* __CORE_CM0_H_GENERIC */
#ifndef __CMSIS_GENERIC
#ifndef __CORE_CM0_H_DEPENDANT
#define __CORE_CM0_H_DEPENDANT
#ifdef __cplusplus
extern "C" {
#endif
/* check device defines and use defaults */
#if defined __CHECK_DEVICE_DEFINES
#ifndef __CM0_REV
#define __CM0_REV 0x0000U
#warning "__CM0_REV not defined in device header file; using default!"
#endif
#ifndef __NVIC_PRIO_BITS
#define __NVIC_PRIO_BITS 2U
#warning "__NVIC_PRIO_BITS not defined in device header file; using default!"
#endif
#ifndef __Vendor_SysTickConfig
#define __Vendor_SysTickConfig 0U
#warning "__Vendor_SysTickConfig not defined in device header file; using default!"
#endif
#endif
/* IO definitions (access restrictions to peripheral registers) */
/**
\defgroup CMSIS_glob_defs CMSIS Global Defines
<strong>IO Type Qualifiers</strong> are used
\li to specify the access to peripheral variables.
\li for automatic generation of peripheral register debug information.
*/
#ifdef __cplusplus
#define __I volatile /*!< Defines 'read only' permissions */
#else
#define __I volatile const /*!< Defines 'read only' permissions */
#endif
#define __O volatile /*!< Defines 'write only' permissions */
#define __IO volatile /*!< Defines 'read / write' permissions */
/* following defines should be used for structure members */
#define __IM volatile const /*! Defines 'read only' structure member permissions */
#define __OM volatile /*! Defines 'write only' structure member permissions */
#define __IOM volatile /*! Defines 'read / write' structure member permissions */
/*@} end of group Cortex_M0 */
/*******************************************************************************
* Register Abstraction
Core Register contain:
- Core Register
- Core NVIC Register
- Core SCB Register
- Core SysTick Register
******************************************************************************/
/**
\defgroup CMSIS_core_register Defines and Type Definitions
\brief Type definitions and defines for Cortex-M processor based devices.
*/
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_CORE Status and Control Registers
\brief Core Register type definitions.
@{
*/
/**
\brief Union type to access the Application Program Status Register (APSR).
*/
typedef union
{
struct
{
uint32_t _reserved0:28; /*!< bit: 0..27 Reserved */
uint32_t V:1; /*!< bit: 28 Overflow condition code flag */
uint32_t C:1; /*!< bit: 29 Carry condition code flag */
uint32_t Z:1; /*!< bit: 30 Zero condition code flag */
uint32_t N:1; /*!< bit: 31 Negative condition code flag */
} b; /*!< Structure used for bit access */
uint32_t w; /*!< Type used for word access */
} APSR_Type;
/* APSR Register Definitions */
#define APSR_N_Pos 31U /*!< APSR: N Position */
#define APSR_N_Msk (1UL << APSR_N_Pos) /*!< APSR: N Mask */
#define APSR_Z_Pos 30U /*!< APSR: Z Position */
#define APSR_Z_Msk (1UL << APSR_Z_Pos) /*!< APSR: Z Mask */
#define APSR_C_Pos 29U /*!< APSR: C Position */
#define APSR_C_Msk (1UL << APSR_C_Pos) /*!< APSR: C Mask */
#define APSR_V_Pos 28U /*!< APSR: V Position */
#define APSR_V_Msk (1UL << APSR_V_Pos) /*!< APSR: V Mask */
/**
\brief Union type to access the Interrupt Program Status Register (IPSR).
*/
typedef union
{
struct
{
uint32_t ISR:9; /*!< bit: 0.. 8 Exception number */
uint32_t _reserved0:23; /*!< bit: 9..31 Reserved */
} b; /*!< Structure used for bit access */
uint32_t w; /*!< Type used for word access */
} IPSR_Type;
/* IPSR Register Definitions */
#define IPSR_ISR_Pos 0U /*!< IPSR: ISR Position */
#define IPSR_ISR_Msk (0x1FFUL /*<< IPSR_ISR_Pos*/) /*!< IPSR: ISR Mask */
/**
\brief Union type to access the Special-Purpose Program Status Registers (xPSR).
*/
typedef union
{
struct
{
uint32_t ISR:9; /*!< bit: 0.. 8 Exception number */
uint32_t _reserved0:15; /*!< bit: 9..23 Reserved */
uint32_t T:1; /*!< bit: 24 Thumb bit (read 0) */
uint32_t _reserved1:3; /*!< bit: 25..27 Reserved */
uint32_t V:1; /*!< bit: 28 Overflow condition code flag */
uint32_t C:1; /*!< bit: 29 Carry condition code flag */
uint32_t Z:1; /*!< bit: 30 Zero condition code flag */
uint32_t N:1; /*!< bit: 31 Negative condition code flag */
} b; /*!< Structure used for bit access */
uint32_t w; /*!< Type used for word access */
} xPSR_Type;
/* xPSR Register Definitions */
#define xPSR_N_Pos 31U /*!< xPSR: N Position */
#define xPSR_N_Msk (1UL << xPSR_N_Pos) /*!< xPSR: N Mask */
#define xPSR_Z_Pos 30U /*!< xPSR: Z Position */
#define xPSR_Z_Msk (1UL << xPSR_Z_Pos) /*!< xPSR: Z Mask */
#define xPSR_C_Pos 29U /*!< xPSR: C Position */
#define xPSR_C_Msk (1UL << xPSR_C_Pos) /*!< xPSR: C Mask */
#define xPSR_V_Pos 28U /*!< xPSR: V Position */
#define xPSR_V_Msk (1UL << xPSR_V_Pos) /*!< xPSR: V Mask */
#define xPSR_T_Pos 24U /*!< xPSR: T Position */
#define xPSR_T_Msk (1UL << xPSR_T_Pos) /*!< xPSR: T Mask */
#define xPSR_ISR_Pos 0U /*!< xPSR: ISR Position */
#define xPSR_ISR_Msk (0x1FFUL /*<< xPSR_ISR_Pos*/) /*!< xPSR: ISR Mask */
/**
\brief Union type to access the Control Registers (CONTROL).
*/
typedef union
{
struct
{
uint32_t _reserved0:1; /*!< bit: 0 Reserved */
uint32_t SPSEL:1; /*!< bit: 1 Stack to be used */
uint32_t _reserved1:30; /*!< bit: 2..31 Reserved */
} b; /*!< Structure used for bit access */
uint32_t w; /*!< Type used for word access */
} CONTROL_Type;
/* CONTROL Register Definitions */
#define CONTROL_SPSEL_Pos 1U /*!< CONTROL: SPSEL Position */
#define CONTROL_SPSEL_Msk (1UL << CONTROL_SPSEL_Pos) /*!< CONTROL: SPSEL Mask */
/*@} end of group CMSIS_CORE */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_NVIC Nested Vectored Interrupt Controller (NVIC)
\brief Type definitions for the NVIC Registers
@{
*/
/**
\brief Structure type to access the Nested Vectored Interrupt Controller (NVIC).
*/
typedef struct
{
__IOM uint32_t ISER[1U]; /*!< Offset: 0x000 (R/W) Interrupt Set Enable Register */
uint32_t RESERVED0[31U];
__IOM uint32_t ICER[1U]; /*!< Offset: 0x080 (R/W) Interrupt Clear Enable Register */
uint32_t RESERVED1[31U];
__IOM uint32_t ISPR[1U]; /*!< Offset: 0x100 (R/W) Interrupt Set Pending Register */
uint32_t RESERVED2[31U];
__IOM uint32_t ICPR[1U]; /*!< Offset: 0x180 (R/W) Interrupt Clear Pending Register */
uint32_t RESERVED3[31U];
uint32_t RESERVED4[64U];
__IOM uint32_t IP[8U]; /*!< Offset: 0x300 (R/W) Interrupt Priority Register */
} NVIC_Type;
/*@} end of group CMSIS_NVIC */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_SCB System Control Block (SCB)
\brief Type definitions for the System Control Block Registers
@{
*/
/**
\brief Structure type to access the System Control Block (SCB).
*/
typedef struct
{
__IM uint32_t CPUID; /*!< Offset: 0x000 (R/ ) CPUID Base Register */
__IOM uint32_t ICSR; /*!< Offset: 0x004 (R/W) Interrupt Control and State Register */
uint32_t RESERVED0;
__IOM uint32_t AIRCR; /*!< Offset: 0x00C (R/W) Application Interrupt and Reset Control Register */
__IOM uint32_t SCR; /*!< Offset: 0x010 (R/W) System Control Register */
__IOM uint32_t CCR; /*!< Offset: 0x014 (R/W) Configuration Control Register */
uint32_t RESERVED1;
__IOM uint32_t SHP[2U]; /*!< Offset: 0x01C (R/W) System Handlers Priority Registers. [0] is RESERVED */
__IOM uint32_t SHCSR; /*!< Offset: 0x024 (R/W) System Handler Control and State Register */
} SCB_Type;
/* SCB CPUID Register Definitions */
#define SCB_CPUID_IMPLEMENTER_Pos 24U /*!< SCB CPUID: IMPLEMENTER Position */
#define SCB_CPUID_IMPLEMENTER_Msk (0xFFUL << SCB_CPUID_IMPLEMENTER_Pos) /*!< SCB CPUID: IMPLEMENTER Mask */
#define SCB_CPUID_VARIANT_Pos 20U /*!< SCB CPUID: VARIANT Position */
#define SCB_CPUID_VARIANT_Msk (0xFUL << SCB_CPUID_VARIANT_Pos) /*!< SCB CPUID: VARIANT Mask */
#define SCB_CPUID_ARCHITECTURE_Pos 16U /*!< SCB CPUID: ARCHITECTURE Position */
#define SCB_CPUID_ARCHITECTURE_Msk (0xFUL << SCB_CPUID_ARCHITECTURE_Pos) /*!< SCB CPUID: ARCHITECTURE Mask */
#define SCB_CPUID_PARTNO_Pos 4U /*!< SCB CPUID: PARTNO Position */
#define SCB_CPUID_PARTNO_Msk (0xFFFUL << SCB_CPUID_PARTNO_Pos) /*!< SCB CPUID: PARTNO Mask */
#define SCB_CPUID_REVISION_Pos 0U /*!< SCB CPUID: REVISION Position */
#define SCB_CPUID_REVISION_Msk (0xFUL /*<< SCB_CPUID_REVISION_Pos*/) /*!< SCB CPUID: REVISION Mask */
/* SCB Interrupt Control State Register Definitions */
#define SCB_ICSR_NMIPENDSET_Pos 31U /*!< SCB ICSR: NMIPENDSET Position */
#define SCB_ICSR_NMIPENDSET_Msk (1UL << SCB_ICSR_NMIPENDSET_Pos) /*!< SCB ICSR: NMIPENDSET Mask */
#define SCB_ICSR_PENDSVSET_Pos 28U /*!< SCB ICSR: PENDSVSET Position */
#define SCB_ICSR_PENDSVSET_Msk (1UL << SCB_ICSR_PENDSVSET_Pos) /*!< SCB ICSR: PENDSVSET Mask */
#define SCB_ICSR_PENDSVCLR_Pos 27U /*!< SCB ICSR: PENDSVCLR Position */
#define SCB_ICSR_PENDSVCLR_Msk (1UL << SCB_ICSR_PENDSVCLR_Pos) /*!< SCB ICSR: PENDSVCLR Mask */
#define SCB_ICSR_PENDSTSET_Pos 26U /*!< SCB ICSR: PENDSTSET Position */
#define SCB_ICSR_PENDSTSET_Msk (1UL << SCB_ICSR_PENDSTSET_Pos) /*!< SCB ICSR: PENDSTSET Mask */
#define SCB_ICSR_PENDSTCLR_Pos 25U /*!< SCB ICSR: PENDSTCLR Position */
#define SCB_ICSR_PENDSTCLR_Msk (1UL << SCB_ICSR_PENDSTCLR_Pos) /*!< SCB ICSR: PENDSTCLR Mask */
#define SCB_ICSR_ISRPREEMPT_Pos 23U /*!< SCB ICSR: ISRPREEMPT Position */
#define SCB_ICSR_ISRPREEMPT_Msk (1UL << SCB_ICSR_ISRPREEMPT_Pos) /*!< SCB ICSR: ISRPREEMPT Mask */
#define SCB_ICSR_ISRPENDING_Pos 22U /*!< SCB ICSR: ISRPENDING Position */
#define SCB_ICSR_ISRPENDING_Msk (1UL << SCB_ICSR_ISRPENDING_Pos) /*!< SCB ICSR: ISRPENDING Mask */
#define SCB_ICSR_VECTPENDING_Pos 12U /*!< SCB ICSR: VECTPENDING Position */
#define SCB_ICSR_VECTPENDING_Msk (0x1FFUL << SCB_ICSR_VECTPENDING_Pos) /*!< SCB ICSR: VECTPENDING Mask */
#define SCB_ICSR_VECTACTIVE_Pos 0U /*!< SCB ICSR: VECTACTIVE Position */
#define SCB_ICSR_VECTACTIVE_Msk (0x1FFUL /*<< SCB_ICSR_VECTACTIVE_Pos*/) /*!< SCB ICSR: VECTACTIVE Mask */
/* SCB Application Interrupt and Reset Control Register Definitions */
#define SCB_AIRCR_VECTKEY_Pos 16U /*!< SCB AIRCR: VECTKEY Position */
#define SCB_AIRCR_VECTKEY_Msk (0xFFFFUL << SCB_AIRCR_VECTKEY_Pos) /*!< SCB AIRCR: VECTKEY Mask */
#define SCB_AIRCR_VECTKEYSTAT_Pos 16U /*!< SCB AIRCR: VECTKEYSTAT Position */
#define SCB_AIRCR_VECTKEYSTAT_Msk (0xFFFFUL << SCB_AIRCR_VECTKEYSTAT_Pos) /*!< SCB AIRCR: VECTKEYSTAT Mask */
#define SCB_AIRCR_ENDIANESS_Pos 15U /*!< SCB AIRCR: ENDIANESS Position */
#define SCB_AIRCR_ENDIANESS_Msk (1UL << SCB_AIRCR_ENDIANESS_Pos) /*!< SCB AIRCR: ENDIANESS Mask */
#define SCB_AIRCR_SYSRESETREQ_Pos 2U /*!< SCB AIRCR: SYSRESETREQ Position */
#define SCB_AIRCR_SYSRESETREQ_Msk (1UL << SCB_AIRCR_SYSRESETREQ_Pos) /*!< SCB AIRCR: SYSRESETREQ Mask */
#define SCB_AIRCR_VECTCLRACTIVE_Pos 1U /*!< SCB AIRCR: VECTCLRACTIVE Position */
#define SCB_AIRCR_VECTCLRACTIVE_Msk (1UL << SCB_AIRCR_VECTCLRACTIVE_Pos) /*!< SCB AIRCR: VECTCLRACTIVE Mask */
/* SCB System Control Register Definitions */
#define SCB_SCR_SEVONPEND_Pos 4U /*!< SCB SCR: SEVONPEND Position */
#define SCB_SCR_SEVONPEND_Msk (1UL << SCB_SCR_SEVONPEND_Pos) /*!< SCB SCR: SEVONPEND Mask */
#define SCB_SCR_SLEEPDEEP_Pos 2U /*!< SCB SCR: SLEEPDEEP Position */
#define SCB_SCR_SLEEPDEEP_Msk (1UL << SCB_SCR_SLEEPDEEP_Pos) /*!< SCB SCR: SLEEPDEEP Mask */
#define SCB_SCR_SLEEPONEXIT_Pos 1U /*!< SCB SCR: SLEEPONEXIT Position */
#define SCB_SCR_SLEEPONEXIT_Msk (1UL << SCB_SCR_SLEEPONEXIT_Pos) /*!< SCB SCR: SLEEPONEXIT Mask */
/* SCB Configuration Control Register Definitions */
#define SCB_CCR_STKALIGN_Pos 9U /*!< SCB CCR: STKALIGN Position */
#define SCB_CCR_STKALIGN_Msk (1UL << SCB_CCR_STKALIGN_Pos) /*!< SCB CCR: STKALIGN Mask */
#define SCB_CCR_UNALIGN_TRP_Pos 3U /*!< SCB CCR: UNALIGN_TRP Position */
#define SCB_CCR_UNALIGN_TRP_Msk (1UL << SCB_CCR_UNALIGN_TRP_Pos) /*!< SCB CCR: UNALIGN_TRP Mask */
/* SCB System Handler Control and State Register Definitions */
#define SCB_SHCSR_SVCALLPENDED_Pos 15U /*!< SCB SHCSR: SVCALLPENDED Position */
#define SCB_SHCSR_SVCALLPENDED_Msk (1UL << SCB_SHCSR_SVCALLPENDED_Pos) /*!< SCB SHCSR: SVCALLPENDED Mask */
/*@} end of group CMSIS_SCB */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_SysTick System Tick Timer (SysTick)
\brief Type definitions for the System Timer Registers.
@{
*/
/**
\brief Structure type to access the System Timer (SysTick).
*/
typedef struct
{
__IOM uint32_t CTRL; /*!< Offset: 0x000 (R/W) SysTick Control and Status Register */
__IOM uint32_t LOAD; /*!< Offset: 0x004 (R/W) SysTick Reload Value Register */
__IOM uint32_t VAL; /*!< Offset: 0x008 (R/W) SysTick Current Value Register */
__IM uint32_t CALIB; /*!< Offset: 0x00C (R/ ) SysTick Calibration Register */
} SysTick_Type;
/* SysTick Control / Status Register Definitions */
#define SysTick_CTRL_COUNTFLAG_Pos 16U /*!< SysTick CTRL: COUNTFLAG Position */
#define SysTick_CTRL_COUNTFLAG_Msk (1UL << SysTick_CTRL_COUNTFLAG_Pos) /*!< SysTick CTRL: COUNTFLAG Mask */
#define SysTick_CTRL_CLKSOURCE_Pos 2U /*!< SysTick CTRL: CLKSOURCE Position */
#define SysTick_CTRL_CLKSOURCE_Msk (1UL << SysTick_CTRL_CLKSOURCE_Pos) /*!< SysTick CTRL: CLKSOURCE Mask */
#define SysTick_CTRL_TICKINT_Pos 1U /*!< SysTick CTRL: TICKINT Position */
#define SysTick_CTRL_TICKINT_Msk (1UL << SysTick_CTRL_TICKINT_Pos) /*!< SysTick CTRL: TICKINT Mask */
#define SysTick_CTRL_ENABLE_Pos 0U /*!< SysTick CTRL: ENABLE Position */
#define SysTick_CTRL_ENABLE_Msk (1UL /*<< SysTick_CTRL_ENABLE_Pos*/) /*!< SysTick CTRL: ENABLE Mask */
/* SysTick Reload Register Definitions */
#define SysTick_LOAD_RELOAD_Pos 0U /*!< SysTick LOAD: RELOAD Position */
#define SysTick_LOAD_RELOAD_Msk (0xFFFFFFUL /*<< SysTick_LOAD_RELOAD_Pos*/) /*!< SysTick LOAD: RELOAD Mask */
/* SysTick Current Register Definitions */
#define SysTick_VAL_CURRENT_Pos 0U /*!< SysTick VAL: CURRENT Position */
#define SysTick_VAL_CURRENT_Msk (0xFFFFFFUL /*<< SysTick_VAL_CURRENT_Pos*/) /*!< SysTick VAL: CURRENT Mask */
/* SysTick Calibration Register Definitions */
#define SysTick_CALIB_NOREF_Pos 31U /*!< SysTick CALIB: NOREF Position */
#define SysTick_CALIB_NOREF_Msk (1UL << SysTick_CALIB_NOREF_Pos) /*!< SysTick CALIB: NOREF Mask */
#define SysTick_CALIB_SKEW_Pos 30U /*!< SysTick CALIB: SKEW Position */
#define SysTick_CALIB_SKEW_Msk (1UL << SysTick_CALIB_SKEW_Pos) /*!< SysTick CALIB: SKEW Mask */
#define SysTick_CALIB_TENMS_Pos 0U /*!< SysTick CALIB: TENMS Position */
#define SysTick_CALIB_TENMS_Msk (0xFFFFFFUL /*<< SysTick_CALIB_TENMS_Pos*/) /*!< SysTick CALIB: TENMS Mask */
/*@} end of group CMSIS_SysTick */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_CoreDebug Core Debug Registers (CoreDebug)
\brief Cortex-M0 Core Debug Registers (DCB registers, SHCSR, and DFSR) are only accessible over DAP and not via processor.
Therefore they are not covered by the Cortex-M0 header file.
@{
*/
/*@} end of group CMSIS_CoreDebug */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_core_bitfield Core register bit field macros
\brief Macros for use with bit field definitions (xxx_Pos, xxx_Msk).
@{
*/
/**
\brief Mask and shift a bit field value for use in a register bit range.
\param[in] field Name of the register bit field.
\param[in] value Value of the bit field. This parameter is interpreted as an uint32_t type.
\return Masked and shifted value.
*/
#define _VAL2FLD(field, value) (((uint32_t)(value) << field ## _Pos) & field ## _Msk)
/**
\brief Mask and shift a register value to extract a bit filed value.
\param[in] field Name of the register bit field.
\param[in] value Value of register. This parameter is interpreted as an uint32_t type.
\return Masked and shifted bit field value.
*/
#define _FLD2VAL(field, value) (((uint32_t)(value) & field ## _Msk) >> field ## _Pos)
/*@} end of group CMSIS_core_bitfield */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_core_base Core Definitions
\brief Definitions for base addresses, unions, and structures.
@{
*/
/* Memory mapping of Core Hardware */
#define SCS_BASE (0xE000E000UL) /*!< System Control Space Base Address */
#define SysTick_BASE (SCS_BASE + 0x0010UL) /*!< SysTick Base Address */
#define NVIC_BASE (SCS_BASE + 0x0100UL) /*!< NVIC Base Address */
#define SCB_BASE (SCS_BASE + 0x0D00UL) /*!< System Control Block Base Address */
#define SCB ((SCB_Type *) SCB_BASE ) /*!< SCB configuration struct */
#define SysTick ((SysTick_Type *) SysTick_BASE ) /*!< SysTick configuration struct */
#define NVIC ((NVIC_Type *) NVIC_BASE ) /*!< NVIC configuration struct */
/*@} */
/*******************************************************************************
* Hardware Abstraction Layer
Core Function Interface contains:
- Core NVIC Functions
- Core SysTick Functions
- Core Register Access Functions
******************************************************************************/
/**
\defgroup CMSIS_Core_FunctionInterface Functions and Instructions Reference
*/
/* ########################## NVIC functions #################################### */
/**
\ingroup CMSIS_Core_FunctionInterface
\defgroup CMSIS_Core_NVICFunctions NVIC Functions
\brief Functions that manage interrupts and exceptions via the NVIC.
@{
*/
#ifdef CMSIS_NVIC_VIRTUAL
#ifndef CMSIS_NVIC_VIRTUAL_HEADER_FILE
#define CMSIS_NVIC_VIRTUAL_HEADER_FILE "cmsis_nvic_virtual.h"
#endif
#include CMSIS_NVIC_VIRTUAL_HEADER_FILE
#else
#define NVIC_SetPriorityGrouping __NVIC_SetPriorityGrouping
#define NVIC_GetPriorityGrouping __NVIC_GetPriorityGrouping
#define NVIC_EnableIRQ __NVIC_EnableIRQ
#define NVIC_GetEnableIRQ __NVIC_GetEnableIRQ
#define NVIC_DisableIRQ __NVIC_DisableIRQ
#define NVIC_GetPendingIRQ __NVIC_GetPendingIRQ
#define NVIC_SetPendingIRQ __NVIC_SetPendingIRQ
#define NVIC_ClearPendingIRQ __NVIC_ClearPendingIRQ
/*#define NVIC_GetActive __NVIC_GetActive not available for Cortex-M0 */
#define NVIC_SetPriority __NVIC_SetPriority
#define NVIC_GetPriority __NVIC_GetPriority
#define NVIC_SystemReset __NVIC_SystemReset
#endif /* CMSIS_NVIC_VIRTUAL */
#ifdef CMSIS_VECTAB_VIRTUAL
#ifndef CMSIS_VECTAB_VIRTUAL_HEADER_FILE
#define CMSIS_VECTAB_VIRTUAL_HEADER_FILE "cmsis_vectab_virtual.h"
#endif
#include CMSIS_VECTAB_VIRTUAL_HEADER_FILE
#else
#define NVIC_SetVector __NVIC_SetVector
#define NVIC_GetVector __NVIC_GetVector
#endif /* (CMSIS_VECTAB_VIRTUAL) */
#define NVIC_USER_IRQ_OFFSET 16
/* The following EXC_RETURN values are saved the LR on exception entry */
#define EXC_RETURN_HANDLER (0xFFFFFFF1UL) /* return to Handler mode, uses MSP after return */
#define EXC_RETURN_THREAD_MSP (0xFFFFFFF9UL) /* return to Thread mode, uses MSP after return */
#define EXC_RETURN_THREAD_PSP (0xFFFFFFFDUL) /* return to Thread mode, uses PSP after return */
/* Interrupt Priorities are WORD accessible only under Armv6-M */
/* The following MACROS handle generation of the register offset and byte masks */
#define _BIT_SHIFT(IRQn) ( ((((uint32_t)(int32_t)(IRQn)) ) & 0x03UL) * 8UL)
#define _SHP_IDX(IRQn) ( (((((uint32_t)(int32_t)(IRQn)) & 0x0FUL)-8UL) >> 2UL) )
#define _IP_IDX(IRQn) ( (((uint32_t)(int32_t)(IRQn)) >> 2UL) )
#define __NVIC_SetPriorityGrouping(X) (void)(X)
#define __NVIC_GetPriorityGrouping() (0U)
/**
\brief Enable Interrupt
\details Enables a device specific interrupt in the NVIC interrupt controller.
\param [in] IRQn Device specific interrupt number.
\note IRQn must not be negative.
*/
__STATIC_INLINE void __NVIC_EnableIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
__COMPILER_BARRIER();
NVIC->ISER[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
__COMPILER_BARRIER();
}
}
/**
\brief Get Interrupt Enable status
\details Returns a device specific interrupt enable status from the NVIC interrupt controller.
\param [in] IRQn Device specific interrupt number.
\return 0 Interrupt is not enabled.
\return 1 Interrupt is enabled.
\note IRQn must not be negative.
*/
__STATIC_INLINE uint32_t __NVIC_GetEnableIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
return((uint32_t)(((NVIC->ISER[0U] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL));
}
else
{
return(0U);
}
}
/**
\brief Disable Interrupt
\details Disables a device specific interrupt in the NVIC interrupt controller.
\param [in] IRQn Device specific interrupt number.
\note IRQn must not be negative.
*/
__STATIC_INLINE void __NVIC_DisableIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
NVIC->ICER[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
__DSB();
__ISB();
}
}
/**
\brief Get Pending Interrupt
\details Reads the NVIC pending register and returns the pending bit for the specified device specific interrupt.
\param [in] IRQn Device specific interrupt number.
\return 0 Interrupt status is not pending.
\return 1 Interrupt status is pending.
\note IRQn must not be negative.
*/
__STATIC_INLINE uint32_t __NVIC_GetPendingIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
return((uint32_t)(((NVIC->ISPR[0U] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL));
}
else
{
return(0U);
}
}
/**
\brief Set Pending Interrupt
\details Sets the pending bit of a device specific interrupt in the NVIC pending register.
\param [in] IRQn Device specific interrupt number.
\note IRQn must not be negative.
*/
__STATIC_INLINE void __NVIC_SetPendingIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
NVIC->ISPR[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
}
}
/**
\brief Clear Pending Interrupt
\details Clears the pending bit of a device specific interrupt in the NVIC pending register.
\param [in] IRQn Device specific interrupt number.
\note IRQn must not be negative.
*/
__STATIC_INLINE void __NVIC_ClearPendingIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
NVIC->ICPR[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
}
}
/**
\brief Set Interrupt Priority
\details Sets the priority of a device specific interrupt or a processor exception.
The interrupt number can be positive to specify a device specific interrupt,
or negative to specify a processor exception.
\param [in] IRQn Interrupt number.
\param [in] priority Priority to set.
\note The priority cannot be set for every processor exception.
*/
__STATIC_INLINE void __NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority)
{
if ((int32_t)(IRQn) >= 0)
{
NVIC->IP[_IP_IDX(IRQn)] = ((uint32_t)(NVIC->IP[_IP_IDX(IRQn)] & ~(0xFFUL << _BIT_SHIFT(IRQn))) |
(((priority << (8U - __NVIC_PRIO_BITS)) & (uint32_t)0xFFUL) << _BIT_SHIFT(IRQn)));
}
else
{
SCB->SHP[_SHP_IDX(IRQn)] = ((uint32_t)(SCB->SHP[_SHP_IDX(IRQn)] & ~(0xFFUL << _BIT_SHIFT(IRQn))) |
(((priority << (8U - __NVIC_PRIO_BITS)) & (uint32_t)0xFFUL) << _BIT_SHIFT(IRQn)));
}
}
/**
\brief Get Interrupt Priority
\details Reads the priority of a device specific interrupt or a processor exception.
The interrupt number can be positive to specify a device specific interrupt,
or negative to specify a processor exception.
\param [in] IRQn Interrupt number.
\return Interrupt Priority.
Value is aligned automatically to the implemented priority bits of the microcontroller.
*/
__STATIC_INLINE uint32_t __NVIC_GetPriority(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
return((uint32_t)(((NVIC->IP[ _IP_IDX(IRQn)] >> _BIT_SHIFT(IRQn) ) & (uint32_t)0xFFUL) >> (8U - __NVIC_PRIO_BITS)));
}
else
{
return((uint32_t)(((SCB->SHP[_SHP_IDX(IRQn)] >> _BIT_SHIFT(IRQn) ) & (uint32_t)0xFFUL) >> (8U - __NVIC_PRIO_BITS)));
}
}
/**
\brief Encode Priority
\details Encodes the priority for an interrupt with the given priority group,
preemptive priority value, and subpriority value.
In case of a conflict between priority grouping and available
priority bits (__NVIC_PRIO_BITS), the smallest possible priority group is set.
\param [in] PriorityGroup Used priority group.
\param [in] PreemptPriority Preemptive priority value (starting from 0).
\param [in] SubPriority Subpriority value (starting from 0).
\return Encoded priority. Value can be used in the function \ref NVIC_SetPriority().
*/
__STATIC_INLINE uint32_t NVIC_EncodePriority (uint32_t PriorityGroup, uint32_t PreemptPriority, uint32_t SubPriority)
{
uint32_t PriorityGroupTmp = (PriorityGroup & (uint32_t)0x07UL); /* only values 0..7 are used */
uint32_t PreemptPriorityBits;
uint32_t SubPriorityBits;
PreemptPriorityBits = ((7UL - PriorityGroupTmp) > (uint32_t)(__NVIC_PRIO_BITS)) ? (uint32_t)(__NVIC_PRIO_BITS) : (uint32_t)(7UL - PriorityGroupTmp);
SubPriorityBits = ((PriorityGroupTmp + (uint32_t)(__NVIC_PRIO_BITS)) < (uint32_t)7UL) ? (uint32_t)0UL : (uint32_t)((PriorityGroupTmp - 7UL) + (uint32_t)(__NVIC_PRIO_BITS));
return (
((PreemptPriority & (uint32_t)((1UL << (PreemptPriorityBits)) - 1UL)) << SubPriorityBits) |
((SubPriority & (uint32_t)((1UL << (SubPriorityBits )) - 1UL)))
);
}
/**
\brief Decode Priority
\details Decodes an interrupt priority value with a given priority group to
preemptive priority value and subpriority value.
In case of a conflict between priority grouping and available
priority bits (__NVIC_PRIO_BITS) the smallest possible priority group is set.
\param [in] Priority Priority value, which can be retrieved with the function \ref NVIC_GetPriority().
\param [in] PriorityGroup Used priority group.
\param [out] pPreemptPriority Preemptive priority value (starting from 0).
\param [out] pSubPriority Subpriority value (starting from 0).
*/
__STATIC_INLINE void NVIC_DecodePriority (uint32_t Priority, uint32_t PriorityGroup, uint32_t* const pPreemptPriority, uint32_t* const pSubPriority)
{
uint32_t PriorityGroupTmp = (PriorityGroup & (uint32_t)0x07UL); /* only values 0..7 are used */
uint32_t PreemptPriorityBits;
uint32_t SubPriorityBits;
PreemptPriorityBits = ((7UL - PriorityGroupTmp) > (uint32_t)(__NVIC_PRIO_BITS)) ? (uint32_t)(__NVIC_PRIO_BITS) : (uint32_t)(7UL - PriorityGroupTmp);
SubPriorityBits = ((PriorityGroupTmp + (uint32_t)(__NVIC_PRIO_BITS)) < (uint32_t)7UL) ? (uint32_t)0UL : (uint32_t)((PriorityGroupTmp - 7UL) + (uint32_t)(__NVIC_PRIO_BITS));
*pPreemptPriority = (Priority >> SubPriorityBits) & (uint32_t)((1UL << (PreemptPriorityBits)) - 1UL);
*pSubPriority = (Priority ) & (uint32_t)((1UL << (SubPriorityBits )) - 1UL);
}
/**
\brief Set Interrupt Vector
\details Sets an interrupt vector in SRAM based interrupt vector table.
The interrupt number can be positive to specify a device specific interrupt,
or negative to specify a processor exception.
Address 0 must be mapped to SRAM.
\param [in] IRQn Interrupt number
\param [in] vector Address of interrupt handler function
*/
__STATIC_INLINE void __NVIC_SetVector(IRQn_Type IRQn, uint32_t vector)
{
uint32_t vectors = 0x0U;
(* (int *) (vectors + ((int32_t)IRQn + NVIC_USER_IRQ_OFFSET) * 4)) = vector;
/* ARM Application Note 321 states that the M0 does not require the architectural barrier */
}
/**
\brief Get Interrupt Vector
\details Reads an interrupt vector from interrupt vector table.
The interrupt number can be positive to specify a device specific interrupt,
or negative to specify a processor exception.
\param [in] IRQn Interrupt number.
\return Address of interrupt handler function
*/
__STATIC_INLINE uint32_t __NVIC_GetVector(IRQn_Type IRQn)
{
uint32_t vectors = 0x0U;
return (uint32_t)(* (int *) (vectors + ((int32_t)IRQn + NVIC_USER_IRQ_OFFSET) * 4));
}
/**
\brief System Reset
\details Initiates a system reset request to reset the MCU.
*/
__NO_RETURN __STATIC_INLINE void __NVIC_SystemReset(void)
{
__DSB(); /* Ensure all outstanding memory accesses included
buffered write are completed before reset */
SCB->AIRCR = ((0x5FAUL << SCB_AIRCR_VECTKEY_Pos) |
SCB_AIRCR_SYSRESETREQ_Msk);
__DSB(); /* Ensure completion of memory access */
for(;;) /* wait until reset */
{
__NOP();
}
}
/*@} end of CMSIS_Core_NVICFunctions */
/* ########################## FPU functions #################################### */
/**
\ingroup CMSIS_Core_FunctionInterface
\defgroup CMSIS_Core_FpuFunctions FPU Functions
\brief Function that provides FPU type.
@{
*/
/**
\brief get FPU type
\details returns the FPU type
\returns
- \b 0: No FPU
- \b 1: Single precision FPU
- \b 2: Double + Single precision FPU
*/
__STATIC_INLINE uint32_t SCB_GetFPUType(void)
{
return 0U; /* No FPU */
}
/*@} end of CMSIS_Core_FpuFunctions */
/* ################################## SysTick function ############################################ */
/**
\ingroup CMSIS_Core_FunctionInterface
\defgroup CMSIS_Core_SysTickFunctions SysTick Functions
\brief Functions that configure the System.
@{
*/
#if defined (__Vendor_SysTickConfig) && (__Vendor_SysTickConfig == 0U)
/**
\brief System Tick Configuration
\details Initializes the System Timer and its interrupt, and starts the System Tick Timer.
Counter is in free running mode to generate periodic interrupts.
\param [in] ticks Number of ticks between two interrupts.
\return 0 Function succeeded.
\return 1 Function failed.
\note When the variable <b>__Vendor_SysTickConfig</b> is set to 1, then the
function <b>SysTick_Config</b> is not included. In this case, the file <b><i>device</i>.h</b>
must contain a vendor-specific implementation of this function.
*/
__STATIC_INLINE uint32_t SysTick_Config(uint32_t ticks)
{
if ((ticks - 1UL) > SysTick_LOAD_RELOAD_Msk)
{
return (1UL); /* Reload value impossible */
}
SysTick->LOAD = (uint32_t)(ticks - 1UL); /* set reload register */
NVIC_SetPriority (SysTick_IRQn, (1UL << __NVIC_PRIO_BITS) - 1UL); /* set Priority for Systick Interrupt */
SysTick->VAL = 0UL; /* Load the SysTick Counter Value */
SysTick->CTRL = SysTick_CTRL_CLKSOURCE_Msk |
SysTick_CTRL_TICKINT_Msk |
SysTick_CTRL_ENABLE_Msk; /* Enable SysTick IRQ and SysTick Timer */
return (0UL); /* Function successful */
}
#endif
/*@} end of CMSIS_Core_SysTickFunctions */
#ifdef __cplusplus
}
#endif
#endif /* __CORE_CM0_H_DEPENDANT */
#endif /* __CMSIS_GENERIC */

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,979 @@
/**************************************************************************//**
* @file core_cm1.h
* @brief CMSIS Cortex-M1 Core Peripheral Access Layer Header File
* @version V1.0.1
* @date 12. November 2018
******************************************************************************/
/*
* Copyright (c) 2009-2018 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#if defined ( __ICCARM__ )
#pragma system_include /* treat file as system include file for MISRA check */
#elif defined (__clang__)
#pragma clang system_header /* treat file as system include file */
#endif
#ifndef __CORE_CM1_H_GENERIC
#define __CORE_CM1_H_GENERIC
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
#endif
/**
\page CMSIS_MISRA_Exceptions MISRA-C:2004 Compliance Exceptions
CMSIS violates the following MISRA-C:2004 rules:
\li Required Rule 8.5, object/function definition in header file.<br>
Function definitions in header files are used to allow 'inlining'.
\li Required Rule 18.4, declaration of union type or object of union type: '{...}'.<br>
Unions are used for effective representation of core registers.
\li Advisory Rule 19.7, Function-like macro defined.<br>
Function-like macros are used to allow more efficient code.
*/
/*******************************************************************************
* CMSIS definitions
******************************************************************************/
/**
\ingroup Cortex_M1
@{
*/
#include "cmsis_version.h"
/* CMSIS CM1 definitions */
#define __CM1_CMSIS_VERSION_MAIN (__CM_CMSIS_VERSION_MAIN) /*!< \deprecated [31:16] CMSIS HAL main version */
#define __CM1_CMSIS_VERSION_SUB (__CM_CMSIS_VERSION_SUB) /*!< \deprecated [15:0] CMSIS HAL sub version */
#define __CM1_CMSIS_VERSION ((__CM1_CMSIS_VERSION_MAIN << 16U) | \
__CM1_CMSIS_VERSION_SUB ) /*!< \deprecated CMSIS HAL version number */
#define __CORTEX_M (1U) /*!< Cortex-M Core */
/** __FPU_USED indicates whether an FPU is used or not.
This core does not support an FPU at all
*/
#define __FPU_USED 0U
#if defined ( __CC_ARM )
#if defined __TARGET_FPU_VFP
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined (__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)
#if defined __ARM_FP
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined ( __GNUC__ )
#if defined (__VFP_FP__) && !defined(__SOFTFP__)
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined ( __ICCARM__ )
#if defined __ARMVFP__
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined ( __TI_ARM__ )
#if defined __TI_VFP_SUPPORT__
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined ( __TASKING__ )
#if defined __FPU_VFP__
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined ( __CSMC__ )
#if ( __CSMC__ & 0x400U)
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#endif
#include "cmsis_compiler.h" /* CMSIS compiler specific defines */
#ifdef __cplusplus
}
#endif
#endif /* __CORE_CM1_H_GENERIC */
#ifndef __CMSIS_GENERIC
#ifndef __CORE_CM1_H_DEPENDANT
#define __CORE_CM1_H_DEPENDANT
#ifdef __cplusplus
extern "C" {
#endif
/* check device defines and use defaults */
#if defined __CHECK_DEVICE_DEFINES
#ifndef __CM1_REV
#define __CM1_REV 0x0100U
#warning "__CM1_REV not defined in device header file; using default!"
#endif
#ifndef __NVIC_PRIO_BITS
#define __NVIC_PRIO_BITS 2U
#warning "__NVIC_PRIO_BITS not defined in device header file; using default!"
#endif
#ifndef __Vendor_SysTickConfig
#define __Vendor_SysTickConfig 0U
#warning "__Vendor_SysTickConfig not defined in device header file; using default!"
#endif
#endif
/* IO definitions (access restrictions to peripheral registers) */
/**
\defgroup CMSIS_glob_defs CMSIS Global Defines
<strong>IO Type Qualifiers</strong> are used
\li to specify the access to peripheral variables.
\li for automatic generation of peripheral register debug information.
*/
#ifdef __cplusplus
#define __I volatile /*!< Defines 'read only' permissions */
#else
#define __I volatile const /*!< Defines 'read only' permissions */
#endif
#define __O volatile /*!< Defines 'write only' permissions */
#define __IO volatile /*!< Defines 'read / write' permissions */
/* following defines should be used for structure members */
#define __IM volatile const /*! Defines 'read only' structure member permissions */
#define __OM volatile /*! Defines 'write only' structure member permissions */
#define __IOM volatile /*! Defines 'read / write' structure member permissions */
/*@} end of group Cortex_M1 */
/*******************************************************************************
* Register Abstraction
Core Register contain:
- Core Register
- Core NVIC Register
- Core SCB Register
- Core SysTick Register
******************************************************************************/
/**
\defgroup CMSIS_core_register Defines and Type Definitions
\brief Type definitions and defines for Cortex-M processor based devices.
*/
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_CORE Status and Control Registers
\brief Core Register type definitions.
@{
*/
/**
\brief Union type to access the Application Program Status Register (APSR).
*/
typedef union
{
struct
{
uint32_t _reserved0:28; /*!< bit: 0..27 Reserved */
uint32_t V:1; /*!< bit: 28 Overflow condition code flag */
uint32_t C:1; /*!< bit: 29 Carry condition code flag */
uint32_t Z:1; /*!< bit: 30 Zero condition code flag */
uint32_t N:1; /*!< bit: 31 Negative condition code flag */
} b; /*!< Structure used for bit access */
uint32_t w; /*!< Type used for word access */
} APSR_Type;
/* APSR Register Definitions */
#define APSR_N_Pos 31U /*!< APSR: N Position */
#define APSR_N_Msk (1UL << APSR_N_Pos) /*!< APSR: N Mask */
#define APSR_Z_Pos 30U /*!< APSR: Z Position */
#define APSR_Z_Msk (1UL << APSR_Z_Pos) /*!< APSR: Z Mask */
#define APSR_C_Pos 29U /*!< APSR: C Position */
#define APSR_C_Msk (1UL << APSR_C_Pos) /*!< APSR: C Mask */
#define APSR_V_Pos 28U /*!< APSR: V Position */
#define APSR_V_Msk (1UL << APSR_V_Pos) /*!< APSR: V Mask */
/**
\brief Union type to access the Interrupt Program Status Register (IPSR).
*/
typedef union
{
struct
{
uint32_t ISR:9; /*!< bit: 0.. 8 Exception number */
uint32_t _reserved0:23; /*!< bit: 9..31 Reserved */
} b; /*!< Structure used for bit access */
uint32_t w; /*!< Type used for word access */
} IPSR_Type;
/* IPSR Register Definitions */
#define IPSR_ISR_Pos 0U /*!< IPSR: ISR Position */
#define IPSR_ISR_Msk (0x1FFUL /*<< IPSR_ISR_Pos*/) /*!< IPSR: ISR Mask */
/**
\brief Union type to access the Special-Purpose Program Status Registers (xPSR).
*/
typedef union
{
struct
{
uint32_t ISR:9; /*!< bit: 0.. 8 Exception number */
uint32_t _reserved0:15; /*!< bit: 9..23 Reserved */
uint32_t T:1; /*!< bit: 24 Thumb bit (read 0) */
uint32_t _reserved1:3; /*!< bit: 25..27 Reserved */
uint32_t V:1; /*!< bit: 28 Overflow condition code flag */
uint32_t C:1; /*!< bit: 29 Carry condition code flag */
uint32_t Z:1; /*!< bit: 30 Zero condition code flag */
uint32_t N:1; /*!< bit: 31 Negative condition code flag */
} b; /*!< Structure used for bit access */
uint32_t w; /*!< Type used for word access */
} xPSR_Type;
/* xPSR Register Definitions */
#define xPSR_N_Pos 31U /*!< xPSR: N Position */
#define xPSR_N_Msk (1UL << xPSR_N_Pos) /*!< xPSR: N Mask */
#define xPSR_Z_Pos 30U /*!< xPSR: Z Position */
#define xPSR_Z_Msk (1UL << xPSR_Z_Pos) /*!< xPSR: Z Mask */
#define xPSR_C_Pos 29U /*!< xPSR: C Position */
#define xPSR_C_Msk (1UL << xPSR_C_Pos) /*!< xPSR: C Mask */
#define xPSR_V_Pos 28U /*!< xPSR: V Position */
#define xPSR_V_Msk (1UL << xPSR_V_Pos) /*!< xPSR: V Mask */
#define xPSR_T_Pos 24U /*!< xPSR: T Position */
#define xPSR_T_Msk (1UL << xPSR_T_Pos) /*!< xPSR: T Mask */
#define xPSR_ISR_Pos 0U /*!< xPSR: ISR Position */
#define xPSR_ISR_Msk (0x1FFUL /*<< xPSR_ISR_Pos*/) /*!< xPSR: ISR Mask */
/**
\brief Union type to access the Control Registers (CONTROL).
*/
typedef union
{
struct
{
uint32_t _reserved0:1; /*!< bit: 0 Reserved */
uint32_t SPSEL:1; /*!< bit: 1 Stack to be used */
uint32_t _reserved1:30; /*!< bit: 2..31 Reserved */
} b; /*!< Structure used for bit access */
uint32_t w; /*!< Type used for word access */
} CONTROL_Type;
/* CONTROL Register Definitions */
#define CONTROL_SPSEL_Pos 1U /*!< CONTROL: SPSEL Position */
#define CONTROL_SPSEL_Msk (1UL << CONTROL_SPSEL_Pos) /*!< CONTROL: SPSEL Mask */
/*@} end of group CMSIS_CORE */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_NVIC Nested Vectored Interrupt Controller (NVIC)
\brief Type definitions for the NVIC Registers
@{
*/
/**
\brief Structure type to access the Nested Vectored Interrupt Controller (NVIC).
*/
typedef struct
{
__IOM uint32_t ISER[1U]; /*!< Offset: 0x000 (R/W) Interrupt Set Enable Register */
uint32_t RESERVED0[31U];
__IOM uint32_t ICER[1U]; /*!< Offset: 0x080 (R/W) Interrupt Clear Enable Register */
uint32_t RSERVED1[31U];
__IOM uint32_t ISPR[1U]; /*!< Offset: 0x100 (R/W) Interrupt Set Pending Register */
uint32_t RESERVED2[31U];
__IOM uint32_t ICPR[1U]; /*!< Offset: 0x180 (R/W) Interrupt Clear Pending Register */
uint32_t RESERVED3[31U];
uint32_t RESERVED4[64U];
__IOM uint32_t IP[8U]; /*!< Offset: 0x300 (R/W) Interrupt Priority Register */
} NVIC_Type;
/*@} end of group CMSIS_NVIC */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_SCB System Control Block (SCB)
\brief Type definitions for the System Control Block Registers
@{
*/
/**
\brief Structure type to access the System Control Block (SCB).
*/
typedef struct
{
__IM uint32_t CPUID; /*!< Offset: 0x000 (R/ ) CPUID Base Register */
__IOM uint32_t ICSR; /*!< Offset: 0x004 (R/W) Interrupt Control and State Register */
uint32_t RESERVED0;
__IOM uint32_t AIRCR; /*!< Offset: 0x00C (R/W) Application Interrupt and Reset Control Register */
__IOM uint32_t SCR; /*!< Offset: 0x010 (R/W) System Control Register */
__IOM uint32_t CCR; /*!< Offset: 0x014 (R/W) Configuration Control Register */
uint32_t RESERVED1;
__IOM uint32_t SHP[2U]; /*!< Offset: 0x01C (R/W) System Handlers Priority Registers. [0] is RESERVED */
__IOM uint32_t SHCSR; /*!< Offset: 0x024 (R/W) System Handler Control and State Register */
} SCB_Type;
/* SCB CPUID Register Definitions */
#define SCB_CPUID_IMPLEMENTER_Pos 24U /*!< SCB CPUID: IMPLEMENTER Position */
#define SCB_CPUID_IMPLEMENTER_Msk (0xFFUL << SCB_CPUID_IMPLEMENTER_Pos) /*!< SCB CPUID: IMPLEMENTER Mask */
#define SCB_CPUID_VARIANT_Pos 20U /*!< SCB CPUID: VARIANT Position */
#define SCB_CPUID_VARIANT_Msk (0xFUL << SCB_CPUID_VARIANT_Pos) /*!< SCB CPUID: VARIANT Mask */
#define SCB_CPUID_ARCHITECTURE_Pos 16U /*!< SCB CPUID: ARCHITECTURE Position */
#define SCB_CPUID_ARCHITECTURE_Msk (0xFUL << SCB_CPUID_ARCHITECTURE_Pos) /*!< SCB CPUID: ARCHITECTURE Mask */
#define SCB_CPUID_PARTNO_Pos 4U /*!< SCB CPUID: PARTNO Position */
#define SCB_CPUID_PARTNO_Msk (0xFFFUL << SCB_CPUID_PARTNO_Pos) /*!< SCB CPUID: PARTNO Mask */
#define SCB_CPUID_REVISION_Pos 0U /*!< SCB CPUID: REVISION Position */
#define SCB_CPUID_REVISION_Msk (0xFUL /*<< SCB_CPUID_REVISION_Pos*/) /*!< SCB CPUID: REVISION Mask */
/* SCB Interrupt Control State Register Definitions */
#define SCB_ICSR_NMIPENDSET_Pos 31U /*!< SCB ICSR: NMIPENDSET Position */
#define SCB_ICSR_NMIPENDSET_Msk (1UL << SCB_ICSR_NMIPENDSET_Pos) /*!< SCB ICSR: NMIPENDSET Mask */
#define SCB_ICSR_PENDSVSET_Pos 28U /*!< SCB ICSR: PENDSVSET Position */
#define SCB_ICSR_PENDSVSET_Msk (1UL << SCB_ICSR_PENDSVSET_Pos) /*!< SCB ICSR: PENDSVSET Mask */
#define SCB_ICSR_PENDSVCLR_Pos 27U /*!< SCB ICSR: PENDSVCLR Position */
#define SCB_ICSR_PENDSVCLR_Msk (1UL << SCB_ICSR_PENDSVCLR_Pos) /*!< SCB ICSR: PENDSVCLR Mask */
#define SCB_ICSR_PENDSTSET_Pos 26U /*!< SCB ICSR: PENDSTSET Position */
#define SCB_ICSR_PENDSTSET_Msk (1UL << SCB_ICSR_PENDSTSET_Pos) /*!< SCB ICSR: PENDSTSET Mask */
#define SCB_ICSR_PENDSTCLR_Pos 25U /*!< SCB ICSR: PENDSTCLR Position */
#define SCB_ICSR_PENDSTCLR_Msk (1UL << SCB_ICSR_PENDSTCLR_Pos) /*!< SCB ICSR: PENDSTCLR Mask */
#define SCB_ICSR_ISRPREEMPT_Pos 23U /*!< SCB ICSR: ISRPREEMPT Position */
#define SCB_ICSR_ISRPREEMPT_Msk (1UL << SCB_ICSR_ISRPREEMPT_Pos) /*!< SCB ICSR: ISRPREEMPT Mask */
#define SCB_ICSR_ISRPENDING_Pos 22U /*!< SCB ICSR: ISRPENDING Position */
#define SCB_ICSR_ISRPENDING_Msk (1UL << SCB_ICSR_ISRPENDING_Pos) /*!< SCB ICSR: ISRPENDING Mask */
#define SCB_ICSR_VECTPENDING_Pos 12U /*!< SCB ICSR: VECTPENDING Position */
#define SCB_ICSR_VECTPENDING_Msk (0x1FFUL << SCB_ICSR_VECTPENDING_Pos) /*!< SCB ICSR: VECTPENDING Mask */
#define SCB_ICSR_VECTACTIVE_Pos 0U /*!< SCB ICSR: VECTACTIVE Position */
#define SCB_ICSR_VECTACTIVE_Msk (0x1FFUL /*<< SCB_ICSR_VECTACTIVE_Pos*/) /*!< SCB ICSR: VECTACTIVE Mask */
/* SCB Application Interrupt and Reset Control Register Definitions */
#define SCB_AIRCR_VECTKEY_Pos 16U /*!< SCB AIRCR: VECTKEY Position */
#define SCB_AIRCR_VECTKEY_Msk (0xFFFFUL << SCB_AIRCR_VECTKEY_Pos) /*!< SCB AIRCR: VECTKEY Mask */
#define SCB_AIRCR_VECTKEYSTAT_Pos 16U /*!< SCB AIRCR: VECTKEYSTAT Position */
#define SCB_AIRCR_VECTKEYSTAT_Msk (0xFFFFUL << SCB_AIRCR_VECTKEYSTAT_Pos) /*!< SCB AIRCR: VECTKEYSTAT Mask */
#define SCB_AIRCR_ENDIANESS_Pos 15U /*!< SCB AIRCR: ENDIANESS Position */
#define SCB_AIRCR_ENDIANESS_Msk (1UL << SCB_AIRCR_ENDIANESS_Pos) /*!< SCB AIRCR: ENDIANESS Mask */
#define SCB_AIRCR_SYSRESETREQ_Pos 2U /*!< SCB AIRCR: SYSRESETREQ Position */
#define SCB_AIRCR_SYSRESETREQ_Msk (1UL << SCB_AIRCR_SYSRESETREQ_Pos) /*!< SCB AIRCR: SYSRESETREQ Mask */
#define SCB_AIRCR_VECTCLRACTIVE_Pos 1U /*!< SCB AIRCR: VECTCLRACTIVE Position */
#define SCB_AIRCR_VECTCLRACTIVE_Msk (1UL << SCB_AIRCR_VECTCLRACTIVE_Pos) /*!< SCB AIRCR: VECTCLRACTIVE Mask */
/* SCB System Control Register Definitions */
#define SCB_SCR_SEVONPEND_Pos 4U /*!< SCB SCR: SEVONPEND Position */
#define SCB_SCR_SEVONPEND_Msk (1UL << SCB_SCR_SEVONPEND_Pos) /*!< SCB SCR: SEVONPEND Mask */
#define SCB_SCR_SLEEPDEEP_Pos 2U /*!< SCB SCR: SLEEPDEEP Position */
#define SCB_SCR_SLEEPDEEP_Msk (1UL << SCB_SCR_SLEEPDEEP_Pos) /*!< SCB SCR: SLEEPDEEP Mask */
#define SCB_SCR_SLEEPONEXIT_Pos 1U /*!< SCB SCR: SLEEPONEXIT Position */
#define SCB_SCR_SLEEPONEXIT_Msk (1UL << SCB_SCR_SLEEPONEXIT_Pos) /*!< SCB SCR: SLEEPONEXIT Mask */
/* SCB Configuration Control Register Definitions */
#define SCB_CCR_STKALIGN_Pos 9U /*!< SCB CCR: STKALIGN Position */
#define SCB_CCR_STKALIGN_Msk (1UL << SCB_CCR_STKALIGN_Pos) /*!< SCB CCR: STKALIGN Mask */
#define SCB_CCR_UNALIGN_TRP_Pos 3U /*!< SCB CCR: UNALIGN_TRP Position */
#define SCB_CCR_UNALIGN_TRP_Msk (1UL << SCB_CCR_UNALIGN_TRP_Pos) /*!< SCB CCR: UNALIGN_TRP Mask */
/* SCB System Handler Control and State Register Definitions */
#define SCB_SHCSR_SVCALLPENDED_Pos 15U /*!< SCB SHCSR: SVCALLPENDED Position */
#define SCB_SHCSR_SVCALLPENDED_Msk (1UL << SCB_SHCSR_SVCALLPENDED_Pos) /*!< SCB SHCSR: SVCALLPENDED Mask */
/*@} end of group CMSIS_SCB */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_SCnSCB System Controls not in SCB (SCnSCB)
\brief Type definitions for the System Control and ID Register not in the SCB
@{
*/
/**
\brief Structure type to access the System Control and ID Register not in the SCB.
*/
typedef struct
{
uint32_t RESERVED0[2U];
__IOM uint32_t ACTLR; /*!< Offset: 0x008 (R/W) Auxiliary Control Register */
} SCnSCB_Type;
/* Auxiliary Control Register Definitions */
#define SCnSCB_ACTLR_ITCMUAEN_Pos 4U /*!< ACTLR: Instruction TCM Upper Alias Enable Position */
#define SCnSCB_ACTLR_ITCMUAEN_Msk (1UL << SCnSCB_ACTLR_ITCMUAEN_Pos) /*!< ACTLR: Instruction TCM Upper Alias Enable Mask */
#define SCnSCB_ACTLR_ITCMLAEN_Pos 3U /*!< ACTLR: Instruction TCM Lower Alias Enable Position */
#define SCnSCB_ACTLR_ITCMLAEN_Msk (1UL << SCnSCB_ACTLR_ITCMLAEN_Pos) /*!< ACTLR: Instruction TCM Lower Alias Enable Mask */
/*@} end of group CMSIS_SCnotSCB */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_SysTick System Tick Timer (SysTick)
\brief Type definitions for the System Timer Registers.
@{
*/
/**
\brief Structure type to access the System Timer (SysTick).
*/
typedef struct
{
__IOM uint32_t CTRL; /*!< Offset: 0x000 (R/W) SysTick Control and Status Register */
__IOM uint32_t LOAD; /*!< Offset: 0x004 (R/W) SysTick Reload Value Register */
__IOM uint32_t VAL; /*!< Offset: 0x008 (R/W) SysTick Current Value Register */
__IM uint32_t CALIB; /*!< Offset: 0x00C (R/ ) SysTick Calibration Register */
} SysTick_Type;
/* SysTick Control / Status Register Definitions */
#define SysTick_CTRL_COUNTFLAG_Pos 16U /*!< SysTick CTRL: COUNTFLAG Position */
#define SysTick_CTRL_COUNTFLAG_Msk (1UL << SysTick_CTRL_COUNTFLAG_Pos) /*!< SysTick CTRL: COUNTFLAG Mask */
#define SysTick_CTRL_CLKSOURCE_Pos 2U /*!< SysTick CTRL: CLKSOURCE Position */
#define SysTick_CTRL_CLKSOURCE_Msk (1UL << SysTick_CTRL_CLKSOURCE_Pos) /*!< SysTick CTRL: CLKSOURCE Mask */
#define SysTick_CTRL_TICKINT_Pos 1U /*!< SysTick CTRL: TICKINT Position */
#define SysTick_CTRL_TICKINT_Msk (1UL << SysTick_CTRL_TICKINT_Pos) /*!< SysTick CTRL: TICKINT Mask */
#define SysTick_CTRL_ENABLE_Pos 0U /*!< SysTick CTRL: ENABLE Position */
#define SysTick_CTRL_ENABLE_Msk (1UL /*<< SysTick_CTRL_ENABLE_Pos*/) /*!< SysTick CTRL: ENABLE Mask */
/* SysTick Reload Register Definitions */
#define SysTick_LOAD_RELOAD_Pos 0U /*!< SysTick LOAD: RELOAD Position */
#define SysTick_LOAD_RELOAD_Msk (0xFFFFFFUL /*<< SysTick_LOAD_RELOAD_Pos*/) /*!< SysTick LOAD: RELOAD Mask */
/* SysTick Current Register Definitions */
#define SysTick_VAL_CURRENT_Pos 0U /*!< SysTick VAL: CURRENT Position */
#define SysTick_VAL_CURRENT_Msk (0xFFFFFFUL /*<< SysTick_VAL_CURRENT_Pos*/) /*!< SysTick VAL: CURRENT Mask */
/* SysTick Calibration Register Definitions */
#define SysTick_CALIB_NOREF_Pos 31U /*!< SysTick CALIB: NOREF Position */
#define SysTick_CALIB_NOREF_Msk (1UL << SysTick_CALIB_NOREF_Pos) /*!< SysTick CALIB: NOREF Mask */
#define SysTick_CALIB_SKEW_Pos 30U /*!< SysTick CALIB: SKEW Position */
#define SysTick_CALIB_SKEW_Msk (1UL << SysTick_CALIB_SKEW_Pos) /*!< SysTick CALIB: SKEW Mask */
#define SysTick_CALIB_TENMS_Pos 0U /*!< SysTick CALIB: TENMS Position */
#define SysTick_CALIB_TENMS_Msk (0xFFFFFFUL /*<< SysTick_CALIB_TENMS_Pos*/) /*!< SysTick CALIB: TENMS Mask */
/*@} end of group CMSIS_SysTick */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_CoreDebug Core Debug Registers (CoreDebug)
\brief Cortex-M1 Core Debug Registers (DCB registers, SHCSR, and DFSR) are only accessible over DAP and not via processor.
Therefore they are not covered by the Cortex-M1 header file.
@{
*/
/*@} end of group CMSIS_CoreDebug */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_core_bitfield Core register bit field macros
\brief Macros for use with bit field definitions (xxx_Pos, xxx_Msk).
@{
*/
/**
\brief Mask and shift a bit field value for use in a register bit range.
\param[in] field Name of the register bit field.
\param[in] value Value of the bit field. This parameter is interpreted as an uint32_t type.
\return Masked and shifted value.
*/
#define _VAL2FLD(field, value) (((uint32_t)(value) << field ## _Pos) & field ## _Msk)
/**
\brief Mask and shift a register value to extract a bit filed value.
\param[in] field Name of the register bit field.
\param[in] value Value of register. This parameter is interpreted as an uint32_t type.
\return Masked and shifted bit field value.
*/
#define _FLD2VAL(field, value) (((uint32_t)(value) & field ## _Msk) >> field ## _Pos)
/*@} end of group CMSIS_core_bitfield */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_core_base Core Definitions
\brief Definitions for base addresses, unions, and structures.
@{
*/
/* Memory mapping of Core Hardware */
#define SCS_BASE (0xE000E000UL) /*!< System Control Space Base Address */
#define SysTick_BASE (SCS_BASE + 0x0010UL) /*!< SysTick Base Address */
#define NVIC_BASE (SCS_BASE + 0x0100UL) /*!< NVIC Base Address */
#define SCB_BASE (SCS_BASE + 0x0D00UL) /*!< System Control Block Base Address */
#define SCnSCB ((SCnSCB_Type *) SCS_BASE ) /*!< System control Register not in SCB */
#define SCB ((SCB_Type *) SCB_BASE ) /*!< SCB configuration struct */
#define SysTick ((SysTick_Type *) SysTick_BASE ) /*!< SysTick configuration struct */
#define NVIC ((NVIC_Type *) NVIC_BASE ) /*!< NVIC configuration struct */
/*@} */
/*******************************************************************************
* Hardware Abstraction Layer
Core Function Interface contains:
- Core NVIC Functions
- Core SysTick Functions
- Core Register Access Functions
******************************************************************************/
/**
\defgroup CMSIS_Core_FunctionInterface Functions and Instructions Reference
*/
/* ########################## NVIC functions #################################### */
/**
\ingroup CMSIS_Core_FunctionInterface
\defgroup CMSIS_Core_NVICFunctions NVIC Functions
\brief Functions that manage interrupts and exceptions via the NVIC.
@{
*/
#ifdef CMSIS_NVIC_VIRTUAL
#ifndef CMSIS_NVIC_VIRTUAL_HEADER_FILE
#define CMSIS_NVIC_VIRTUAL_HEADER_FILE "cmsis_nvic_virtual.h"
#endif
#include CMSIS_NVIC_VIRTUAL_HEADER_FILE
#else
#define NVIC_SetPriorityGrouping __NVIC_SetPriorityGrouping
#define NVIC_GetPriorityGrouping __NVIC_GetPriorityGrouping
#define NVIC_EnableIRQ __NVIC_EnableIRQ
#define NVIC_GetEnableIRQ __NVIC_GetEnableIRQ
#define NVIC_DisableIRQ __NVIC_DisableIRQ
#define NVIC_GetPendingIRQ __NVIC_GetPendingIRQ
#define NVIC_SetPendingIRQ __NVIC_SetPendingIRQ
#define NVIC_ClearPendingIRQ __NVIC_ClearPendingIRQ
/*#define NVIC_GetActive __NVIC_GetActive not available for Cortex-M1 */
#define NVIC_SetPriority __NVIC_SetPriority
#define NVIC_GetPriority __NVIC_GetPriority
#define NVIC_SystemReset __NVIC_SystemReset
#endif /* CMSIS_NVIC_VIRTUAL */
#ifdef CMSIS_VECTAB_VIRTUAL
#ifndef CMSIS_VECTAB_VIRTUAL_HEADER_FILE
#define CMSIS_VECTAB_VIRTUAL_HEADER_FILE "cmsis_vectab_virtual.h"
#endif
#include CMSIS_VECTAB_VIRTUAL_HEADER_FILE
#else
#define NVIC_SetVector __NVIC_SetVector
#define NVIC_GetVector __NVIC_GetVector
#endif /* (CMSIS_VECTAB_VIRTUAL) */
#define NVIC_USER_IRQ_OFFSET 16
/* The following EXC_RETURN values are saved the LR on exception entry */
#define EXC_RETURN_HANDLER (0xFFFFFFF1UL) /* return to Handler mode, uses MSP after return */
#define EXC_RETURN_THREAD_MSP (0xFFFFFFF9UL) /* return to Thread mode, uses MSP after return */
#define EXC_RETURN_THREAD_PSP (0xFFFFFFFDUL) /* return to Thread mode, uses PSP after return */
/* Interrupt Priorities are WORD accessible only under Armv6-M */
/* The following MACROS handle generation of the register offset and byte masks */
#define _BIT_SHIFT(IRQn) ( ((((uint32_t)(int32_t)(IRQn)) ) & 0x03UL) * 8UL)
#define _SHP_IDX(IRQn) ( (((((uint32_t)(int32_t)(IRQn)) & 0x0FUL)-8UL) >> 2UL) )
#define _IP_IDX(IRQn) ( (((uint32_t)(int32_t)(IRQn)) >> 2UL) )
#define __NVIC_SetPriorityGrouping(X) (void)(X)
#define __NVIC_GetPriorityGrouping() (0U)
/**
\brief Enable Interrupt
\details Enables a device specific interrupt in the NVIC interrupt controller.
\param [in] IRQn Device specific interrupt number.
\note IRQn must not be negative.
*/
__STATIC_INLINE void __NVIC_EnableIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
__COMPILER_BARRIER();
NVIC->ISER[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
__COMPILER_BARRIER();
}
}
/**
\brief Get Interrupt Enable status
\details Returns a device specific interrupt enable status from the NVIC interrupt controller.
\param [in] IRQn Device specific interrupt number.
\return 0 Interrupt is not enabled.
\return 1 Interrupt is enabled.
\note IRQn must not be negative.
*/
__STATIC_INLINE uint32_t __NVIC_GetEnableIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
return((uint32_t)(((NVIC->ISER[0U] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL));
}
else
{
return(0U);
}
}
/**
\brief Disable Interrupt
\details Disables a device specific interrupt in the NVIC interrupt controller.
\param [in] IRQn Device specific interrupt number.
\note IRQn must not be negative.
*/
__STATIC_INLINE void __NVIC_DisableIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
NVIC->ICER[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
__DSB();
__ISB();
}
}
/**
\brief Get Pending Interrupt
\details Reads the NVIC pending register and returns the pending bit for the specified device specific interrupt.
\param [in] IRQn Device specific interrupt number.
\return 0 Interrupt status is not pending.
\return 1 Interrupt status is pending.
\note IRQn must not be negative.
*/
__STATIC_INLINE uint32_t __NVIC_GetPendingIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
return((uint32_t)(((NVIC->ISPR[0U] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL));
}
else
{
return(0U);
}
}
/**
\brief Set Pending Interrupt
\details Sets the pending bit of a device specific interrupt in the NVIC pending register.
\param [in] IRQn Device specific interrupt number.
\note IRQn must not be negative.
*/
__STATIC_INLINE void __NVIC_SetPendingIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
NVIC->ISPR[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
}
}
/**
\brief Clear Pending Interrupt
\details Clears the pending bit of a device specific interrupt in the NVIC pending register.
\param [in] IRQn Device specific interrupt number.
\note IRQn must not be negative.
*/
__STATIC_INLINE void __NVIC_ClearPendingIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
NVIC->ICPR[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
}
}
/**
\brief Set Interrupt Priority
\details Sets the priority of a device specific interrupt or a processor exception.
The interrupt number can be positive to specify a device specific interrupt,
or negative to specify a processor exception.
\param [in] IRQn Interrupt number.
\param [in] priority Priority to set.
\note The priority cannot be set for every processor exception.
*/
__STATIC_INLINE void __NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority)
{
if ((int32_t)(IRQn) >= 0)
{
NVIC->IP[_IP_IDX(IRQn)] = ((uint32_t)(NVIC->IP[_IP_IDX(IRQn)] & ~(0xFFUL << _BIT_SHIFT(IRQn))) |
(((priority << (8U - __NVIC_PRIO_BITS)) & (uint32_t)0xFFUL) << _BIT_SHIFT(IRQn)));
}
else
{
SCB->SHP[_SHP_IDX(IRQn)] = ((uint32_t)(SCB->SHP[_SHP_IDX(IRQn)] & ~(0xFFUL << _BIT_SHIFT(IRQn))) |
(((priority << (8U - __NVIC_PRIO_BITS)) & (uint32_t)0xFFUL) << _BIT_SHIFT(IRQn)));
}
}
/**
\brief Get Interrupt Priority
\details Reads the priority of a device specific interrupt or a processor exception.
The interrupt number can be positive to specify a device specific interrupt,
or negative to specify a processor exception.
\param [in] IRQn Interrupt number.
\return Interrupt Priority.
Value is aligned automatically to the implemented priority bits of the microcontroller.
*/
__STATIC_INLINE uint32_t __NVIC_GetPriority(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
return((uint32_t)(((NVIC->IP[ _IP_IDX(IRQn)] >> _BIT_SHIFT(IRQn) ) & (uint32_t)0xFFUL) >> (8U - __NVIC_PRIO_BITS)));
}
else
{
return((uint32_t)(((SCB->SHP[_SHP_IDX(IRQn)] >> _BIT_SHIFT(IRQn) ) & (uint32_t)0xFFUL) >> (8U - __NVIC_PRIO_BITS)));
}
}
/**
\brief Encode Priority
\details Encodes the priority for an interrupt with the given priority group,
preemptive priority value, and subpriority value.
In case of a conflict between priority grouping and available
priority bits (__NVIC_PRIO_BITS), the smallest possible priority group is set.
\param [in] PriorityGroup Used priority group.
\param [in] PreemptPriority Preemptive priority value (starting from 0).
\param [in] SubPriority Subpriority value (starting from 0).
\return Encoded priority. Value can be used in the function \ref NVIC_SetPriority().
*/
__STATIC_INLINE uint32_t NVIC_EncodePriority (uint32_t PriorityGroup, uint32_t PreemptPriority, uint32_t SubPriority)
{
uint32_t PriorityGroupTmp = (PriorityGroup & (uint32_t)0x07UL); /* only values 0..7 are used */
uint32_t PreemptPriorityBits;
uint32_t SubPriorityBits;
PreemptPriorityBits = ((7UL - PriorityGroupTmp) > (uint32_t)(__NVIC_PRIO_BITS)) ? (uint32_t)(__NVIC_PRIO_BITS) : (uint32_t)(7UL - PriorityGroupTmp);
SubPriorityBits = ((PriorityGroupTmp + (uint32_t)(__NVIC_PRIO_BITS)) < (uint32_t)7UL) ? (uint32_t)0UL : (uint32_t)((PriorityGroupTmp - 7UL) + (uint32_t)(__NVIC_PRIO_BITS));
return (
((PreemptPriority & (uint32_t)((1UL << (PreemptPriorityBits)) - 1UL)) << SubPriorityBits) |
((SubPriority & (uint32_t)((1UL << (SubPriorityBits )) - 1UL)))
);
}
/**
\brief Decode Priority
\details Decodes an interrupt priority value with a given priority group to
preemptive priority value and subpriority value.
In case of a conflict between priority grouping and available
priority bits (__NVIC_PRIO_BITS) the smallest possible priority group is set.
\param [in] Priority Priority value, which can be retrieved with the function \ref NVIC_GetPriority().
\param [in] PriorityGroup Used priority group.
\param [out] pPreemptPriority Preemptive priority value (starting from 0).
\param [out] pSubPriority Subpriority value (starting from 0).
*/
__STATIC_INLINE void NVIC_DecodePriority (uint32_t Priority, uint32_t PriorityGroup, uint32_t* const pPreemptPriority, uint32_t* const pSubPriority)
{
uint32_t PriorityGroupTmp = (PriorityGroup & (uint32_t)0x07UL); /* only values 0..7 are used */
uint32_t PreemptPriorityBits;
uint32_t SubPriorityBits;
PreemptPriorityBits = ((7UL - PriorityGroupTmp) > (uint32_t)(__NVIC_PRIO_BITS)) ? (uint32_t)(__NVIC_PRIO_BITS) : (uint32_t)(7UL - PriorityGroupTmp);
SubPriorityBits = ((PriorityGroupTmp + (uint32_t)(__NVIC_PRIO_BITS)) < (uint32_t)7UL) ? (uint32_t)0UL : (uint32_t)((PriorityGroupTmp - 7UL) + (uint32_t)(__NVIC_PRIO_BITS));
*pPreemptPriority = (Priority >> SubPriorityBits) & (uint32_t)((1UL << (PreemptPriorityBits)) - 1UL);
*pSubPriority = (Priority ) & (uint32_t)((1UL << (SubPriorityBits )) - 1UL);
}
/**
\brief Set Interrupt Vector
\details Sets an interrupt vector in SRAM based interrupt vector table.
The interrupt number can be positive to specify a device specific interrupt,
or negative to specify a processor exception.
Address 0 must be mapped to SRAM.
\param [in] IRQn Interrupt number
\param [in] vector Address of interrupt handler function
*/
__STATIC_INLINE void __NVIC_SetVector(IRQn_Type IRQn, uint32_t vector)
{
uint32_t *vectors = (uint32_t *)0x0U;
vectors[(int32_t)IRQn + NVIC_USER_IRQ_OFFSET] = vector;
/* ARM Application Note 321 states that the M1 does not require the architectural barrier */
}
/**
\brief Get Interrupt Vector
\details Reads an interrupt vector from interrupt vector table.
The interrupt number can be positive to specify a device specific interrupt,
or negative to specify a processor exception.
\param [in] IRQn Interrupt number.
\return Address of interrupt handler function
*/
__STATIC_INLINE uint32_t __NVIC_GetVector(IRQn_Type IRQn)
{
uint32_t *vectors = (uint32_t *)0x0U;
return vectors[(int32_t)IRQn + NVIC_USER_IRQ_OFFSET];
}
/**
\brief System Reset
\details Initiates a system reset request to reset the MCU.
*/
__NO_RETURN __STATIC_INLINE void __NVIC_SystemReset(void)
{
__DSB(); /* Ensure all outstanding memory accesses included
buffered write are completed before reset */
SCB->AIRCR = ((0x5FAUL << SCB_AIRCR_VECTKEY_Pos) |
SCB_AIRCR_SYSRESETREQ_Msk);
__DSB(); /* Ensure completion of memory access */
for(;;) /* wait until reset */
{
__NOP();
}
}
/*@} end of CMSIS_Core_NVICFunctions */
/* ########################## FPU functions #################################### */
/**
\ingroup CMSIS_Core_FunctionInterface
\defgroup CMSIS_Core_FpuFunctions FPU Functions
\brief Function that provides FPU type.
@{
*/
/**
\brief get FPU type
\details returns the FPU type
\returns
- \b 0: No FPU
- \b 1: Single precision FPU
- \b 2: Double + Single precision FPU
*/
__STATIC_INLINE uint32_t SCB_GetFPUType(void)
{
return 0U; /* No FPU */
}
/*@} end of CMSIS_Core_FpuFunctions */
/* ################################## SysTick function ############################################ */
/**
\ingroup CMSIS_Core_FunctionInterface
\defgroup CMSIS_Core_SysTickFunctions SysTick Functions
\brief Functions that configure the System.
@{
*/
#if defined (__Vendor_SysTickConfig) && (__Vendor_SysTickConfig == 0U)
/**
\brief System Tick Configuration
\details Initializes the System Timer and its interrupt, and starts the System Tick Timer.
Counter is in free running mode to generate periodic interrupts.
\param [in] ticks Number of ticks between two interrupts.
\return 0 Function succeeded.
\return 1 Function failed.
\note When the variable <b>__Vendor_SysTickConfig</b> is set to 1, then the
function <b>SysTick_Config</b> is not included. In this case, the file <b><i>device</i>.h</b>
must contain a vendor-specific implementation of this function.
*/
__STATIC_INLINE uint32_t SysTick_Config(uint32_t ticks)
{
if ((ticks - 1UL) > SysTick_LOAD_RELOAD_Msk)
{
return (1UL); /* Reload value impossible */
}
SysTick->LOAD = (uint32_t)(ticks - 1UL); /* set reload register */
NVIC_SetPriority (SysTick_IRQn, (1UL << __NVIC_PRIO_BITS) - 1UL); /* set Priority for Systick Interrupt */
SysTick->VAL = 0UL; /* Load the SysTick Counter Value */
SysTick->CTRL = SysTick_CTRL_CLKSOURCE_Msk |
SysTick_CTRL_TICKINT_Msk |
SysTick_CTRL_ENABLE_Msk; /* Enable SysTick IRQ and SysTick Timer */
return (0UL); /* Function successful */
}
#endif
/*@} end of CMSIS_Core_SysTickFunctions */
#ifdef __cplusplus
}
#endif
#endif /* __CORE_CM1_H_DEPENDANT */
#endif /* __CMSIS_GENERIC */

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,272 @@
/******************************************************************************
* @file mpu_armv7.h
* @brief CMSIS MPU API for Armv7-M MPU
* @version V5.1.0
* @date 08. March 2019
******************************************************************************/
/*
* Copyright (c) 2017-2019 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#if defined ( __ICCARM__ )
#pragma system_include /* treat file as system include file for MISRA check */
#elif defined (__clang__)
#pragma clang system_header /* treat file as system include file */
#endif
#ifndef ARM_MPU_ARMV7_H
#define ARM_MPU_ARMV7_H
#define ARM_MPU_REGION_SIZE_32B ((uint8_t)0x04U) ///!< MPU Region Size 32 Bytes
#define ARM_MPU_REGION_SIZE_64B ((uint8_t)0x05U) ///!< MPU Region Size 64 Bytes
#define ARM_MPU_REGION_SIZE_128B ((uint8_t)0x06U) ///!< MPU Region Size 128 Bytes
#define ARM_MPU_REGION_SIZE_256B ((uint8_t)0x07U) ///!< MPU Region Size 256 Bytes
#define ARM_MPU_REGION_SIZE_512B ((uint8_t)0x08U) ///!< MPU Region Size 512 Bytes
#define ARM_MPU_REGION_SIZE_1KB ((uint8_t)0x09U) ///!< MPU Region Size 1 KByte
#define ARM_MPU_REGION_SIZE_2KB ((uint8_t)0x0AU) ///!< MPU Region Size 2 KBytes
#define ARM_MPU_REGION_SIZE_4KB ((uint8_t)0x0BU) ///!< MPU Region Size 4 KBytes
#define ARM_MPU_REGION_SIZE_8KB ((uint8_t)0x0CU) ///!< MPU Region Size 8 KBytes
#define ARM_MPU_REGION_SIZE_16KB ((uint8_t)0x0DU) ///!< MPU Region Size 16 KBytes
#define ARM_MPU_REGION_SIZE_32KB ((uint8_t)0x0EU) ///!< MPU Region Size 32 KBytes
#define ARM_MPU_REGION_SIZE_64KB ((uint8_t)0x0FU) ///!< MPU Region Size 64 KBytes
#define ARM_MPU_REGION_SIZE_128KB ((uint8_t)0x10U) ///!< MPU Region Size 128 KBytes
#define ARM_MPU_REGION_SIZE_256KB ((uint8_t)0x11U) ///!< MPU Region Size 256 KBytes
#define ARM_MPU_REGION_SIZE_512KB ((uint8_t)0x12U) ///!< MPU Region Size 512 KBytes
#define ARM_MPU_REGION_SIZE_1MB ((uint8_t)0x13U) ///!< MPU Region Size 1 MByte
#define ARM_MPU_REGION_SIZE_2MB ((uint8_t)0x14U) ///!< MPU Region Size 2 MBytes
#define ARM_MPU_REGION_SIZE_4MB ((uint8_t)0x15U) ///!< MPU Region Size 4 MBytes
#define ARM_MPU_REGION_SIZE_8MB ((uint8_t)0x16U) ///!< MPU Region Size 8 MBytes
#define ARM_MPU_REGION_SIZE_16MB ((uint8_t)0x17U) ///!< MPU Region Size 16 MBytes
#define ARM_MPU_REGION_SIZE_32MB ((uint8_t)0x18U) ///!< MPU Region Size 32 MBytes
#define ARM_MPU_REGION_SIZE_64MB ((uint8_t)0x19U) ///!< MPU Region Size 64 MBytes
#define ARM_MPU_REGION_SIZE_128MB ((uint8_t)0x1AU) ///!< MPU Region Size 128 MBytes
#define ARM_MPU_REGION_SIZE_256MB ((uint8_t)0x1BU) ///!< MPU Region Size 256 MBytes
#define ARM_MPU_REGION_SIZE_512MB ((uint8_t)0x1CU) ///!< MPU Region Size 512 MBytes
#define ARM_MPU_REGION_SIZE_1GB ((uint8_t)0x1DU) ///!< MPU Region Size 1 GByte
#define ARM_MPU_REGION_SIZE_2GB ((uint8_t)0x1EU) ///!< MPU Region Size 2 GBytes
#define ARM_MPU_REGION_SIZE_4GB ((uint8_t)0x1FU) ///!< MPU Region Size 4 GBytes
#define ARM_MPU_AP_NONE 0U ///!< MPU Access Permission no access
#define ARM_MPU_AP_PRIV 1U ///!< MPU Access Permission privileged access only
#define ARM_MPU_AP_URO 2U ///!< MPU Access Permission unprivileged access read-only
#define ARM_MPU_AP_FULL 3U ///!< MPU Access Permission full access
#define ARM_MPU_AP_PRO 5U ///!< MPU Access Permission privileged access read-only
#define ARM_MPU_AP_RO 6U ///!< MPU Access Permission read-only access
/** MPU Region Base Address Register Value
*
* \param Region The region to be configured, number 0 to 15.
* \param BaseAddress The base address for the region.
*/
#define ARM_MPU_RBAR(Region, BaseAddress) \
(((BaseAddress) & MPU_RBAR_ADDR_Msk) | \
((Region) & MPU_RBAR_REGION_Msk) | \
(MPU_RBAR_VALID_Msk))
/**
* MPU Memory Access Attributes
*
* \param TypeExtField Type extension field, allows you to configure memory access type, for example strongly ordered, peripheral.
* \param IsShareable Region is shareable between multiple bus masters.
* \param IsCacheable Region is cacheable, i.e. its value may be kept in cache.
* \param IsBufferable Region is bufferable, i.e. using write-back caching. Cacheable but non-bufferable regions use write-through policy.
*/
#define ARM_MPU_ACCESS_(TypeExtField, IsShareable, IsCacheable, IsBufferable) \
((((TypeExtField) << MPU_RASR_TEX_Pos) & MPU_RASR_TEX_Msk) | \
(((IsShareable) << MPU_RASR_S_Pos) & MPU_RASR_S_Msk) | \
(((IsCacheable) << MPU_RASR_C_Pos) & MPU_RASR_C_Msk) | \
(((IsBufferable) << MPU_RASR_B_Pos) & MPU_RASR_B_Msk))
/**
* MPU Region Attribute and Size Register Value
*
* \param DisableExec Instruction access disable bit, 1= disable instruction fetches.
* \param AccessPermission Data access permissions, allows you to configure read/write access for User and Privileged mode.
* \param AccessAttributes Memory access attribution, see \ref ARM_MPU_ACCESS_.
* \param SubRegionDisable Sub-region disable field.
* \param Size Region size of the region to be configured, for example 4K, 8K.
*/
#define ARM_MPU_RASR_EX(DisableExec, AccessPermission, AccessAttributes, SubRegionDisable, Size) \
((((DisableExec) << MPU_RASR_XN_Pos) & MPU_RASR_XN_Msk) | \
(((AccessPermission) << MPU_RASR_AP_Pos) & MPU_RASR_AP_Msk) | \
(((AccessAttributes) & (MPU_RASR_TEX_Msk | MPU_RASR_S_Msk | MPU_RASR_C_Msk | MPU_RASR_B_Msk))) | \
(((SubRegionDisable) << MPU_RASR_SRD_Pos) & MPU_RASR_SRD_Msk) | \
(((Size) << MPU_RASR_SIZE_Pos) & MPU_RASR_SIZE_Msk) | \
(((MPU_RASR_ENABLE_Msk))))
/**
* MPU Region Attribute and Size Register Value
*
* \param DisableExec Instruction access disable bit, 1= disable instruction fetches.
* \param AccessPermission Data access permissions, allows you to configure read/write access for User and Privileged mode.
* \param TypeExtField Type extension field, allows you to configure memory access type, for example strongly ordered, peripheral.
* \param IsShareable Region is shareable between multiple bus masters.
* \param IsCacheable Region is cacheable, i.e. its value may be kept in cache.
* \param IsBufferable Region is bufferable, i.e. using write-back caching. Cacheable but non-bufferable regions use write-through policy.
* \param SubRegionDisable Sub-region disable field.
* \param Size Region size of the region to be configured, for example 4K, 8K.
*/
#define ARM_MPU_RASR(DisableExec, AccessPermission, TypeExtField, IsShareable, IsCacheable, IsBufferable, SubRegionDisable, Size) \
ARM_MPU_RASR_EX(DisableExec, AccessPermission, ARM_MPU_ACCESS_(TypeExtField, IsShareable, IsCacheable, IsBufferable), SubRegionDisable, Size)
/**
* MPU Memory Access Attribute for strongly ordered memory.
* - TEX: 000b
* - Shareable
* - Non-cacheable
* - Non-bufferable
*/
#define ARM_MPU_ACCESS_ORDERED ARM_MPU_ACCESS_(0U, 1U, 0U, 0U)
/**
* MPU Memory Access Attribute for device memory.
* - TEX: 000b (if shareable) or 010b (if non-shareable)
* - Shareable or non-shareable
* - Non-cacheable
* - Bufferable (if shareable) or non-bufferable (if non-shareable)
*
* \param IsShareable Configures the device memory as shareable or non-shareable.
*/
#define ARM_MPU_ACCESS_DEVICE(IsShareable) ((IsShareable) ? ARM_MPU_ACCESS_(0U, 1U, 0U, 1U) : ARM_MPU_ACCESS_(2U, 0U, 0U, 0U))
/**
* MPU Memory Access Attribute for normal memory.
* - TEX: 1BBb (reflecting outer cacheability rules)
* - Shareable or non-shareable
* - Cacheable or non-cacheable (reflecting inner cacheability rules)
* - Bufferable or non-bufferable (reflecting inner cacheability rules)
*
* \param OuterCp Configures the outer cache policy.
* \param InnerCp Configures the inner cache policy.
* \param IsShareable Configures the memory as shareable or non-shareable.
*/
#define ARM_MPU_ACCESS_NORMAL(OuterCp, InnerCp, IsShareable) ARM_MPU_ACCESS_((4U | (OuterCp)), IsShareable, ((InnerCp) & 2U), ((InnerCp) & 1U))
/**
* MPU Memory Access Attribute non-cacheable policy.
*/
#define ARM_MPU_CACHEP_NOCACHE 0U
/**
* MPU Memory Access Attribute write-back, write and read allocate policy.
*/
#define ARM_MPU_CACHEP_WB_WRA 1U
/**
* MPU Memory Access Attribute write-through, no write allocate policy.
*/
#define ARM_MPU_CACHEP_WT_NWA 2U
/**
* MPU Memory Access Attribute write-back, no write allocate policy.
*/
#define ARM_MPU_CACHEP_WB_NWA 3U
/**
* Struct for a single MPU Region
*/
typedef struct {
uint32_t RBAR; //!< The region base address register value (RBAR)
uint32_t RASR; //!< The region attribute and size register value (RASR) \ref MPU_RASR
} ARM_MPU_Region_t;
/** Enable the MPU.
* \param MPU_Control Default access permissions for unconfigured regions.
*/
__STATIC_INLINE void ARM_MPU_Enable(uint32_t MPU_Control)
{
MPU->CTRL = MPU_Control | MPU_CTRL_ENABLE_Msk;
#ifdef SCB_SHCSR_MEMFAULTENA_Msk
SCB->SHCSR |= SCB_SHCSR_MEMFAULTENA_Msk;
#endif
__DSB();
__ISB();
}
/** Disable the MPU.
*/
__STATIC_INLINE void ARM_MPU_Disable(void)
{
__DMB();
#ifdef SCB_SHCSR_MEMFAULTENA_Msk
SCB->SHCSR &= ~SCB_SHCSR_MEMFAULTENA_Msk;
#endif
MPU->CTRL &= ~MPU_CTRL_ENABLE_Msk;
}
/** Clear and disable the given MPU region.
* \param rnr Region number to be cleared.
*/
__STATIC_INLINE void ARM_MPU_ClrRegion(uint32_t rnr)
{
MPU->RNR = rnr;
MPU->RASR = 0U;
}
/** Configure an MPU region.
* \param rbar Value for RBAR register.
* \param rsar Value for RSAR register.
*/
__STATIC_INLINE void ARM_MPU_SetRegion(uint32_t rbar, uint32_t rasr)
{
MPU->RBAR = rbar;
MPU->RASR = rasr;
}
/** Configure the given MPU region.
* \param rnr Region number to be configured.
* \param rbar Value for RBAR register.
* \param rsar Value for RSAR register.
*/
__STATIC_INLINE void ARM_MPU_SetRegionEx(uint32_t rnr, uint32_t rbar, uint32_t rasr)
{
MPU->RNR = rnr;
MPU->RBAR = rbar;
MPU->RASR = rasr;
}
/** Memcopy with strictly ordered memory access, e.g. for register targets.
* \param dst Destination data is copied to.
* \param src Source data is copied from.
* \param len Amount of data words to be copied.
*/
__STATIC_INLINE void ARM_MPU_OrderedMemcpy(volatile uint32_t* dst, const uint32_t* __RESTRICT src, uint32_t len)
{
uint32_t i;
for (i = 0U; i < len; ++i)
{
dst[i] = src[i];
}
}
/** Load the given number of MPU regions from a table.
* \param table Pointer to the MPU configuration table.
* \param cnt Amount of regions to be configured.
*/
__STATIC_INLINE void ARM_MPU_Load(ARM_MPU_Region_t const* table, uint32_t cnt)
{
const uint32_t rowWordSize = sizeof(ARM_MPU_Region_t)/4U;
while (cnt > MPU_TYPE_RALIASES) {
ARM_MPU_OrderedMemcpy(&(MPU->RBAR), &(table->RBAR), MPU_TYPE_RALIASES*rowWordSize);
table += MPU_TYPE_RALIASES;
cnt -= MPU_TYPE_RALIASES;
}
ARM_MPU_OrderedMemcpy(&(MPU->RBAR), &(table->RBAR), cnt*rowWordSize);
}
#endif

View File

@@ -0,0 +1,346 @@
/******************************************************************************
* @file mpu_armv8.h
* @brief CMSIS MPU API for Armv8-M and Armv8.1-M MPU
* @version V5.1.0
* @date 08. March 2019
******************************************************************************/
/*
* Copyright (c) 2017-2019 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#if defined ( __ICCARM__ )
#pragma system_include /* treat file as system include file for MISRA check */
#elif defined (__clang__)
#pragma clang system_header /* treat file as system include file */
#endif
#ifndef ARM_MPU_ARMV8_H
#define ARM_MPU_ARMV8_H
/** \brief Attribute for device memory (outer only) */
#define ARM_MPU_ATTR_DEVICE ( 0U )
/** \brief Attribute for non-cacheable, normal memory */
#define ARM_MPU_ATTR_NON_CACHEABLE ( 4U )
/** \brief Attribute for normal memory (outer and inner)
* \param NT Non-Transient: Set to 1 for non-transient data.
* \param WB Write-Back: Set to 1 to use write-back update policy.
* \param RA Read Allocation: Set to 1 to use cache allocation on read miss.
* \param WA Write Allocation: Set to 1 to use cache allocation on write miss.
*/
#define ARM_MPU_ATTR_MEMORY_(NT, WB, RA, WA) \
(((NT & 1U) << 3U) | ((WB & 1U) << 2U) | ((RA & 1U) << 1U) | (WA & 1U))
/** \brief Device memory type non Gathering, non Re-ordering, non Early Write Acknowledgement */
#define ARM_MPU_ATTR_DEVICE_nGnRnE (0U)
/** \brief Device memory type non Gathering, non Re-ordering, Early Write Acknowledgement */
#define ARM_MPU_ATTR_DEVICE_nGnRE (1U)
/** \brief Device memory type non Gathering, Re-ordering, Early Write Acknowledgement */
#define ARM_MPU_ATTR_DEVICE_nGRE (2U)
/** \brief Device memory type Gathering, Re-ordering, Early Write Acknowledgement */
#define ARM_MPU_ATTR_DEVICE_GRE (3U)
/** \brief Memory Attribute
* \param O Outer memory attributes
* \param I O == ARM_MPU_ATTR_DEVICE: Device memory attributes, else: Inner memory attributes
*/
#define ARM_MPU_ATTR(O, I) (((O & 0xFU) << 4U) | (((O & 0xFU) != 0U) ? (I & 0xFU) : ((I & 0x3U) << 2U)))
/** \brief Normal memory non-shareable */
#define ARM_MPU_SH_NON (0U)
/** \brief Normal memory outer shareable */
#define ARM_MPU_SH_OUTER (2U)
/** \brief Normal memory inner shareable */
#define ARM_MPU_SH_INNER (3U)
/** \brief Memory access permissions
* \param RO Read-Only: Set to 1 for read-only memory.
* \param NP Non-Privileged: Set to 1 for non-privileged memory.
*/
#define ARM_MPU_AP_(RO, NP) (((RO & 1U) << 1U) | (NP & 1U))
/** \brief Region Base Address Register value
* \param BASE The base address bits [31:5] of a memory region. The value is zero extended. Effective address gets 32 byte aligned.
* \param SH Defines the Shareability domain for this memory region.
* \param RO Read-Only: Set to 1 for a read-only memory region.
* \param NP Non-Privileged: Set to 1 for a non-privileged memory region.
* \oaram XN eXecute Never: Set to 1 for a non-executable memory region.
*/
#define ARM_MPU_RBAR(BASE, SH, RO, NP, XN) \
((BASE & MPU_RBAR_BASE_Msk) | \
((SH << MPU_RBAR_SH_Pos) & MPU_RBAR_SH_Msk) | \
((ARM_MPU_AP_(RO, NP) << MPU_RBAR_AP_Pos) & MPU_RBAR_AP_Msk) | \
((XN << MPU_RBAR_XN_Pos) & MPU_RBAR_XN_Msk))
/** \brief Region Limit Address Register value
* \param LIMIT The limit address bits [31:5] for this memory region. The value is one extended.
* \param IDX The attribute index to be associated with this memory region.
*/
#define ARM_MPU_RLAR(LIMIT, IDX) \
((LIMIT & MPU_RLAR_LIMIT_Msk) | \
((IDX << MPU_RLAR_AttrIndx_Pos) & MPU_RLAR_AttrIndx_Msk) | \
(MPU_RLAR_EN_Msk))
#if defined(MPU_RLAR_PXN_Pos)
/** \brief Region Limit Address Register with PXN value
* \param LIMIT The limit address bits [31:5] for this memory region. The value is one extended.
* \param PXN Privileged execute never. Defines whether code can be executed from this privileged region.
* \param IDX The attribute index to be associated with this memory region.
*/
#define ARM_MPU_RLAR_PXN(LIMIT, PXN, IDX) \
((LIMIT & MPU_RLAR_LIMIT_Msk) | \
((PXN << MPU_RLAR_PXN_Pos) & MPU_RLAR_PXN_Msk) | \
((IDX << MPU_RLAR_AttrIndx_Pos) & MPU_RLAR_AttrIndx_Msk) | \
(MPU_RLAR_EN_Msk))
#endif
/**
* Struct for a single MPU Region
*/
typedef struct {
uint32_t RBAR; /*!< Region Base Address Register value */
uint32_t RLAR; /*!< Region Limit Address Register value */
} ARM_MPU_Region_t;
/** Enable the MPU.
* \param MPU_Control Default access permissions for unconfigured regions.
*/
__STATIC_INLINE void ARM_MPU_Enable(uint32_t MPU_Control)
{
MPU->CTRL = MPU_Control | MPU_CTRL_ENABLE_Msk;
#ifdef SCB_SHCSR_MEMFAULTENA_Msk
SCB->SHCSR |= SCB_SHCSR_MEMFAULTENA_Msk;
#endif
__DSB();
__ISB();
}
/** Disable the MPU.
*/
__STATIC_INLINE void ARM_MPU_Disable(void)
{
__DMB();
#ifdef SCB_SHCSR_MEMFAULTENA_Msk
SCB->SHCSR &= ~SCB_SHCSR_MEMFAULTENA_Msk;
#endif
MPU->CTRL &= ~MPU_CTRL_ENABLE_Msk;
}
#ifdef MPU_NS
/** Enable the Non-secure MPU.
* \param MPU_Control Default access permissions for unconfigured regions.
*/
__STATIC_INLINE void ARM_MPU_Enable_NS(uint32_t MPU_Control)
{
MPU_NS->CTRL = MPU_Control | MPU_CTRL_ENABLE_Msk;
#ifdef SCB_SHCSR_MEMFAULTENA_Msk
SCB_NS->SHCSR |= SCB_SHCSR_MEMFAULTENA_Msk;
#endif
__DSB();
__ISB();
}
/** Disable the Non-secure MPU.
*/
__STATIC_INLINE void ARM_MPU_Disable_NS(void)
{
__DMB();
#ifdef SCB_SHCSR_MEMFAULTENA_Msk
SCB_NS->SHCSR &= ~SCB_SHCSR_MEMFAULTENA_Msk;
#endif
MPU_NS->CTRL &= ~MPU_CTRL_ENABLE_Msk;
}
#endif
/** Set the memory attribute encoding to the given MPU.
* \param mpu Pointer to the MPU to be configured.
* \param idx The attribute index to be set [0-7]
* \param attr The attribute value to be set.
*/
__STATIC_INLINE void ARM_MPU_SetMemAttrEx(MPU_Type* mpu, uint8_t idx, uint8_t attr)
{
const uint8_t reg = idx / 4U;
const uint32_t pos = ((idx % 4U) * 8U);
const uint32_t mask = 0xFFU << pos;
if (reg >= (sizeof(mpu->MAIR) / sizeof(mpu->MAIR[0]))) {
return; // invalid index
}
mpu->MAIR[reg] = ((mpu->MAIR[reg] & ~mask) | ((attr << pos) & mask));
}
/** Set the memory attribute encoding.
* \param idx The attribute index to be set [0-7]
* \param attr The attribute value to be set.
*/
__STATIC_INLINE void ARM_MPU_SetMemAttr(uint8_t idx, uint8_t attr)
{
ARM_MPU_SetMemAttrEx(MPU, idx, attr);
}
#ifdef MPU_NS
/** Set the memory attribute encoding to the Non-secure MPU.
* \param idx The attribute index to be set [0-7]
* \param attr The attribute value to be set.
*/
__STATIC_INLINE void ARM_MPU_SetMemAttr_NS(uint8_t idx, uint8_t attr)
{
ARM_MPU_SetMemAttrEx(MPU_NS, idx, attr);
}
#endif
/** Clear and disable the given MPU region of the given MPU.
* \param mpu Pointer to MPU to be used.
* \param rnr Region number to be cleared.
*/
__STATIC_INLINE void ARM_MPU_ClrRegionEx(MPU_Type* mpu, uint32_t rnr)
{
mpu->RNR = rnr;
mpu->RLAR = 0U;
}
/** Clear and disable the given MPU region.
* \param rnr Region number to be cleared.
*/
__STATIC_INLINE void ARM_MPU_ClrRegion(uint32_t rnr)
{
ARM_MPU_ClrRegionEx(MPU, rnr);
}
#ifdef MPU_NS
/** Clear and disable the given Non-secure MPU region.
* \param rnr Region number to be cleared.
*/
__STATIC_INLINE void ARM_MPU_ClrRegion_NS(uint32_t rnr)
{
ARM_MPU_ClrRegionEx(MPU_NS, rnr);
}
#endif
/** Configure the given MPU region of the given MPU.
* \param mpu Pointer to MPU to be used.
* \param rnr Region number to be configured.
* \param rbar Value for RBAR register.
* \param rlar Value for RLAR register.
*/
__STATIC_INLINE void ARM_MPU_SetRegionEx(MPU_Type* mpu, uint32_t rnr, uint32_t rbar, uint32_t rlar)
{
mpu->RNR = rnr;
mpu->RBAR = rbar;
mpu->RLAR = rlar;
}
/** Configure the given MPU region.
* \param rnr Region number to be configured.
* \param rbar Value for RBAR register.
* \param rlar Value for RLAR register.
*/
__STATIC_INLINE void ARM_MPU_SetRegion(uint32_t rnr, uint32_t rbar, uint32_t rlar)
{
ARM_MPU_SetRegionEx(MPU, rnr, rbar, rlar);
}
#ifdef MPU_NS
/** Configure the given Non-secure MPU region.
* \param rnr Region number to be configured.
* \param rbar Value for RBAR register.
* \param rlar Value for RLAR register.
*/
__STATIC_INLINE void ARM_MPU_SetRegion_NS(uint32_t rnr, uint32_t rbar, uint32_t rlar)
{
ARM_MPU_SetRegionEx(MPU_NS, rnr, rbar, rlar);
}
#endif
/** Memcopy with strictly ordered memory access, e.g. for register targets.
* \param dst Destination data is copied to.
* \param src Source data is copied from.
* \param len Amount of data words to be copied.
*/
__STATIC_INLINE void ARM_MPU_OrderedMemcpy(volatile uint32_t* dst, const uint32_t* __RESTRICT src, uint32_t len)
{
uint32_t i;
for (i = 0U; i < len; ++i)
{
dst[i] = src[i];
}
}
/** Load the given number of MPU regions from a table to the given MPU.
* \param mpu Pointer to the MPU registers to be used.
* \param rnr First region number to be configured.
* \param table Pointer to the MPU configuration table.
* \param cnt Amount of regions to be configured.
*/
__STATIC_INLINE void ARM_MPU_LoadEx(MPU_Type* mpu, uint32_t rnr, ARM_MPU_Region_t const* table, uint32_t cnt)
{
const uint32_t rowWordSize = sizeof(ARM_MPU_Region_t)/4U;
if (cnt == 1U) {
mpu->RNR = rnr;
ARM_MPU_OrderedMemcpy(&(mpu->RBAR), &(table->RBAR), rowWordSize);
} else {
uint32_t rnrBase = rnr & ~(MPU_TYPE_RALIASES-1U);
uint32_t rnrOffset = rnr % MPU_TYPE_RALIASES;
mpu->RNR = rnrBase;
while ((rnrOffset + cnt) > MPU_TYPE_RALIASES) {
uint32_t c = MPU_TYPE_RALIASES - rnrOffset;
ARM_MPU_OrderedMemcpy(&(mpu->RBAR)+(rnrOffset*2U), &(table->RBAR), c*rowWordSize);
table += c;
cnt -= c;
rnrOffset = 0U;
rnrBase += MPU_TYPE_RALIASES;
mpu->RNR = rnrBase;
}
ARM_MPU_OrderedMemcpy(&(mpu->RBAR)+(rnrOffset*2U), &(table->RBAR), cnt*rowWordSize);
}
}
/** Load the given number of MPU regions from a table.
* \param rnr First region number to be configured.
* \param table Pointer to the MPU configuration table.
* \param cnt Amount of regions to be configured.
*/
__STATIC_INLINE void ARM_MPU_Load(uint32_t rnr, ARM_MPU_Region_t const* table, uint32_t cnt)
{
ARM_MPU_LoadEx(MPU, rnr, table, cnt);
}
#ifdef MPU_NS
/** Load the given number of MPU regions from a table to the Non-secure MPU.
* \param rnr First region number to be configured.
* \param table Pointer to the MPU configuration table.
* \param cnt Amount of regions to be configured.
*/
__STATIC_INLINE void ARM_MPU_Load_NS(uint32_t rnr, ARM_MPU_Region_t const* table, uint32_t cnt)
{
ARM_MPU_LoadEx(MPU_NS, rnr, table, cnt);
}
#endif
#endif

View File

@@ -0,0 +1,70 @@
/******************************************************************************
* @file tz_context.h
* @brief Context Management for Armv8-M TrustZone
* @version V1.0.1
* @date 10. January 2018
******************************************************************************/
/*
* Copyright (c) 2017-2018 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#if defined ( __ICCARM__ )
#pragma system_include /* treat file as system include file for MISRA check */
#elif defined (__clang__)
#pragma clang system_header /* treat file as system include file */
#endif
#ifndef TZ_CONTEXT_H
#define TZ_CONTEXT_H
#include <stdint.h>
#ifndef TZ_MODULEID_T
#define TZ_MODULEID_T
/// \details Data type that identifies secure software modules called by a process.
typedef uint32_t TZ_ModuleId_t;
#endif
/// \details TZ Memory ID identifies an allocated memory slot.
typedef uint32_t TZ_MemoryId_t;
/// Initialize secure context memory system
/// \return execution status (1: success, 0: error)
uint32_t TZ_InitContextSystem_S (void);
/// Allocate context memory for calling secure software modules in TrustZone
/// \param[in] module identifies software modules called from non-secure mode
/// \return value != 0 id TrustZone memory slot identifier
/// \return value 0 no memory available or internal error
TZ_MemoryId_t TZ_AllocModuleContext_S (TZ_ModuleId_t module);
/// Free context memory that was previously allocated with \ref TZ_AllocModuleContext_S
/// \param[in] id TrustZone memory slot identifier
/// \return execution status (1: success, 0: error)
uint32_t TZ_FreeModuleContext_S (TZ_MemoryId_t id);
/// Load secure context (called on RTOS thread context switch)
/// \param[in] id TrustZone memory slot identifier
/// \return execution status (1: success, 0: error)
uint32_t TZ_LoadContext_S (TZ_MemoryId_t id);
/// Store secure context (called on RTOS thread context switch)
/// \param[in] id TrustZone memory slot identifier
/// \return execution status (1: success, 0: error)
uint32_t TZ_StoreContext_S (TZ_MemoryId_t id);
#endif // TZ_CONTEXT_H

View File

@@ -0,0 +1,201 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "{}"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright {yyyy} {name of copyright owner}
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

View File

@@ -0,0 +1,756 @@
/*
* Copyright (c) 2013-2018 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* ----------------------------------------------------------------------
*
* $Date: 18. June 2018
* $Revision: V2.1.3
*
* Project: CMSIS-RTOS2 API
* Title: cmsis_os2.h header file
*
* Version 2.1.3
* Additional functions allowed to be called from Interrupt Service Routines:
* - osThreadGetId
* Version 2.1.2
* Additional functions allowed to be called from Interrupt Service Routines:
* - osKernelGetInfo, osKernelGetState
* Version 2.1.1
* Additional functions allowed to be called from Interrupt Service Routines:
* - osKernelGetTickCount, osKernelGetTickFreq
* Changed Kernel Tick type to uint32_t:
* - updated: osKernelGetTickCount, osDelayUntil
* Version 2.1.0
* Support for critical and uncritical sections (nesting safe):
* - updated: osKernelLock, osKernelUnlock
* - added: osKernelRestoreLock
* Updated Thread and Event Flags:
* - changed flags parameter and return type from int32_t to uint32_t
* Version 2.0.0
* Initial Release
*---------------------------------------------------------------------------*/
#ifndef CMSIS_OS2_H_
#define CMSIS_OS2_H_
#ifndef __NO_RETURN
#if defined(__CC_ARM)
#define __NO_RETURN __declspec(noreturn)
#elif defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)
#define __NO_RETURN __attribute__((__noreturn__))
#elif defined(__GNUC__)
#define __NO_RETURN __attribute__((__noreturn__))
#elif defined(__ICCARM__)
#define __NO_RETURN __noreturn
#else
#define __NO_RETURN
#endif
#endif
#include <stdint.h>
#include <stddef.h>
#ifdef __cplusplus
extern "C"
{
#endif
// ==== Enumerations, structures, defines ====
/// Version information.
typedef struct {
uint32_t api; ///< API version (major.minor.rev: mmnnnrrrr dec).
uint32_t kernel; ///< Kernel version (major.minor.rev: mmnnnrrrr dec).
} osVersion_t;
/// Kernel state.
typedef enum {
osKernelInactive = 0, ///< Inactive.
osKernelReady = 1, ///< Ready.
osKernelRunning = 2, ///< Running.
osKernelLocked = 3, ///< Locked.
osKernelSuspended = 4, ///< Suspended.
osKernelError = -1, ///< Error.
osKernelReserved = 0x7FFFFFFFU ///< Prevents enum down-size compiler optimization.
} osKernelState_t;
/// Thread state.
typedef enum {
osThreadInactive = 0, ///< Inactive.
osThreadReady = 1, ///< Ready.
osThreadRunning = 2, ///< Running.
osThreadBlocked = 3, ///< Blocked.
osThreadTerminated = 4, ///< Terminated.
osThreadError = -1, ///< Error.
osThreadReserved = 0x7FFFFFFF ///< Prevents enum down-size compiler optimization.
} osThreadState_t;
/// Priority values.
typedef enum {
osPriorityNone = 0, ///< No priority (not initialized).
osPriorityIdle = 1, ///< Reserved for Idle thread.
osPriorityLow = 8, ///< Priority: low
osPriorityLow1 = 8+1, ///< Priority: low + 1
osPriorityLow2 = 8+2, ///< Priority: low + 2
osPriorityLow3 = 8+3, ///< Priority: low + 3
osPriorityLow4 = 8+4, ///< Priority: low + 4
osPriorityLow5 = 8+5, ///< Priority: low + 5
osPriorityLow6 = 8+6, ///< Priority: low + 6
osPriorityLow7 = 8+7, ///< Priority: low + 7
osPriorityBelowNormal = 16, ///< Priority: below normal
osPriorityBelowNormal1 = 16+1, ///< Priority: below normal + 1
osPriorityBelowNormal2 = 16+2, ///< Priority: below normal + 2
osPriorityBelowNormal3 = 16+3, ///< Priority: below normal + 3
osPriorityBelowNormal4 = 16+4, ///< Priority: below normal + 4
osPriorityBelowNormal5 = 16+5, ///< Priority: below normal + 5
osPriorityBelowNormal6 = 16+6, ///< Priority: below normal + 6
osPriorityBelowNormal7 = 16+7, ///< Priority: below normal + 7
osPriorityNormal = 24, ///< Priority: normal
osPriorityNormal1 = 24+1, ///< Priority: normal + 1
osPriorityNormal2 = 24+2, ///< Priority: normal + 2
osPriorityNormal3 = 24+3, ///< Priority: normal + 3
osPriorityNormal4 = 24+4, ///< Priority: normal + 4
osPriorityNormal5 = 24+5, ///< Priority: normal + 5
osPriorityNormal6 = 24+6, ///< Priority: normal + 6
osPriorityNormal7 = 24+7, ///< Priority: normal + 7
osPriorityAboveNormal = 32, ///< Priority: above normal
osPriorityAboveNormal1 = 32+1, ///< Priority: above normal + 1
osPriorityAboveNormal2 = 32+2, ///< Priority: above normal + 2
osPriorityAboveNormal3 = 32+3, ///< Priority: above normal + 3
osPriorityAboveNormal4 = 32+4, ///< Priority: above normal + 4
osPriorityAboveNormal5 = 32+5, ///< Priority: above normal + 5
osPriorityAboveNormal6 = 32+6, ///< Priority: above normal + 6
osPriorityAboveNormal7 = 32+7, ///< Priority: above normal + 7
osPriorityHigh = 40, ///< Priority: high
osPriorityHigh1 = 40+1, ///< Priority: high + 1
osPriorityHigh2 = 40+2, ///< Priority: high + 2
osPriorityHigh3 = 40+3, ///< Priority: high + 3
osPriorityHigh4 = 40+4, ///< Priority: high + 4
osPriorityHigh5 = 40+5, ///< Priority: high + 5
osPriorityHigh6 = 40+6, ///< Priority: high + 6
osPriorityHigh7 = 40+7, ///< Priority: high + 7
osPriorityRealtime = 48, ///< Priority: realtime
osPriorityRealtime1 = 48+1, ///< Priority: realtime + 1
osPriorityRealtime2 = 48+2, ///< Priority: realtime + 2
osPriorityRealtime3 = 48+3, ///< Priority: realtime + 3
osPriorityRealtime4 = 48+4, ///< Priority: realtime + 4
osPriorityRealtime5 = 48+5, ///< Priority: realtime + 5
osPriorityRealtime6 = 48+6, ///< Priority: realtime + 6
osPriorityRealtime7 = 48+7, ///< Priority: realtime + 7
osPriorityISR = 56, ///< Reserved for ISR deferred thread.
osPriorityError = -1, ///< System cannot determine priority or illegal priority.
osPriorityReserved = 0x7FFFFFFF ///< Prevents enum down-size compiler optimization.
} osPriority_t;
/// Entry point of a thread.
typedef void (*osThreadFunc_t) (void *argument);
/// Timer callback function.
typedef void (*osTimerFunc_t) (void *argument);
/// Timer type.
typedef enum {
osTimerOnce = 0, ///< One-shot timer.
osTimerPeriodic = 1 ///< Repeating timer.
} osTimerType_t;
// Timeout value.
#define osWaitForever 0xFFFFFFFFU ///< Wait forever timeout value.
// Flags options (\ref osThreadFlagsWait and \ref osEventFlagsWait).
#define osFlagsWaitAny 0x00000000U ///< Wait for any flag (default).
#define osFlagsWaitAll 0x00000001U ///< Wait for all flags.
#define osFlagsNoClear 0x00000002U ///< Do not clear flags which have been specified to wait for.
// Flags errors (returned by osThreadFlagsXxxx and osEventFlagsXxxx).
#define osFlagsError 0x80000000U ///< Error indicator.
#define osFlagsErrorUnknown 0xFFFFFFFFU ///< osError (-1).
#define osFlagsErrorTimeout 0xFFFFFFFEU ///< osErrorTimeout (-2).
#define osFlagsErrorResource 0xFFFFFFFDU ///< osErrorResource (-3).
#define osFlagsErrorParameter 0xFFFFFFFCU ///< osErrorParameter (-4).
#define osFlagsErrorISR 0xFFFFFFFAU ///< osErrorISR (-6).
// Thread attributes (attr_bits in \ref osThreadAttr_t).
#define osThreadDetached 0x00000000U ///< Thread created in detached mode (default)
#define osThreadJoinable 0x00000001U ///< Thread created in joinable mode
// Mutex attributes (attr_bits in \ref osMutexAttr_t).
#define osMutexRecursive 0x00000001U ///< Recursive mutex.
#define osMutexPrioInherit 0x00000002U ///< Priority inherit protocol.
#define osMutexRobust 0x00000008U ///< Robust mutex.
/// Status code values returned by CMSIS-RTOS functions.
typedef enum {
osOK = 0, ///< Operation completed successfully.
osError = -1, ///< Unspecified RTOS error: run-time error but no other error message fits.
osErrorTimeout = -2, ///< Operation not completed within the timeout period.
osErrorResource = -3, ///< Resource not available.
osErrorParameter = -4, ///< Parameter error.
osErrorNoMemory = -5, ///< System is out of memory: it was impossible to allocate or reserve memory for the operation.
osErrorISR = -6, ///< Not allowed in ISR context: the function cannot be called from interrupt service routines.
osStatusReserved = 0x7FFFFFFF ///< Prevents enum down-size compiler optimization.
} osStatus_t;
/// \details Thread ID identifies the thread.
typedef void *osThreadId_t;
/// \details Timer ID identifies the timer.
typedef void *osTimerId_t;
/// \details Event Flags ID identifies the event flags.
typedef void *osEventFlagsId_t;
/// \details Mutex ID identifies the mutex.
typedef void *osMutexId_t;
/// \details Semaphore ID identifies the semaphore.
typedef void *osSemaphoreId_t;
/// \details Memory Pool ID identifies the memory pool.
typedef void *osMemoryPoolId_t;
/// \details Message Queue ID identifies the message queue.
typedef void *osMessageQueueId_t;
#ifndef TZ_MODULEID_T
#define TZ_MODULEID_T
/// \details Data type that identifies secure software modules called by a process.
typedef uint32_t TZ_ModuleId_t;
#endif
/// Attributes structure for thread.
typedef struct {
const char *name; ///< name of the thread
uint32_t attr_bits; ///< attribute bits
void *cb_mem; ///< memory for control block
uint32_t cb_size; ///< size of provided memory for control block
void *stack_mem; ///< memory for stack
uint32_t stack_size; ///< size of stack
osPriority_t priority; ///< initial thread priority (default: osPriorityNormal)
TZ_ModuleId_t tz_module; ///< TrustZone module identifier
uint32_t reserved; ///< reserved (must be 0)
} osThreadAttr_t;
/// Attributes structure for timer.
typedef struct {
const char *name; ///< name of the timer
uint32_t attr_bits; ///< attribute bits
void *cb_mem; ///< memory for control block
uint32_t cb_size; ///< size of provided memory for control block
} osTimerAttr_t;
/// Attributes structure for event flags.
typedef struct {
const char *name; ///< name of the event flags
uint32_t attr_bits; ///< attribute bits
void *cb_mem; ///< memory for control block
uint32_t cb_size; ///< size of provided memory for control block
} osEventFlagsAttr_t;
/// Attributes structure for mutex.
typedef struct {
const char *name; ///< name of the mutex
uint32_t attr_bits; ///< attribute bits
void *cb_mem; ///< memory for control block
uint32_t cb_size; ///< size of provided memory for control block
} osMutexAttr_t;
/// Attributes structure for semaphore.
typedef struct {
const char *name; ///< name of the semaphore
uint32_t attr_bits; ///< attribute bits
void *cb_mem; ///< memory for control block
uint32_t cb_size; ///< size of provided memory for control block
} osSemaphoreAttr_t;
/// Attributes structure for memory pool.
typedef struct {
const char *name; ///< name of the memory pool
uint32_t attr_bits; ///< attribute bits
void *cb_mem; ///< memory for control block
uint32_t cb_size; ///< size of provided memory for control block
void *mp_mem; ///< memory for data storage
uint32_t mp_size; ///< size of provided memory for data storage
} osMemoryPoolAttr_t;
/// Attributes structure for message queue.
typedef struct {
const char *name; ///< name of the message queue
uint32_t attr_bits; ///< attribute bits
void *cb_mem; ///< memory for control block
uint32_t cb_size; ///< size of provided memory for control block
void *mq_mem; ///< memory for data storage
uint32_t mq_size; ///< size of provided memory for data storage
} osMessageQueueAttr_t;
// ==== Kernel Management Functions ====
/// Initialize the RTOS Kernel.
/// \return status code that indicates the execution status of the function.
osStatus_t osKernelInitialize (void);
/// Get RTOS Kernel Information.
/// \param[out] version pointer to buffer for retrieving version information.
/// \param[out] id_buf pointer to buffer for retrieving kernel identification string.
/// \param[in] id_size size of buffer for kernel identification string.
/// \return status code that indicates the execution status of the function.
osStatus_t osKernelGetInfo (osVersion_t *version, char *id_buf, uint32_t id_size);
/// Get the current RTOS Kernel state.
/// \return current RTOS Kernel state.
osKernelState_t osKernelGetState (void);
/// Start the RTOS Kernel scheduler.
/// \return status code that indicates the execution status of the function.
osStatus_t osKernelStart (void);
/// Lock the RTOS Kernel scheduler.
/// \return previous lock state (1 - locked, 0 - not locked, error code if negative).
int32_t osKernelLock (void);
/// Unlock the RTOS Kernel scheduler.
/// \return previous lock state (1 - locked, 0 - not locked, error code if negative).
int32_t osKernelUnlock (void);
/// Restore the RTOS Kernel scheduler lock state.
/// \param[in] lock lock state obtained by \ref osKernelLock or \ref osKernelUnlock.
/// \return new lock state (1 - locked, 0 - not locked, error code if negative).
int32_t osKernelRestoreLock (int32_t lock);
/// Suspend the RTOS Kernel scheduler.
/// \return time in ticks, for how long the system can sleep or power-down.
uint32_t osKernelSuspend (void);
/// Resume the RTOS Kernel scheduler.
/// \param[in] sleep_ticks time in ticks for how long the system was in sleep or power-down mode.
void osKernelResume (uint32_t sleep_ticks);
/// Get the RTOS kernel tick count.
/// \return RTOS kernel current tick count.
uint32_t osKernelGetTickCount (void);
/// Get the RTOS kernel tick frequency.
/// \return frequency of the kernel tick in hertz, i.e. kernel ticks per second.
uint32_t osKernelGetTickFreq (void);
/// Get the RTOS kernel system timer count.
/// \return RTOS kernel current system timer count as 32-bit value.
uint32_t osKernelGetSysTimerCount (void);
/// Get the RTOS kernel system timer frequency.
/// \return frequency of the system timer in hertz, i.e. timer ticks per second.
uint32_t osKernelGetSysTimerFreq (void);
// ==== Thread Management Functions ====
/// Create a thread and add it to Active Threads.
/// \param[in] func thread function.
/// \param[in] argument pointer that is passed to the thread function as start argument.
/// \param[in] attr thread attributes; NULL: default values.
/// \return thread ID for reference by other functions or NULL in case of error.
osThreadId_t osThreadNew (osThreadFunc_t func, void *argument, const osThreadAttr_t *attr);
/// Get name of a thread.
/// \param[in] thread_id thread ID obtained by \ref osThreadNew or \ref osThreadGetId.
/// \return name as null-terminated string.
const char *osThreadGetName (osThreadId_t thread_id);
/// Return the thread ID of the current running thread.
/// \return thread ID for reference by other functions or NULL in case of error.
osThreadId_t osThreadGetId (void);
/// Get current thread state of a thread.
/// \param[in] thread_id thread ID obtained by \ref osThreadNew or \ref osThreadGetId.
/// \return current thread state of the specified thread.
osThreadState_t osThreadGetState (osThreadId_t thread_id);
/// Get stack size of a thread.
/// \param[in] thread_id thread ID obtained by \ref osThreadNew or \ref osThreadGetId.
/// \return stack size in bytes.
uint32_t osThreadGetStackSize (osThreadId_t thread_id);
/// Get available stack space of a thread based on stack watermark recording during execution.
/// \param[in] thread_id thread ID obtained by \ref osThreadNew or \ref osThreadGetId.
/// \return remaining stack space in bytes.
uint32_t osThreadGetStackSpace (osThreadId_t thread_id);
/// Change priority of a thread.
/// \param[in] thread_id thread ID obtained by \ref osThreadNew or \ref osThreadGetId.
/// \param[in] priority new priority value for the thread function.
/// \return status code that indicates the execution status of the function.
osStatus_t osThreadSetPriority (osThreadId_t thread_id, osPriority_t priority);
/// Get current priority of a thread.
/// \param[in] thread_id thread ID obtained by \ref osThreadNew or \ref osThreadGetId.
/// \return current priority value of the specified thread.
osPriority_t osThreadGetPriority (osThreadId_t thread_id);
/// Pass control to next thread that is in state \b READY.
/// \return status code that indicates the execution status of the function.
osStatus_t osThreadYield (void);
/// Suspend execution of a thread.
/// \param[in] thread_id thread ID obtained by \ref osThreadNew or \ref osThreadGetId.
/// \return status code that indicates the execution status of the function.
osStatus_t osThreadSuspend (osThreadId_t thread_id);
/// Resume execution of a thread.
/// \param[in] thread_id thread ID obtained by \ref osThreadNew or \ref osThreadGetId.
/// \return status code that indicates the execution status of the function.
osStatus_t osThreadResume (osThreadId_t thread_id);
/// Detach a thread (thread storage can be reclaimed when thread terminates).
/// \param[in] thread_id thread ID obtained by \ref osThreadNew or \ref osThreadGetId.
/// \return status code that indicates the execution status of the function.
osStatus_t osThreadDetach (osThreadId_t thread_id);
/// Wait for specified thread to terminate.
/// \param[in] thread_id thread ID obtained by \ref osThreadNew or \ref osThreadGetId.
/// \return status code that indicates the execution status of the function.
osStatus_t osThreadJoin (osThreadId_t thread_id);
/// Terminate execution of current running thread.
__NO_RETURN void osThreadExit (void);
/// Terminate execution of a thread.
/// \param[in] thread_id thread ID obtained by \ref osThreadNew or \ref osThreadGetId.
/// \return status code that indicates the execution status of the function.
osStatus_t osThreadTerminate (osThreadId_t thread_id);
/// Get number of active threads.
/// \return number of active threads.
uint32_t osThreadGetCount (void);
/// Enumerate active threads.
/// \param[out] thread_array pointer to array for retrieving thread IDs.
/// \param[in] array_items maximum number of items in array for retrieving thread IDs.
/// \return number of enumerated threads.
uint32_t osThreadEnumerate (osThreadId_t *thread_array, uint32_t array_items);
// ==== Thread Flags Functions ====
/// Set the specified Thread Flags of a thread.
/// \param[in] thread_id thread ID obtained by \ref osThreadNew or \ref osThreadGetId.
/// \param[in] flags specifies the flags of the thread that shall be set.
/// \return thread flags after setting or error code if highest bit set.
uint32_t osThreadFlagsSet (osThreadId_t thread_id, uint32_t flags);
/// Clear the specified Thread Flags of current running thread.
/// \param[in] flags specifies the flags of the thread that shall be cleared.
/// \return thread flags before clearing or error code if highest bit set.
uint32_t osThreadFlagsClear (uint32_t flags);
/// Get the current Thread Flags of current running thread.
/// \return current thread flags.
uint32_t osThreadFlagsGet (void);
/// Wait for one or more Thread Flags of the current running thread to become signaled.
/// \param[in] flags specifies the flags to wait for.
/// \param[in] options specifies flags options (osFlagsXxxx).
/// \param[in] timeout \ref CMSIS_RTOS_TimeOutValue or 0 in case of no time-out.
/// \return thread flags before clearing or error code if highest bit set.
uint32_t osThreadFlagsWait (uint32_t flags, uint32_t options, uint32_t timeout);
// ==== Generic Wait Functions ====
/// Wait for Timeout (Time Delay).
/// \param[in] ticks \ref CMSIS_RTOS_TimeOutValue "time ticks" value
/// \return status code that indicates the execution status of the function.
osStatus_t osDelay (uint32_t ticks);
/// Wait until specified time.
/// \param[in] ticks absolute time in ticks
/// \return status code that indicates the execution status of the function.
osStatus_t osDelayUntil (uint32_t ticks);
// ==== Timer Management Functions ====
/// Create and Initialize a timer.
/// \param[in] func function pointer to callback function.
/// \param[in] type \ref osTimerOnce for one-shot or \ref osTimerPeriodic for periodic behavior.
/// \param[in] argument argument to the timer callback function.
/// \param[in] attr timer attributes; NULL: default values.
/// \return timer ID for reference by other functions or NULL in case of error.
osTimerId_t osTimerNew (osTimerFunc_t func, osTimerType_t type, void *argument, const osTimerAttr_t *attr);
/// Get name of a timer.
/// \param[in] timer_id timer ID obtained by \ref osTimerNew.
/// \return name as null-terminated string.
const char *osTimerGetName (osTimerId_t timer_id);
/// Start or restart a timer.
/// \param[in] timer_id timer ID obtained by \ref osTimerNew.
/// \param[in] ticks \ref CMSIS_RTOS_TimeOutValue "time ticks" value of the timer.
/// \return status code that indicates the execution status of the function.
osStatus_t osTimerStart (osTimerId_t timer_id, uint32_t ticks);
/// Stop a timer.
/// \param[in] timer_id timer ID obtained by \ref osTimerNew.
/// \return status code that indicates the execution status of the function.
osStatus_t osTimerStop (osTimerId_t timer_id);
/// Check if a timer is running.
/// \param[in] timer_id timer ID obtained by \ref osTimerNew.
/// \return 0 not running, 1 running.
uint32_t osTimerIsRunning (osTimerId_t timer_id);
/// Delete a timer.
/// \param[in] timer_id timer ID obtained by \ref osTimerNew.
/// \return status code that indicates the execution status of the function.
osStatus_t osTimerDelete (osTimerId_t timer_id);
// ==== Event Flags Management Functions ====
/// Create and Initialize an Event Flags object.
/// \param[in] attr event flags attributes; NULL: default values.
/// \return event flags ID for reference by other functions or NULL in case of error.
osEventFlagsId_t osEventFlagsNew (const osEventFlagsAttr_t *attr);
/// Get name of an Event Flags object.
/// \param[in] ef_id event flags ID obtained by \ref osEventFlagsNew.
/// \return name as null-terminated string.
const char *osEventFlagsGetName (osEventFlagsId_t ef_id);
/// Set the specified Event Flags.
/// \param[in] ef_id event flags ID obtained by \ref osEventFlagsNew.
/// \param[in] flags specifies the flags that shall be set.
/// \return event flags after setting or error code if highest bit set.
uint32_t osEventFlagsSet (osEventFlagsId_t ef_id, uint32_t flags);
/// Clear the specified Event Flags.
/// \param[in] ef_id event flags ID obtained by \ref osEventFlagsNew.
/// \param[in] flags specifies the flags that shall be cleared.
/// \return event flags before clearing or error code if highest bit set.
uint32_t osEventFlagsClear (osEventFlagsId_t ef_id, uint32_t flags);
/// Get the current Event Flags.
/// \param[in] ef_id event flags ID obtained by \ref osEventFlagsNew.
/// \return current event flags.
uint32_t osEventFlagsGet (osEventFlagsId_t ef_id);
/// Wait for one or more Event Flags to become signaled.
/// \param[in] ef_id event flags ID obtained by \ref osEventFlagsNew.
/// \param[in] flags specifies the flags to wait for.
/// \param[in] options specifies flags options (osFlagsXxxx).
/// \param[in] timeout \ref CMSIS_RTOS_TimeOutValue or 0 in case of no time-out.
/// \return event flags before clearing or error code if highest bit set.
uint32_t osEventFlagsWait (osEventFlagsId_t ef_id, uint32_t flags, uint32_t options, uint32_t timeout);
/// Delete an Event Flags object.
/// \param[in] ef_id event flags ID obtained by \ref osEventFlagsNew.
/// \return status code that indicates the execution status of the function.
osStatus_t osEventFlagsDelete (osEventFlagsId_t ef_id);
// ==== Mutex Management Functions ====
/// Create and Initialize a Mutex object.
/// \param[in] attr mutex attributes; NULL: default values.
/// \return mutex ID for reference by other functions or NULL in case of error.
osMutexId_t osMutexNew (const osMutexAttr_t *attr);
/// Get name of a Mutex object.
/// \param[in] mutex_id mutex ID obtained by \ref osMutexNew.
/// \return name as null-terminated string.
const char *osMutexGetName (osMutexId_t mutex_id);
/// Acquire a Mutex or timeout if it is locked.
/// \param[in] mutex_id mutex ID obtained by \ref osMutexNew.
/// \param[in] timeout \ref CMSIS_RTOS_TimeOutValue or 0 in case of no time-out.
/// \return status code that indicates the execution status of the function.
osStatus_t osMutexAcquire (osMutexId_t mutex_id, uint32_t timeout);
/// Release a Mutex that was acquired by \ref osMutexAcquire.
/// \param[in] mutex_id mutex ID obtained by \ref osMutexNew.
/// \return status code that indicates the execution status of the function.
osStatus_t osMutexRelease (osMutexId_t mutex_id);
/// Get Thread which owns a Mutex object.
/// \param[in] mutex_id mutex ID obtained by \ref osMutexNew.
/// \return thread ID of owner thread or NULL when mutex was not acquired.
osThreadId_t osMutexGetOwner (osMutexId_t mutex_id);
/// Delete a Mutex object.
/// \param[in] mutex_id mutex ID obtained by \ref osMutexNew.
/// \return status code that indicates the execution status of the function.
osStatus_t osMutexDelete (osMutexId_t mutex_id);
// ==== Semaphore Management Functions ====
/// Create and Initialize a Semaphore object.
/// \param[in] max_count maximum number of available tokens.
/// \param[in] initial_count initial number of available tokens.
/// \param[in] attr semaphore attributes; NULL: default values.
/// \return semaphore ID for reference by other functions or NULL in case of error.
osSemaphoreId_t osSemaphoreNew (uint32_t max_count, uint32_t initial_count, const osSemaphoreAttr_t *attr);
/// Get name of a Semaphore object.
/// \param[in] semaphore_id semaphore ID obtained by \ref osSemaphoreNew.
/// \return name as null-terminated string.
const char *osSemaphoreGetName (osSemaphoreId_t semaphore_id);
/// Acquire a Semaphore token or timeout if no tokens are available.
/// \param[in] semaphore_id semaphore ID obtained by \ref osSemaphoreNew.
/// \param[in] timeout \ref CMSIS_RTOS_TimeOutValue or 0 in case of no time-out.
/// \return status code that indicates the execution status of the function.
osStatus_t osSemaphoreAcquire (osSemaphoreId_t semaphore_id, uint32_t timeout);
/// Release a Semaphore token up to the initial maximum count.
/// \param[in] semaphore_id semaphore ID obtained by \ref osSemaphoreNew.
/// \return status code that indicates the execution status of the function.
osStatus_t osSemaphoreRelease (osSemaphoreId_t semaphore_id);
/// Get current Semaphore token count.
/// \param[in] semaphore_id semaphore ID obtained by \ref osSemaphoreNew.
/// \return number of tokens available.
uint32_t osSemaphoreGetCount (osSemaphoreId_t semaphore_id);
/// Delete a Semaphore object.
/// \param[in] semaphore_id semaphore ID obtained by \ref osSemaphoreNew.
/// \return status code that indicates the execution status of the function.
osStatus_t osSemaphoreDelete (osSemaphoreId_t semaphore_id);
// ==== Memory Pool Management Functions ====
/// Create and Initialize a Memory Pool object.
/// \param[in] block_count maximum number of memory blocks in memory pool.
/// \param[in] block_size memory block size in bytes.
/// \param[in] attr memory pool attributes; NULL: default values.
/// \return memory pool ID for reference by other functions or NULL in case of error.
osMemoryPoolId_t osMemoryPoolNew (uint32_t block_count, uint32_t block_size, const osMemoryPoolAttr_t *attr);
/// Get name of a Memory Pool object.
/// \param[in] mp_id memory pool ID obtained by \ref osMemoryPoolNew.
/// \return name as null-terminated string.
const char *osMemoryPoolGetName (osMemoryPoolId_t mp_id);
/// Allocate a memory block from a Memory Pool.
/// \param[in] mp_id memory pool ID obtained by \ref osMemoryPoolNew.
/// \param[in] timeout \ref CMSIS_RTOS_TimeOutValue or 0 in case of no time-out.
/// \return address of the allocated memory block or NULL in case of no memory is available.
void *osMemoryPoolAlloc (osMemoryPoolId_t mp_id, uint32_t timeout);
/// Return an allocated memory block back to a Memory Pool.
/// \param[in] mp_id memory pool ID obtained by \ref osMemoryPoolNew.
/// \param[in] block address of the allocated memory block to be returned to the memory pool.
/// \return status code that indicates the execution status of the function.
osStatus_t osMemoryPoolFree (osMemoryPoolId_t mp_id, void *block);
/// Get maximum number of memory blocks in a Memory Pool.
/// \param[in] mp_id memory pool ID obtained by \ref osMemoryPoolNew.
/// \return maximum number of memory blocks.
uint32_t osMemoryPoolGetCapacity (osMemoryPoolId_t mp_id);
/// Get memory block size in a Memory Pool.
/// \param[in] mp_id memory pool ID obtained by \ref osMemoryPoolNew.
/// \return memory block size in bytes.
uint32_t osMemoryPoolGetBlockSize (osMemoryPoolId_t mp_id);
/// Get number of memory blocks used in a Memory Pool.
/// \param[in] mp_id memory pool ID obtained by \ref osMemoryPoolNew.
/// \return number of memory blocks used.
uint32_t osMemoryPoolGetCount (osMemoryPoolId_t mp_id);
/// Get number of memory blocks available in a Memory Pool.
/// \param[in] mp_id memory pool ID obtained by \ref osMemoryPoolNew.
/// \return number of memory blocks available.
uint32_t osMemoryPoolGetSpace (osMemoryPoolId_t mp_id);
/// Delete a Memory Pool object.
/// \param[in] mp_id memory pool ID obtained by \ref osMemoryPoolNew.
/// \return status code that indicates the execution status of the function.
osStatus_t osMemoryPoolDelete (osMemoryPoolId_t mp_id);
// ==== Message Queue Management Functions ====
/// Create and Initialize a Message Queue object.
/// \param[in] msg_count maximum number of messages in queue.
/// \param[in] msg_size maximum message size in bytes.
/// \param[in] attr message queue attributes; NULL: default values.
/// \return message queue ID for reference by other functions or NULL in case of error.
osMessageQueueId_t osMessageQueueNew (uint32_t msg_count, uint32_t msg_size, const osMessageQueueAttr_t *attr);
/// Get name of a Message Queue object.
/// \param[in] mq_id message queue ID obtained by \ref osMessageQueueNew.
/// \return name as null-terminated string.
const char *osMessageQueueGetName (osMessageQueueId_t mq_id);
/// Put a Message into a Queue or timeout if Queue is full.
/// \param[in] mq_id message queue ID obtained by \ref osMessageQueueNew.
/// \param[in] msg_ptr pointer to buffer with message to put into a queue.
/// \param[in] msg_prio message priority.
/// \param[in] timeout \ref CMSIS_RTOS_TimeOutValue or 0 in case of no time-out.
/// \return status code that indicates the execution status of the function.
osStatus_t osMessageQueuePut (osMessageQueueId_t mq_id, const void *msg_ptr, uint8_t msg_prio, uint32_t timeout);
/// Get a Message from a Queue or timeout if Queue is empty.
/// \param[in] mq_id message queue ID obtained by \ref osMessageQueueNew.
/// \param[out] msg_ptr pointer to buffer for message to get from a queue.
/// \param[out] msg_prio pointer to buffer for message priority or NULL.
/// \param[in] timeout \ref CMSIS_RTOS_TimeOutValue or 0 in case of no time-out.
/// \return status code that indicates the execution status of the function.
osStatus_t osMessageQueueGet (osMessageQueueId_t mq_id, void *msg_ptr, uint8_t *msg_prio, uint32_t timeout);
/// Get maximum number of messages in a Message Queue.
/// \param[in] mq_id message queue ID obtained by \ref osMessageQueueNew.
/// \return maximum number of messages.
uint32_t osMessageQueueGetCapacity (osMessageQueueId_t mq_id);
/// Get maximum message size in a Memory Pool.
/// \param[in] mq_id message queue ID obtained by \ref osMessageQueueNew.
/// \return maximum message size in bytes.
uint32_t osMessageQueueGetMsgSize (osMessageQueueId_t mq_id);
/// Get number of queued messages in a Message Queue.
/// \param[in] mq_id message queue ID obtained by \ref osMessageQueueNew.
/// \return number of queued messages.
uint32_t osMessageQueueGetCount (osMessageQueueId_t mq_id);
/// Get number of available slots for messages in a Message Queue.
/// \param[in] mq_id message queue ID obtained by \ref osMessageQueueNew.
/// \return number of available slots for messages.
uint32_t osMessageQueueGetSpace (osMessageQueueId_t mq_id);
/// Reset a Message Queue to initial empty state.
/// \param[in] mq_id message queue ID obtained by \ref osMessageQueueNew.
/// \return status code that indicates the execution status of the function.
osStatus_t osMessageQueueReset (osMessageQueueId_t mq_id);
/// Delete a Message Queue object.
/// \param[in] mq_id message queue ID obtained by \ref osMessageQueueNew.
/// \return status code that indicates the execution status of the function.
osStatus_t osMessageQueueDelete (osMessageQueueId_t mq_id);
#ifdef __cplusplus
}
#endif
#endif // CMSIS_OS2_H_

View File

@@ -0,0 +1,71 @@
/**************************************************************************//**
* @file os_tick.h
* @brief CMSIS OS Tick header file
* @version V1.0.1
* @date 24. November 2017
******************************************************************************/
/*
* Copyright (c) 2017-2017 ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef OS_TICK_H
#define OS_TICK_H
#include <stdint.h>
/// IRQ Handler.
#ifndef IRQHANDLER_T
#define IRQHANDLER_T
typedef void (*IRQHandler_t) (void);
#endif
/// Setup OS Tick timer to generate periodic RTOS Kernel Ticks
/// \param[in] freq tick frequency in Hz
/// \param[in] handler tick IRQ handler
/// \return 0 on success, -1 on error.
int32_t OS_Tick_Setup (uint32_t freq, IRQHandler_t handler);
/// Enable OS Tick timer interrupt
void OS_Tick_Enable (void);
/// Disable OS Tick timer interrupt
void OS_Tick_Disable (void);
/// Acknowledge execution of OS Tick timer interrupt
void OS_Tick_AcknowledgeIRQ (void);
/// Get OS Tick timer IRQ number
/// \return OS Tick IRQ number
int32_t OS_Tick_GetIRQn (void);
/// Get OS Tick timer clock frequency
/// \return OS Tick timer clock frequency in Hz
uint32_t OS_Tick_GetClock (void);
/// Get OS Tick timer interval reload value
/// \return OS Tick timer interval reload value
uint32_t OS_Tick_GetInterval (void);
/// Get OS Tick timer counter value
/// \return OS Tick timer counter value
uint32_t OS_Tick_GetCount (void);
/// Get OS Tick timer overflow status
/// \return OS Tick overflow status (1 - overflow, 0 - no overflow).
uint32_t OS_Tick_GetOverflow (void);
#endif /* OS_TICK_H */

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,710 @@
/**
******************************************************************************
* @file stm32wbxx_hal.h
* @author MCD Application Team
* @brief This file contains all the functions prototypes for the HAL
* module driver.
******************************************************************************
* @attention
*
* Copyright (c) 2019 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef STM32WBxx_HAL_H
#define STM32WBxx_HAL_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32wbxx_hal_conf.h"
#include "stm32wbxx_ll_system.h"
/** @addtogroup STM32WBxx_HAL_Driver
* @{
*/
/** @defgroup HAL HAL
* @{
*/
/** @defgroup HAL_TICK_FREQ Tick Frequency
* @{
*/
typedef enum
{
HAL_TICK_FREQ_10HZ = 100U,
HAL_TICK_FREQ_100HZ = 10U,
HAL_TICK_FREQ_1KHZ = 1U,
HAL_TICK_FREQ_DEFAULT = HAL_TICK_FREQ_1KHZ
} HAL_TickFreqTypeDef;
/**
* @}
*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup HAL_Exported_Constants HAL Exported Constants
* @{
*/
/** @defgroup SYSCFG_Exported_Constants SYSCFG Exported Constants
* @{
*/
/** @defgroup SYSCFG_BootMode BOOT Mode
* @{
*/
#define SYSCFG_BOOT_MAINFLASH LL_SYSCFG_REMAP_FLASH /*!< Main Flash memory mapped at 0x00000000 */
#define SYSCFG_BOOT_SYSTEMFLASH LL_SYSCFG_REMAP_SYSTEMFLASH /*!< System Flash memory mapped at 0x00000000 */
#define SYSCFG_BOOT_SRAM LL_SYSCFG_REMAP_SRAM /*!< SRAM1 mapped at 0x00000000 */
#if defined(LL_SYSCFG_REMAP_QUADSPI)
#define SYSCFG_BOOT_QUADSPI LL_SYSCFG_REMAP_QUADSPI /*!< QUADSPI memory mapped at 0x00000000 */
#endif /* LL_SYSCFG_REMAP_QUADSPI */
/**
* @}
*/
/** @defgroup SYSCFG_FPU_Interrupts FPU Interrupts
* @{
*/
#define SYSCFG_IT_FPU_IOC SYSCFG_CFGR1_FPU_IE_0 /*!< Floating Point Unit Invalid operation Interrupt */
#define SYSCFG_IT_FPU_DZC SYSCFG_CFGR1_FPU_IE_1 /*!< Floating Point Unit Divide-by-zero Interrupt */
#define SYSCFG_IT_FPU_UFC SYSCFG_CFGR1_FPU_IE_2 /*!< Floating Point Unit Underflow Interrupt */
#define SYSCFG_IT_FPU_OFC SYSCFG_CFGR1_FPU_IE_3 /*!< Floating Point Unit Overflow Interrupt */
#define SYSCFG_IT_FPU_IDC SYSCFG_CFGR1_FPU_IE_4 /*!< Floating Point Unit Input denormal Interrupt */
#define SYSCFG_IT_FPU_IXC SYSCFG_CFGR1_FPU_IE_5 /*!< Floating Point Unit Inexact Interrupt */
/**
* @}
*/
/** @defgroup SYSCFG_SRAM2WRP SRAM2 Page Write protection (0 to 31)
* @{
*/
#define SYSCFG_SRAM2WRP_PAGE0 LL_SYSCFG_SRAM2WRP_PAGE0 /*!< SRAM2A Write protection page 0 */
#define SYSCFG_SRAM2WRP_PAGE1 LL_SYSCFG_SRAM2WRP_PAGE1 /*!< SRAM2A Write protection page 1 */
#define SYSCFG_SRAM2WRP_PAGE2 LL_SYSCFG_SRAM2WRP_PAGE2 /*!< SRAM2A Write protection page 2 */
#define SYSCFG_SRAM2WRP_PAGE3 LL_SYSCFG_SRAM2WRP_PAGE3 /*!< SRAM2A Write protection page 3 */
#define SYSCFG_SRAM2WRP_PAGE4 LL_SYSCFG_SRAM2WRP_PAGE4 /*!< SRAM2A Write protection page 4 */
#define SYSCFG_SRAM2WRP_PAGE5 LL_SYSCFG_SRAM2WRP_PAGE5 /*!< SRAM2A Write protection page 5 */
#define SYSCFG_SRAM2WRP_PAGE6 LL_SYSCFG_SRAM2WRP_PAGE6 /*!< SRAM2A Write protection page 6 */
#define SYSCFG_SRAM2WRP_PAGE7 LL_SYSCFG_SRAM2WRP_PAGE7 /*!< SRAM2A Write protection page 7 */
#define SYSCFG_SRAM2WRP_PAGE8 LL_SYSCFG_SRAM2WRP_PAGE8 /*!< SRAM2A Write protection page 8 */
#define SYSCFG_SRAM2WRP_PAGE9 LL_SYSCFG_SRAM2WRP_PAGE9 /*!< SRAM2A Write protection page 9 */
#define SYSCFG_SRAM2WRP_PAGE10 LL_SYSCFG_SRAM2WRP_PAGE10 /*!< SRAM2A Write protection page 10 */
#define SYSCFG_SRAM2WRP_PAGE11 LL_SYSCFG_SRAM2WRP_PAGE11 /*!< SRAM2A Write protection page 11 */
#define SYSCFG_SRAM2WRP_PAGE12 LL_SYSCFG_SRAM2WRP_PAGE12 /*!< SRAM2A Write protection page 12 */
#define SYSCFG_SRAM2WRP_PAGE13 LL_SYSCFG_SRAM2WRP_PAGE13 /*!< SRAM2A Write protection page 13 */
#define SYSCFG_SRAM2WRP_PAGE14 LL_SYSCFG_SRAM2WRP_PAGE14 /*!< SRAM2A Write protection page 14 */
#define SYSCFG_SRAM2WRP_PAGE15 LL_SYSCFG_SRAM2WRP_PAGE15 /*!< SRAM2A Write protection page 15 */
#define SYSCFG_SRAM2WRP_PAGE16 LL_SYSCFG_SRAM2WRP_PAGE16 /*!< SRAM2A Write protection page 16 */
#define SYSCFG_SRAM2WRP_PAGE17 LL_SYSCFG_SRAM2WRP_PAGE17 /*!< SRAM2A Write protection page 17 */
#define SYSCFG_SRAM2WRP_PAGE18 LL_SYSCFG_SRAM2WRP_PAGE18 /*!< SRAM2A Write protection page 18 */
#define SYSCFG_SRAM2WRP_PAGE19 LL_SYSCFG_SRAM2WRP_PAGE19 /*!< SRAM2A Write protection page 19 */
#define SYSCFG_SRAM2WRP_PAGE20 LL_SYSCFG_SRAM2WRP_PAGE20 /*!< SRAM2A Write protection page 20 */
#define SYSCFG_SRAM2WRP_PAGE21 LL_SYSCFG_SRAM2WRP_PAGE21 /*!< SRAM2A Write protection page 21 */
#define SYSCFG_SRAM2WRP_PAGE22 LL_SYSCFG_SRAM2WRP_PAGE22 /*!< SRAM2A Write protection page 22 */
#define SYSCFG_SRAM2WRP_PAGE23 LL_SYSCFG_SRAM2WRP_PAGE23 /*!< SRAM2A Write protection page 23 */
#define SYSCFG_SRAM2WRP_PAGE24 LL_SYSCFG_SRAM2WRP_PAGE24 /*!< SRAM2A Write protection page 24 */
#define SYSCFG_SRAM2WRP_PAGE25 LL_SYSCFG_SRAM2WRP_PAGE25 /*!< SRAM2A Write protection page 25 */
#define SYSCFG_SRAM2WRP_PAGE26 LL_SYSCFG_SRAM2WRP_PAGE26 /*!< SRAM2A Write protection page 26 */
#define SYSCFG_SRAM2WRP_PAGE27 LL_SYSCFG_SRAM2WRP_PAGE27 /*!< SRAM2A Write protection page 27 */
#define SYSCFG_SRAM2WRP_PAGE28 LL_SYSCFG_SRAM2WRP_PAGE28 /*!< SRAM2A Write protection page 28 */
#define SYSCFG_SRAM2WRP_PAGE29 LL_SYSCFG_SRAM2WRP_PAGE29 /*!< SRAM2A Write protection page 29 */
#define SYSCFG_SRAM2WRP_PAGE30 LL_SYSCFG_SRAM2WRP_PAGE30 /*!< SRAM2A Write protection page 30 */
#define SYSCFG_SRAM2WRP_PAGE31 LL_SYSCFG_SRAM2WRP_PAGE31 /*!< SRAM2A Write protection page 31 */
/**
* @}
*/
/** @defgroup SYSCFG_SRAM2WRP_32_63 SRAM2 Page Write protection (32 to 63)
* @{
*/
#define SYSCFG_SRAM2WRP_PAGE32 LL_SYSCFG_SRAM2WRP_PAGE32 /*!< SRAM2B Write protection page 32 */
#define SYSCFG_SRAM2WRP_PAGE33 LL_SYSCFG_SRAM2WRP_PAGE33 /*!< SRAM2B Write protection page 33 */
#define SYSCFG_SRAM2WRP_PAGE34 LL_SYSCFG_SRAM2WRP_PAGE34 /*!< SRAM2B Write protection page 34 */
#define SYSCFG_SRAM2WRP_PAGE35 LL_SYSCFG_SRAM2WRP_PAGE35 /*!< SRAM2B Write protection page 35 */
#if defined(LL_SYSCFG_SRAM2WRP_PAGE36)
#define SYSCFG_SRAM2WRP_PAGE36 LL_SYSCFG_SRAM2WRP_PAGE36 /*!< SRAM2B Write protection page 36 */
#define SYSCFG_SRAM2WRP_PAGE37 LL_SYSCFG_SRAM2WRP_PAGE37 /*!< SRAM2B Write protection page 37 */
#define SYSCFG_SRAM2WRP_PAGE38 LL_SYSCFG_SRAM2WRP_PAGE38 /*!< SRAM2B Write protection page 38 */
#define SYSCFG_SRAM2WRP_PAGE39 LL_SYSCFG_SRAM2WRP_PAGE39 /*!< SRAM2B Write protection page 39 */
#define SYSCFG_SRAM2WRP_PAGE40 LL_SYSCFG_SRAM2WRP_PAGE40 /*!< SRAM2B Write protection page 40 */
#define SYSCFG_SRAM2WRP_PAGE41 LL_SYSCFG_SRAM2WRP_PAGE41 /*!< SRAM2B Write protection page 41 */
#define SYSCFG_SRAM2WRP_PAGE42 LL_SYSCFG_SRAM2WRP_PAGE42 /*!< SRAM2B Write protection page 42 */
#define SYSCFG_SRAM2WRP_PAGE43 LL_SYSCFG_SRAM2WRP_PAGE43 /*!< SRAM2B Write protection page 43 */
#define SYSCFG_SRAM2WRP_PAGE44 LL_SYSCFG_SRAM2WRP_PAGE44 /*!< SRAM2B Write protection page 44 */
#define SYSCFG_SRAM2WRP_PAGE45 LL_SYSCFG_SRAM2WRP_PAGE45 /*!< SRAM2B Write protection page 45 */
#define SYSCFG_SRAM2WRP_PAGE46 LL_SYSCFG_SRAM2WRP_PAGE46 /*!< SRAM2B Write protection page 46 */
#define SYSCFG_SRAM2WRP_PAGE47 LL_SYSCFG_SRAM2WRP_PAGE47 /*!< SRAM2B Write protection page 47 */
#define SYSCFG_SRAM2WRP_PAGE48 LL_SYSCFG_SRAM2WRP_PAGE48 /*!< SRAM2B Write protection page 48 */
#define SYSCFG_SRAM2WRP_PAGE49 LL_SYSCFG_SRAM2WRP_PAGE49 /*!< SRAM2B Write protection page 49 */
#define SYSCFG_SRAM2WRP_PAGE50 LL_SYSCFG_SRAM2WRP_PAGE50 /*!< SRAM2B Write protection page 50 */
#define SYSCFG_SRAM2WRP_PAGE51 LL_SYSCFG_SRAM2WRP_PAGE51 /*!< SRAM2B Write protection page 51 */
#define SYSCFG_SRAM2WRP_PAGE52 LL_SYSCFG_SRAM2WRP_PAGE52 /*!< SRAM2B Write protection page 52 */
#define SYSCFG_SRAM2WRP_PAGE53 LL_SYSCFG_SRAM2WRP_PAGE53 /*!< SRAM2B Write protection page 53 */
#define SYSCFG_SRAM2WRP_PAGE54 LL_SYSCFG_SRAM2WRP_PAGE54 /*!< SRAM2B Write protection page 54 */
#define SYSCFG_SRAM2WRP_PAGE55 LL_SYSCFG_SRAM2WRP_PAGE55 /*!< SRAM2B Write protection page 55 */
#define SYSCFG_SRAM2WRP_PAGE56 LL_SYSCFG_SRAM2WRP_PAGE56 /*!< SRAM2B Write protection page 56 */
#define SYSCFG_SRAM2WRP_PAGE57 LL_SYSCFG_SRAM2WRP_PAGE57 /*!< SRAM2B Write protection page 57 */
#define SYSCFG_SRAM2WRP_PAGE58 LL_SYSCFG_SRAM2WRP_PAGE58 /*!< SRAM2B Write protection page 58 */
#define SYSCFG_SRAM2WRP_PAGE59 LL_SYSCFG_SRAM2WRP_PAGE59 /*!< SRAM2B Write protection page 59 */
#define SYSCFG_SRAM2WRP_PAGE60 LL_SYSCFG_SRAM2WRP_PAGE60 /*!< SRAM2B Write protection page 60 */
#define SYSCFG_SRAM2WRP_PAGE61 LL_SYSCFG_SRAM2WRP_PAGE61 /*!< SRAM2B Write protection page 61 */
#define SYSCFG_SRAM2WRP_PAGE62 LL_SYSCFG_SRAM2WRP_PAGE62 /*!< SRAM2B Write protection page 62 */
#define SYSCFG_SRAM2WRP_PAGE63 LL_SYSCFG_SRAM2WRP_PAGE63 /*!< SRAM2B Write protection page 63 */
#endif /* LL_SYSCFG_SRAM2WRP_PAGE36 */
/**
* @}
*/
#if defined(VREFBUF)
/** @defgroup SYSCFG_VREFBUF_VoltageScale VREFBUF Voltage Scale
* @{
*/
#define SYSCFG_VREFBUF_VOLTAGE_SCALE0 LL_VREFBUF_VOLTAGE_SCALE0 /*!< Voltage reference scale 0 (VREF_OUT1) */
#define SYSCFG_VREFBUF_VOLTAGE_SCALE1 LL_VREFBUF_VOLTAGE_SCALE1 /*!< Voltage reference scale 1 (VREF_OUT2) */
/**
* @}
*/
/** @defgroup SYSCFG_VREFBUF_HighImpedance VREFBUF High Impedance
* @{
*/
#define SYSCFG_VREFBUF_HIGH_IMPEDANCE_DISABLE 0x00000000U /*!< VREF_plus pin is internally connected to Voltage reference buffer output */
#define SYSCFG_VREFBUF_HIGH_IMPEDANCE_ENABLE VREFBUF_CSR_HIZ /*!< VREF_plus pin is high impedance */
/**
* @}
*/
#endif /* VREFBUF */
/** @defgroup SYSCFG_SRAM_flags_definition SRAM Flags
* @{
*/
#define SYSCFG_FLAG_SRAM2_PE SYSCFG_CFGR2_SPF /*!< SRAM2 parity error */
#define SYSCFG_FLAG_SRAM2_BUSY SYSCFG_SCSR_SRAM2BSY /*!< SRAM2 busy by erase operation */
/**
* @}
*/
/** @defgroup SYSCFG_FastModePlus_GPIO Fast-mode Plus on GPIO
* @{
*/
/** @brief Fast-mode Plus driving capability on a specific GPIO
*/
#define SYSCFG_FASTMODEPLUS_PB6 SYSCFG_CFGR1_I2C_PB6_FMP /*!< Enable Fast-mode Plus on PB6 */
#define SYSCFG_FASTMODEPLUS_PB7 SYSCFG_CFGR1_I2C_PB7_FMP /*!< Enable Fast-mode Plus on PB7 */
#define SYSCFG_FASTMODEPLUS_PB8 SYSCFG_CFGR1_I2C_PB8_FMP /*!< Enable Fast-mode Plus on PB8 */
#define SYSCFG_FASTMODEPLUS_PB9 SYSCFG_CFGR1_I2C_PB9_FMP /*!< Enable Fast-mode Plus on PB9 */
/**
* @}
*/
/** @defgroup Secure_IP_Write_Access Secure IP Write Access
* @{
*/
#if defined(LL_SYSCFG_SECURE_ACCESS_AES1)
#define HAL_SYSCFG_SECURE_ACCESS_AES1 LL_SYSCFG_SECURE_ACCESS_AES1 /*!< Enabling the security access of Advanced Encryption Standard 1 KEY[7:0] */
#endif /* LL_SYSCFG_SECURE_ACCESS_AES1 */
#define HAL_SYSCFG_SECURE_ACCESS_AES2 LL_SYSCFG_SECURE_ACCESS_AES2 /*!< Enabling the security access of Advanced Encryption Standard 2 */
#define HAL_SYSCFG_SECURE_ACCESS_PKA LL_SYSCFG_SECURE_ACCESS_PKA /*!< Enabling the security access of Public Key Accelerator */
#define HAL_SYSCFG_SECURE_ACCESS_RNG LL_SYSCFG_SECURE_ACCESS_RNG /*!< Enabling the security access of Random Number Generator */
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/* Exported macros -----------------------------------------------------------*/
/** @defgroup HAL_Exported_Macros HAL Exported Macros
* @{
*/
/** @defgroup DBGMCU_Exported_Macros DBGMCU Exported Macros
* @{
*/
/** @brief Freeze and Unfreeze Peripherals in Debug mode
*/
/** @defgroup DBGMCU_APBx_GRPx_STOP_IP DBGMCU CPU1 APBx GRPx STOP IP
* @{
*/
#if defined(LL_DBGMCU_APB1_GRP1_TIM2_STOP)
#define __HAL_DBGMCU_FREEZE_TIM2() LL_DBGMCU_APB1_GRP1_FreezePeriph(LL_DBGMCU_APB1_GRP1_TIM2_STOP)
#define __HAL_DBGMCU_UNFREEZE_TIM2() LL_DBGMCU_APB1_GRP1_UnFreezePeriph(LL_DBGMCU_APB1_GRP1_TIM2_STOP)
#endif /* LL_DBGMCU_APB1_GRP1_TIM2_STOP */
#if defined(LL_DBGMCU_APB1_GRP1_RTC_STOP)
#define __HAL_DBGMCU_FREEZE_RTC() LL_DBGMCU_APB1_GRP1_FreezePeriph(LL_DBGMCU_APB1_GRP1_RTC_STOP)
#define __HAL_DBGMCU_UNFREEZE_RTC() LL_DBGMCU_APB1_GRP1_UnFreezePeriph(LL_DBGMCU_APB1_GRP1_RTC_STOP)
#endif /* LL_DBGMCU_APB1_GRP1_RTC_STOP */
#if defined(LL_DBGMCU_APB1_GRP1_WWDG_STOP)
#define __HAL_DBGMCU_FREEZE_WWDG() LL_DBGMCU_APB1_GRP1_FreezePeriph(LL_DBGMCU_APB1_GRP1_WWDG_STOP)
#define __HAL_DBGMCU_UNFREEZE_WWDG() LL_DBGMCU_APB1_GRP1_UnFreezePeriph(LL_DBGMCU_APB1_GRP1_WWDG_STOP)
#endif /* LL_DBGMCU_APB1_GRP1_WWDG_STOP */
#if defined(LL_DBGMCU_APB1_GRP1_IWDG_STOP)
#define __HAL_DBGMCU_FREEZE_IWDG() LL_DBGMCU_APB1_GRP1_FreezePeriph(LL_DBGMCU_APB1_GRP1_IWDG_STOP)
#define __HAL_DBGMCU_UNFREEZE_IWDG() LL_DBGMCU_APB1_GRP1_UnFreezePeriph(LL_DBGMCU_APB1_GRP1_IWDG_STOP)
#endif /* LL_DBGMCU_APB1_GRP1_IWDG_STOP */
#if defined(LL_DBGMCU_APB1_GRP1_I2C1_STOP)
#define __HAL_DBGMCU_FREEZE_I2C1_TIMEOUT() LL_DBGMCU_APB1_GRP1_FreezePeriph(LL_DBGMCU_APB1_GRP1_I2C1_STOP)
#define __HAL_DBGMCU_UNFREEZE_I2C1_TIMEOUT() LL_DBGMCU_APB1_GRP1_UnFreezePeriph(LL_DBGMCU_APB1_GRP1_I2C1_STOP)
#endif /* LL_DBGMCU_APB1_GRP1_I2C1_STOP */
#if defined(LL_DBGMCU_APB1_GRP1_I2C3_STOP)
#define __HAL_DBGMCU_FREEZE_I2C3_TIMEOUT() LL_DBGMCU_APB1_GRP1_FreezePeriph(LL_DBGMCU_APB1_GRP1_I2C3_STOP)
#define __HAL_DBGMCU_UNFREEZE_I2C3_TIMEOUT() LL_DBGMCU_APB1_GRP1_UnFreezePeriph(LL_DBGMCU_APB1_GRP1_I2C3_STOP)
#endif /* LL_DBGMCU_APB1_GRP1_I2C3_STOP */
#if defined(LL_DBGMCU_APB1_GRP1_LPTIM1_STOP)
#define __HAL_DBGMCU_FREEZE_LPTIM1() LL_DBGMCU_APB1_GRP1_FreezePeriph(LL_DBGMCU_APB1_GRP1_LPTIM1_STOP)
#define __HAL_DBGMCU_UNFREEZE_LPTIM1() LL_DBGMCU_APB1_GRP1_UnFreezePeriph(LL_DBGMCU_APB1_GRP1_LPTIM1_STOP)
#endif /* LL_DBGMCU_APB1_GRP1_LPTIM1_STOP */
#if defined(LL_DBGMCU_APB1_GRP2_LPTIM2_STOP)
#define __HAL_DBGMCU_FREEZE_LPTIM2() LL_DBGMCU_APB1_GRP2_FreezePeriph(LL_DBGMCU_APB1_GRP2_LPTIM2_STOP)
#define __HAL_DBGMCU_UNFREEZE_LPTIM2() LL_DBGMCU_APB1_GRP2_UnFreezePeriph(LL_DBGMCU_APB1_GRP2_LPTIM2_STOP)
#endif /* LL_DBGMCU_APB1_GRP2_LPTIM2_STOP */
#if defined(LL_DBGMCU_APB2_GRP1_TIM1_STOP)
#define __HAL_DBGMCU_FREEZE_TIM1() LL_DBGMCU_APB2_GRP1_FreezePeriph(LL_DBGMCU_APB2_GRP1_TIM1_STOP)
#define __HAL_DBGMCU_UNFREEZE_TIM1() LL_DBGMCU_APB2_GRP1_UnFreezePeriph(LL_DBGMCU_APB2_GRP1_TIM1_STOP)
#endif /* LL_DBGMCU_APB2_GRP1_TIM1_STOP */
#if defined(LL_DBGMCU_APB2_GRP1_TIM16_STOP)
#define __HAL_DBGMCU_FREEZE_TIM16() LL_DBGMCU_APB2_GRP1_FreezePeriph(LL_DBGMCU_APB2_GRP1_TIM16_STOP)
#define __HAL_DBGMCU_UNFREEZE_TIM16() LL_DBGMCU_APB2_GRP1_UnFreezePeriph(LL_DBGMCU_APB2_GRP1_TIM16_STOP)
#endif /* LL_DBGMCU_APB2_GRP1_TIM16_STOP */
#if defined(LL_DBGMCU_APB2_GRP1_TIM17_STOP)
#define __HAL_DBGMCU_FREEZE_TIM17() LL_DBGMCU_APB2_GRP1_FreezePeriph(LL_DBGMCU_APB2_GRP1_TIM17_STOP)
#define __HAL_DBGMCU_UNFREEZE_TIM17() LL_DBGMCU_APB2_GRP1_UnFreezePeriph(LL_DBGMCU_APB2_GRP1_TIM17_STOP)
#endif /* LL_DBGMCU_APB2_GRP1_TIM17_STOP */
/**
* @}
*/
/** @defgroup DBGMCU_C2_APBx_GRPx_STOP_IP DBGMCU CPU2 APBx GRPx STOP IP
* @{
*/
#if defined(LL_C2_DBGMCU_APB1_GRP1_TIM2_STOP)
#define __HAL_C2_DBGMCU_FREEZE_TIM2() LL_C2_DBGMCU_APB1_GRP1_FreezePeriph(LL_C2_DBGMCU_APB1_GRP1_TIM2_STOP)
#define __HAL_C2_DBGMCU_UNFREEZE_TIM2() LL_C2_DBGMCU_APB1_GRP1_UnFreezePeriph(LL_C2_DBGMCU_APB1_GRP1_TIM2_STOP)
#endif /* LL_C2_DBGMCU_APB1_GRP1_TIM2_STOP */
#if defined(LL_C2_DBGMCU_APB1_GRP1_RTC_STOP)
#define __HAL_C2_DBGMCU_FREEZE_RTC() LL_C2_DBGMCU_APB1_GRP1_FreezePeriph(LL_C2_DBGMCU_APB1_GRP1_RTC_STOP)
#define __HAL_C2_DBGMCU_UNFREEZE_RTC() LL_C2_DBGMCU_APB1_GRP1_UnFreezePeriph(LL_C2_DBGMCU_APB1_GRP1_RTC_STOP)
#endif /* LL_C2_DBGMCU_APB1_GRP1_RTC_STOP */
#if defined(LL_C2_DBGMCU_APB1_GRP1_IWDG_STOP)
#define __HAL_C2_DBGMCU_FREEZE_IWDG() LL_C2_DBGMCU_APB1_GRP1_FreezePeriph(LL_C2_DBGMCU_APB1_GRP1_IWDG_STOP)
#define __HAL_C2_DBGMCU_UNFREEZE_IWDG() LL_C2_DBGMCU_APB1_GRP1_UnFreezePeriph(LL_C2_DBGMCU_APB1_GRP1_IWDG_STOP)
#endif /* LL_C2_DBGMCU_APB1_GRP1_IWDG_STOP */
#if defined(LL_C2_DBGMCU_APB1_GRP1_I2C1_STOP)
#define __HAL_C2_DBGMCU_FREEZE_I2C1_TIMEOUT() LL_C2_DBGMCU_APB1_GRP1_FreezePeriph(LL_C2_DBGMCU_APB1_GRP1_I2C1_STOP)
#define __HAL_C2_DBGMCU_UNFREEZE_I2C1_TIMEOUT() LL_C2_DBGMCU_APB1_GRP1_UnFreezePeriph(LL_C2_DBGMCU_APB1_GRP1_I2C1_STOP)
#endif /* LL_C2_DBGMCU_APB1_GRP1_I2C1_STOP */
#if defined(LL_C2_DBGMCU_APB1_GRP1_I2C3_STOP)
#define __HAL_C2_DBGMCU_FREEZE_I2C3_TIMEOUT() LL_C2_DBGMCU_APB1_GRP1_FreezePeriph(LL_C2_DBGMCU_APB1_GRP1_I2C3_STOP)
#define __HAL_C2_DBGMCU_UNFREEZE_I2C3_TIMEOUT() LL_C2_DBGMCU_APB1_GRP1_UnFreezePeriph(LL_C2_DBGMCU_APB1_GRP1_I2C3_STOP)
#endif /* LL_C2_DBGMCU_APB1_GRP1_I2C3_STOP */
#if defined(LL_C2_DBGMCU_APB1_GRP1_LPTIM1_STOP)
#define __HAL_C2_DBGMCU_FREEZE_LPTIM1() LL_C2_DBGMCU_APB1_GRP1_FreezePeriph(LL_C2_DBGMCU_APB1_GRP1_LPTIM1_STOP)
#define __HAL_C2_DBGMCU_UNFREEZE_LPTIM1() LL_C2_DBGMCU_APB1_GRP1_UnFreezePeriph(LL_C2_DBGMCU_APB1_GRP1_LPTIM1_STOP)
#endif /* LL_C2_DBGMCU_APB1_GRP1_LPTIM1_STOP */
#if defined(LL_C2_DBGMCU_APB1_GRP2_LPTIM2_STOP)
#define __HAL_C2_DBGMCU_FREEZE_LPTIM2() LL_C2_DBGMCU_APB1_GRP2_FreezePeriph(LL_C2_DBGMCU_APB1_GRP2_LPTIM2_STOP)
#define __HAL_C2_DBGMCU_UNFREEZE_LPTIM2() LL_C2_DBGMCU_APB1_GRP2_UnFreezePeriph(LL_C2_DBGMCU_APB1_GRP2_LPTIM2_STOP)
#endif /* LL_C2_DBGMCU_APB1_GRP2_LPTIM2_STOP */
#if defined(LL_C2_DBGMCU_APB2_GRP1_TIM1_STOP)
#define __HAL_C2_DBGMCU_FREEZE_TIM1() LL_C2_DBGMCU_APB2_GRP1_FreezePeriph(LL_C2_DBGMCU_APB2_GRP1_TIM1_STOP)
#define __HAL_C2_DBGMCU_UNFREEZE_TIM1() LL_C2_DBGMCU_APB2_GRP1_UnFreezePeriph(LL_C2_DBGMCU_APB2_GRP1_TIM1_STOP)
#endif /* LL_C2_DBGMCU_APB2_GRP1_TIM1_STOP */
#if defined(LL_C2_DBGMCU_APB2_GRP1_TIM16_STOP)
#define __HAL_C2_DBGMCU_FREEZE_TIM16() LL_C2_DBGMCU_APB2_GRP1_FreezePeriph(LL_C2_DBGMCU_APB2_GRP1_TIM16_STOP)
#define __HAL_C2_DBGMCU_UNFREEZE_TIM16() LL_C2_DBGMCU_APB2_GRP1_UnFreezePeriph(LL_C2_DBGMCU_APB2_GRP1_TIM16_STOP)
#endif /* LL_C2_DBGMCU_APB2_GRP1_TIM16_STOP */
#if defined(LL_C2_DBGMCU_APB2_GRP1_TIM17_STOP)
#define __HAL_C2_DBGMCU_FREEZE_TIM17() LL_C2_DBGMCU_APB2_GRP1_FreezePeriph(LL_C2_DBGMCU_APB2_GRP1_TIM17_STOP)
#define __HAL_C2_DBGMCU_UNFREEZE_TIM17() LL_C2_DBGMCU_APB2_GRP1_UnFreezePeriph(LL_C2_DBGMCU_APB2_GRP1_TIM17_STOP)
#endif /* LL_C2_DBGMCU_APB2_GRP1_TIM17_STOP */
/**
* @}
*/
/**
* @}
*/
/** @defgroup SYSCFG_Exported_Macros SYSCFG Exported Macros
* @{
*/
/** @brief Main Flash memory mapped at 0x00000000
*/
#define __HAL_SYSCFG_REMAPMEMORY_FLASH() LL_SYSCFG_SetRemapMemory(LL_SYSCFG_REMAP_FLASH)
/** @brief System Flash memory mapped at 0x00000000
*/
#define __HAL_SYSCFG_REMAPMEMORY_SYSTEMFLASH() LL_SYSCFG_SetRemapMemory(LL_SYSCFG_REMAP_SYSTEMFLASH)
/** @brief Embedded SRAM mapped at 0x00000000
*/
#define __HAL_SYSCFG_REMAPMEMORY_SRAM() LL_SYSCFG_SetRemapMemory(LL_SYSCFG_REMAP_SRAM)
#if defined(LL_SYSCFG_REMAP_QUADSPI)
/** @brief QUADSPI mapped at 0x00000000.
*/
#define __HAL_SYSCFG_REMAPMEMORY_QUADSPI() LL_SYSCFG_SetRemapMemory(LL_SYSCFG_REMAP_QUADSPI)
#endif /* LL_SYSCFG_REMAP_QUADSPI */
/**
* @brief Return the boot mode as configured by user.
* @retval The boot mode as configured by user. The returned value can be one
* of the following values:
* @arg @ref SYSCFG_BOOT_MAINFLASH
* @arg @ref SYSCFG_BOOT_SYSTEMFLASH
* @arg @ref SYSCFG_BOOT_SRAM
#if defined(LL_SYSCFG_REMAP_QUADSPI)
* @arg @ref SYSCFG_BOOT_QUADSPI
#endif
*/
#define __HAL_SYSCFG_GET_BOOT_MODE() LL_SYSCFG_GetRemapMemory()
/** @brief SRAM2 page 0 to 31 write protection enable macro
* @param __SRAM2WRP__ This parameter can be a combination of values of @ref SYSCFG_SRAM2WRP
* @note Write protection can only be disabled by a system reset
*/
/* Legacy define */
#define __HAL_SYSCFG_SRAM2_WRP_1_31_ENABLE __HAL_SYSCFG_SRAM2_WRP_0_31_ENABLE
#define __HAL_SYSCFG_SRAM2_WRP_0_31_ENABLE(__SRAM2WRP__) \
do { \
assert_param(IS_SYSCFG_SRAM2WRP_PAGE((__SRAM2WRP__))); \
LL_SYSCFG_EnableSRAM2PageWRP_0_31(__SRAM2WRP__); \
} while(0)
/** @brief SRAM2 page 32 to 63 write protection enable macro
* @param __SRAM2WRP__ This parameter can be a combination of values of @ref SYSCFG_SRAM2WRP_32_63
* @note Write protection can only be disabled by a system reset
*/
#define __HAL_SYSCFG_SRAM2_WRP_32_63_ENABLE(__SRAM2WRP__) \
do { \
assert_param(IS_SYSCFG_SRAM2WRP2_PAGE((__SRAM2WRP__))); \
LL_SYSCFG_EnableSRAM2PageWRP_32_63(__SRAM2WRP__); \
} while(0)
/** @brief SRAM2 page write protection unlock prior to erase
* @note Writing a wrong key reactivates the write protection
*/
#define __HAL_SYSCFG_SRAM2_WRP_UNLOCK() LL_SYSCFG_UnlockSRAM2WRP()
/** @brief SRAM2 erase
* @note __SYSCFG_GET_FLAG(SYSCFG_FLAG_SRAM2_BUSY) may be used to check end of erase
*/
#define __HAL_SYSCFG_SRAM2_ERASE() LL_SYSCFG_EnableSRAM2Erase()
/** @brief Floating Point Unit interrupt enable/disable macros
* @param __INTERRUPT__ This parameter can be a value of @ref SYSCFG_FPU_Interrupts
*/
#define __HAL_SYSCFG_FPU_INTERRUPT_ENABLE(__INTERRUPT__) \
do { \
assert_param(IS_SYSCFG_FPU_INTERRUPT((__INTERRUPT__))); \
SET_BIT(SYSCFG->CFGR1, (__INTERRUPT__)); \
} while(0)
#define __HAL_SYSCFG_FPU_INTERRUPT_DISABLE(__INTERRUPT__) \
do { \
assert_param(IS_SYSCFG_FPU_INTERRUPT((__INTERRUPT__))); \
CLEAR_BIT(SYSCFG->CFGR1, (__INTERRUPT__)); \
} while(0)
/** @brief SYSCFG Break ECC lock.
* Enable and lock the connection of Flash ECC error connection to TIM1/16/17 Break input.
* @note The selected configuration is locked and can be unlocked only by system reset.
*/
#define __HAL_SYSCFG_BREAK_ECC_LOCK() LL_SYSCFG_SetTIMBreakInputs(LL_SYSCFG_TIMBREAK_ECC)
/** @brief SYSCFG Break Cortex-M4 Lockup lock.
* Enable and lock the connection of Cortex-M4 LOCKUP (Hardfault) output to TIM1/16/17 Break input.
* @note The selected configuration is locked and can be unlocked only by system reset.
*/
#define __HAL_SYSCFG_BREAK_LOCKUP_LOCK() LL_SYSCFG_SetTIMBreakInputs(LL_SYSCFG_TIMBREAK_LOCKUP)
/** @brief SYSCFG Break PVD lock.
* Enable and lock the PVD connection to Timer1/16/17 Break input, as well as the PVDE and PLS[2:0]
* in the PWR_CR2 register.
* @note The selected configuration is locked and can be unlocked only by system reset.
*/
#define __HAL_SYSCFG_BREAK_PVD_LOCK() LL_SYSCFG_SetTIMBreakInputs(LL_SYSCFG_TIMBREAK_PVD)
/** @brief SYSCFG Break SRAM2 parity lock.
* Enable and lock the SRAM2 parity error signal connection to TIM1/16/17 Break input.
* @note The selected configuration is locked and can be unlocked by system reset.
*/
#define __HAL_SYSCFG_BREAK_SRAM2PARITY_LOCK() LL_SYSCFG_SetTIMBreakInputs(LL_SYSCFG_TIMBREAK_SRAM2_PARITY)
/** @brief Check SYSCFG flag is set or not.
* @param __FLAG__ specifies the flag to check.
* This parameter can be one of the following values:
* @arg @ref SYSCFG_FLAG_SRAM2_PE SRAM2 Parity Error Flag
* @arg @ref SYSCFG_FLAG_SRAM2_BUSY SRAM2 Erase Ongoing
* @retval The new state of __FLAG__ (TRUE or FALSE).
*/
#define __HAL_SYSCFG_GET_FLAG(__FLAG__) ((((((__FLAG__) == SYSCFG_SCSR_SRAM2BSY)? SYSCFG->SCSR : SYSCFG->CFGR2) & \
(__FLAG__))!= 0U) ? 1U : 0U)
/** @brief Set the SPF bit to clear the SRAM Parity Error Flag.
*/
#define __HAL_SYSCFG_CLEAR_FLAG() LL_SYSCFG_ClearFlag_SP()
/** @brief Fast mode Plus driving capability enable/disable macros
* @param __FASTMODEPLUS__ This parameter can be a value of @ref SYSCFG_FastModePlus_GPIO
*/
#define __HAL_SYSCFG_FASTMODEPLUS_ENABLE(__FASTMODEPLUS__) \
do { \
assert_param(IS_SYSCFG_FASTMODEPLUS((__FASTMODEPLUS__))); \
LL_SYSCFG_EnableFastModePlus(__FASTMODEPLUS__); \
} while(0)
#define __HAL_SYSCFG_FASTMODEPLUS_DISABLE(__FASTMODEPLUS__) \
do { \
assert_param(IS_SYSCFG_FASTMODEPLUS((__FASTMODEPLUS__))); \
LL_SYSCFG_DisableFastModePlus(__FASTMODEPLUS__); \
} while(0)
/**
* @}
*/
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/** @defgroup HAL_Private_Macros HAL Private Macros
* @{
*/
/** @defgroup SYSCFG_Private_Macros SYSCFG Private Macros
* @{
*/
#define IS_SYSCFG_FPU_INTERRUPT(__INTERRUPT__) ((((__INTERRUPT__) & SYSCFG_IT_FPU_IOC) == SYSCFG_IT_FPU_IOC) || \
(((__INTERRUPT__) & SYSCFG_IT_FPU_DZC) == SYSCFG_IT_FPU_DZC) || \
(((__INTERRUPT__) & SYSCFG_IT_FPU_UFC) == SYSCFG_IT_FPU_UFC) || \
(((__INTERRUPT__) & SYSCFG_IT_FPU_OFC) == SYSCFG_IT_FPU_OFC) || \
(((__INTERRUPT__) & SYSCFG_IT_FPU_IDC) == SYSCFG_IT_FPU_IDC) || \
(((__INTERRUPT__) & SYSCFG_IT_FPU_IXC) == SYSCFG_IT_FPU_IXC))
#if defined(STM32WB15xx) || defined(STM32WB10xx)
#define IS_SYSCFG_SRAM2WRP_PAGE(__PAGE__) (((__PAGE__) > 0U) && ((__PAGE__) <= 0xFFFFFFFFU))
#define IS_SYSCFG_SRAM2WRP2_PAGE(__PAGE__) (((__PAGE__) > 0U) && ((__PAGE__) <= 0x0000000FU))
#else
#define IS_SYSCFG_SRAM2WRP_PAGE(__PAGE__) (((__PAGE__) > 0U) && ((__PAGE__) <= 0xFFFFFFFFU))
#define IS_SYSCFG_SRAM2WRP2_PAGE(__PAGE__) IS_SYSCFG_SRAM2WRP_PAGE(__PAGE__)
#endif /* STM32WB15xx || STM32WB10xx */
#if defined(VREFBUF)
#define IS_SYSCFG_VREFBUF_VOLTAGE_SCALE(__SCALE__) (((__SCALE__) == SYSCFG_VREFBUF_VOLTAGE_SCALE0) || \
((__SCALE__) == SYSCFG_VREFBUF_VOLTAGE_SCALE1))
#define IS_SYSCFG_VREFBUF_HIGH_IMPEDANCE(__VALUE__) (((__VALUE__) == SYSCFG_VREFBUF_HIGH_IMPEDANCE_DISABLE) || \
((__VALUE__) == SYSCFG_VREFBUF_HIGH_IMPEDANCE_ENABLE))
#define IS_SYSCFG_VREFBUF_TRIMMING(__VALUE__) (((__VALUE__) > 0U) && ((__VALUE__) <= VREFBUF_CCR_TRIM))
#endif /* VREFBUF */
#define IS_SYSCFG_FASTMODEPLUS(__PIN__) ((((__PIN__) & SYSCFG_FASTMODEPLUS_PB6) == SYSCFG_FASTMODEPLUS_PB6) || \
(((__PIN__) & SYSCFG_FASTMODEPLUS_PB7) == SYSCFG_FASTMODEPLUS_PB7) || \
(((__PIN__) & SYSCFG_FASTMODEPLUS_PB8) == SYSCFG_FASTMODEPLUS_PB8) || \
(((__PIN__) & SYSCFG_FASTMODEPLUS_PB9) == SYSCFG_FASTMODEPLUS_PB9))
#if defined(LL_SYSCFG_SECURE_ACCESS_AES1)
#define IS_SYSCFG_SECURITY_ACCESS(__VALUE__) ((((__VALUE__) & HAL_SYSCFG_SECURE_ACCESS_AES1) == HAL_SYSCFG_SECURE_ACCESS_AES1) || \
(((__VALUE__) & HAL_SYSCFG_SECURE_ACCESS_AES2) == HAL_SYSCFG_SECURE_ACCESS_AES2) || \
(((__VALUE__) & HAL_SYSCFG_SECURE_ACCESS_PKA) == HAL_SYSCFG_SECURE_ACCESS_PKA) || \
(((__VALUE__) & HAL_SYSCFG_SECURE_ACCESS_RNG) == HAL_SYSCFG_SECURE_ACCESS_RNG))
#else
#define IS_SYSCFG_SECURITY_ACCESS(__VALUE__) ((((__VALUE__) & HAL_SYSCFG_SECURE_ACCESS_AES2) == HAL_SYSCFG_SECURE_ACCESS_AES2) || \
(((__VALUE__) & HAL_SYSCFG_SECURE_ACCESS_PKA) == HAL_SYSCFG_SECURE_ACCESS_PKA) || \
(((__VALUE__) & HAL_SYSCFG_SECURE_ACCESS_RNG) == HAL_SYSCFG_SECURE_ACCESS_RNG))
#endif /* LL_SYSCFG_SECURE_ACCESS_AES1 */
/**
* @}
*/
/**
* @}
*/
/** @defgroup HAL_Private_Macros HAL Private Macros
* @{
*/
#define IS_TICKFREQ(FREQ) (((FREQ) == HAL_TICK_FREQ_10HZ) || \
((FREQ) == HAL_TICK_FREQ_100HZ) || \
((FREQ) == HAL_TICK_FREQ_1KHZ))
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup HAL_Exported_Functions HAL Exported Functions
* @{
*/
/** @defgroup HAL_Exported_Functions_Group1 HAL Initialization and Configuration functions
* @{
*/
/* Initialization and Configuration functions ******************************/
HAL_StatusTypeDef HAL_Init(void);
HAL_StatusTypeDef HAL_DeInit(void);
void HAL_MspInit(void);
void HAL_MspDeInit(void);
HAL_StatusTypeDef HAL_InitTick(uint32_t TickPriority);
/**
* @}
*/
/** @defgroup HAL_Exported_Functions_Group2 HAL Control functions
* @{
*/
/* Peripheral Control functions ************************************************/
void HAL_IncTick(void);
void HAL_Delay(uint32_t Delay);
uint32_t HAL_GetTick(void);
uint32_t HAL_GetTickPrio(void);
HAL_StatusTypeDef HAL_SetTickFreq(HAL_TickFreqTypeDef Freq);
HAL_TickFreqTypeDef HAL_GetTickFreq(void);
void HAL_SuspendTick(void);
void HAL_ResumeTick(void);
uint32_t HAL_GetHalVersion(void);
uint32_t HAL_GetREVID(void);
uint32_t HAL_GetDEVID(void);
uint32_t HAL_GetUIDw0(void);
uint32_t HAL_GetUIDw1(void);
uint32_t HAL_GetUIDw2(void);
/**
* @}
*/
/** @defgroup HAL_Exported_Functions_Group3 HAL Debug functions
* @{
*/
/* DBGMCU Peripheral Control functions *****************************************/
void HAL_DBGMCU_EnableDBGSleepMode(void);
void HAL_DBGMCU_DisableDBGSleepMode(void);
void HAL_DBGMCU_EnableDBGStopMode(void);
void HAL_DBGMCU_DisableDBGStopMode(void);
void HAL_DBGMCU_EnableDBGStandbyMode(void);
void HAL_DBGMCU_DisableDBGStandbyMode(void);
/**
* @}
*/
/* Exported variables ---------------------------------------------------------*/
/** @addtogroup HAL_Exported_Variables
* @{
*/
extern __IO uint32_t uwTick;
extern uint32_t uwTickPrio;
extern HAL_TickFreqTypeDef uwTickFreq;
/**
* @}
*/
/** @addtogroup HAL_Exported_Functions_Group4 HAL System Configuration functions
* @{
*/
/* SYSCFG Control functions ****************************************************/
void HAL_SYSCFG_SRAM2Erase(void);
void HAL_SYSCFG_DisableSRAMFetch(void);
uint32_t HAL_SYSCFG_IsEnabledSRAMFetch(void);
#if defined(VREFBUF)
void HAL_SYSCFG_VREFBUF_VoltageScalingConfig(uint32_t VoltageScaling);
void HAL_SYSCFG_VREFBUF_HighImpedanceConfig(uint32_t Mode);
void HAL_SYSCFG_VREFBUF_TrimmingConfig(uint32_t TrimmingValue);
HAL_StatusTypeDef HAL_SYSCFG_EnableVREFBUF(void);
void HAL_SYSCFG_DisableVREFBUF(void);
#endif /* VREFBUF */
void HAL_SYSCFG_EnableIOBooster(void);
void HAL_SYSCFG_DisableIOBooster(void);
#if defined(SYSCFG_CFGR1_ANASWVDD)
void HAL_SYSCFG_EnableIOVdd(void);
void HAL_SYSCFG_DisableIOVdd(void);
#endif /* SYSCFG_CFGR1_ANASWVDD */
void HAL_SYSCFG_EnableSecurityAccess(uint32_t SecurityAccess);
void HAL_SYSCFG_DisableSecurityAccess(uint32_t SecurityAccess);
uint32_t HAL_SYSCFG_IsEnabledSecurityAccess(uint32_t SecurityAccess);
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* STM32WBxx_HAL_H */

View File

@@ -0,0 +1,416 @@
/**
******************************************************************************
* @file stm32wbxx_hal_cortex.h
* @author MCD Application Team
* @brief Header file of CORTEX HAL module.
******************************************************************************
* @attention
*
* Copyright (c) 2019 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef STM32WBxx_HAL_CORTEX_H
#define STM32WBxx_HAL_CORTEX_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32wbxx_hal_def.h"
/** @addtogroup STM32WBxx_HAL_Driver
* @{
*/
/** @defgroup CORTEX CORTEX
* @brief CORTEX HAL module driver
* @{
*/
/* Exported types ------------------------------------------------------------*/
/** @defgroup CORTEX_Exported_Types CORTEX Exported Types
* @{
*/
#if (__MPU_PRESENT == 1)
/** @defgroup CORTEX_MPU_Region_Initialization_Structure_definition MPU Region Initialization Structure Definition
* @brief MPU Region initialization structure
* @{
*/
typedef struct
{
uint8_t Enable; /*!< Specifies the status of the region.
This parameter can be a value of @ref CORTEX_MPU_Region_Enable */
uint8_t Number; /*!< Specifies the number of the region to protect.
This parameter can be a value of @ref CORTEX_MPU_Region_Number */
uint32_t BaseAddress; /*!< Specifies the base address of the region to protect.
*/
uint8_t Size; /*!< Specifies the size of the region to protect.
This parameter can be a value of @ref CORTEX_MPU_Region_Size */
uint8_t SubRegionDisable; /*!< Specifies the number of the subregion protection to disable.
This parameter must be a number between Min_Data = 0x00 and Max_Data = 0xFF */
uint8_t TypeExtField; /*!< Specifies the TEX field level.
This parameter can be a value of @ref CORTEX_MPU_TEX_Levels */
uint8_t AccessPermission; /*!< Specifies the region access permission type.
This parameter can be a value of @ref CORTEX_MPU_Region_Permission_Attributes */
uint8_t DisableExec; /*!< Specifies the instruction access status.
This parameter can be a value of @ref CORTEX_MPU_Instruction_Access */
uint8_t IsShareable; /*!< Specifies the shareability status of the protected region.
This parameter can be a value of @ref CORTEX_MPU_Access_Shareable */
uint8_t IsCacheable; /*!< Specifies the cacheable status of the region protected.
This parameter can be a value of @ref CORTEX_MPU_Access_Cacheable */
uint8_t IsBufferable; /*!< Specifies the bufferable status of the protected region.
This parameter can be a value of @ref CORTEX_MPU_Access_Bufferable */
} MPU_Region_InitTypeDef;
/**
* @}
*/
#endif /* __MPU_PRESENT */
/**
* @}
*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup CORTEX_Exported_Constants CORTEX Exported Constants
* @{
*/
/** @defgroup CORTEX_Preemption_Priority_Group CORTEX Preemption Priority Group
* @{
*/
#define NVIC_PRIORITYGROUP_0 (0x00000007U) /*!< 0 bit for pre-emption priority,
4 bits for subpriority */
#define NVIC_PRIORITYGROUP_1 (0x00000006U) /*!< 1 bit for pre-emption priority,
3 bits for subpriority */
#define NVIC_PRIORITYGROUP_2 (0x00000005U) /*!< 2 bits for pre-emption priority,
2 bits for subpriority */
#define NVIC_PRIORITYGROUP_3 (0x00000004U) /*!< 3 bits for pre-emption priority,
1 bit for subpriority */
#define NVIC_PRIORITYGROUP_4 (0x00000003U) /*!< 4 bits for pre-emption priority,
0 bit for subpriority */
/**
* @}
*/
/** @defgroup CORTEX_SysTick_clock_source CORTEX SysTick clock source
* @{
*/
#define SYSTICK_CLKSOURCE_HCLK_DIV8 0x00000000U
#define SYSTICK_CLKSOURCE_HCLK 0x00000004U
/**
* @}
*/
#if (__MPU_PRESENT == 1)
/** @defgroup CORTEX_MPU_HFNMI_PRIVDEF_Control CORTEX MPU HFNMI and PRIVILEGED Access control
* @{
*/
#define MPU_HFNMI_PRIVDEF_NONE 0x00000000U
#define MPU_HARDFAULT_NMI (MPU_CTRL_HFNMIENA_Msk)
#define MPU_PRIVILEGED_DEFAULT (MPU_CTRL_PRIVDEFENA_Msk)
#define MPU_HFNMI_PRIVDEF (MPU_CTRL_HFNMIENA_Msk | MPU_CTRL_PRIVDEFENA_Msk)
/**
* @}
*/
/** @defgroup CORTEX_MPU_Region_Enable CORTEX MPU Region Enable
* @{
*/
#define MPU_REGION_ENABLE ((uint8_t)0x01)
#define MPU_REGION_DISABLE ((uint8_t)0x00)
/**
* @}
*/
/** @defgroup CORTEX_MPU_Instruction_Access CORTEX MPU Instruction Access
* @{
*/
#define MPU_INSTRUCTION_ACCESS_ENABLE ((uint8_t)0x00)
#define MPU_INSTRUCTION_ACCESS_DISABLE ((uint8_t)0x01)
/**
* @}
*/
/** @defgroup CORTEX_MPU_Access_Shareable CORTEX MPU Instruction Access Shareable
* @{
*/
#define MPU_ACCESS_SHAREABLE ((uint8_t)0x01)
#define MPU_ACCESS_NOT_SHAREABLE ((uint8_t)0x00)
/**
* @}
*/
/** @defgroup CORTEX_MPU_Access_Cacheable CORTEX MPU Instruction Access Cacheable
* @{
*/
#define MPU_ACCESS_CACHEABLE ((uint8_t)0x01)
#define MPU_ACCESS_NOT_CACHEABLE ((uint8_t)0x00)
/**
* @}
*/
/** @defgroup CORTEX_MPU_Access_Bufferable CORTEX MPU Instruction Access Bufferable
* @{
*/
#define MPU_ACCESS_BUFFERABLE ((uint8_t)0x01)
#define MPU_ACCESS_NOT_BUFFERABLE ((uint8_t)0x00)
/**
* @}
*/
/** @defgroup CORTEX_MPU_TEX_Levels CORTEX MPU TEX Levels
* @{
*/
#define MPU_TEX_LEVEL0 ((uint8_t)0x00)
#define MPU_TEX_LEVEL1 ((uint8_t)0x01)
#define MPU_TEX_LEVEL2 ((uint8_t)0x02)
/**
* @}
*/
/** @defgroup CORTEX_MPU_Region_Size CORTEX MPU Region Size
* @{
*/
#define MPU_REGION_SIZE_32B ((uint8_t)0x04)
#define MPU_REGION_SIZE_64B ((uint8_t)0x05)
#define MPU_REGION_SIZE_128B ((uint8_t)0x06)
#define MPU_REGION_SIZE_256B ((uint8_t)0x07)
#define MPU_REGION_SIZE_512B ((uint8_t)0x08)
#define MPU_REGION_SIZE_1KB ((uint8_t)0x09)
#define MPU_REGION_SIZE_2KB ((uint8_t)0x0A)
#define MPU_REGION_SIZE_4KB ((uint8_t)0x0B)
#define MPU_REGION_SIZE_8KB ((uint8_t)0x0C)
#define MPU_REGION_SIZE_16KB ((uint8_t)0x0D)
#define MPU_REGION_SIZE_32KB ((uint8_t)0x0E)
#define MPU_REGION_SIZE_64KB ((uint8_t)0x0F)
#define MPU_REGION_SIZE_128KB ((uint8_t)0x10)
#define MPU_REGION_SIZE_256KB ((uint8_t)0x11)
#define MPU_REGION_SIZE_512KB ((uint8_t)0x12)
#define MPU_REGION_SIZE_1MB ((uint8_t)0x13)
#define MPU_REGION_SIZE_2MB ((uint8_t)0x14)
#define MPU_REGION_SIZE_4MB ((uint8_t)0x15)
#define MPU_REGION_SIZE_8MB ((uint8_t)0x16)
#define MPU_REGION_SIZE_16MB ((uint8_t)0x17)
#define MPU_REGION_SIZE_32MB ((uint8_t)0x18)
#define MPU_REGION_SIZE_64MB ((uint8_t)0x19)
#define MPU_REGION_SIZE_128MB ((uint8_t)0x1A)
#define MPU_REGION_SIZE_256MB ((uint8_t)0x1B)
#define MPU_REGION_SIZE_512MB ((uint8_t)0x1C)
#define MPU_REGION_SIZE_1GB ((uint8_t)0x1D)
#define MPU_REGION_SIZE_2GB ((uint8_t)0x1E)
#define MPU_REGION_SIZE_4GB ((uint8_t)0x1F)
/**
* @}
*/
/** @defgroup CORTEX_MPU_Region_Permission_Attributes CORTEX MPU Region Permission Attributes
* @{
*/
#define MPU_REGION_NO_ACCESS ((uint8_t)0x00)
#define MPU_REGION_PRIV_RW ((uint8_t)0x01)
#define MPU_REGION_PRIV_RW_URO ((uint8_t)0x02)
#define MPU_REGION_FULL_ACCESS ((uint8_t)0x03)
#define MPU_REGION_PRIV_RO ((uint8_t)0x05)
#define MPU_REGION_PRIV_RO_URO ((uint8_t)0x06)
/**
* @}
*/
/** @defgroup CORTEX_MPU_Region_Number CORTEX MPU Region Number
* @{
*/
#define MPU_REGION_NUMBER0 ((uint8_t)0x00)
#define MPU_REGION_NUMBER1 ((uint8_t)0x01)
#define MPU_REGION_NUMBER2 ((uint8_t)0x02)
#define MPU_REGION_NUMBER3 ((uint8_t)0x03)
#define MPU_REGION_NUMBER4 ((uint8_t)0x04)
#define MPU_REGION_NUMBER5 ((uint8_t)0x05)
#define MPU_REGION_NUMBER6 ((uint8_t)0x06)
#define MPU_REGION_NUMBER7 ((uint8_t)0x07)
/**
* @}
*/
#endif /* __MPU_PRESENT */
/**
* @}
*/
/* Exported macros -----------------------------------------------------------*/
/** @defgroup CORTEX_Exported_Macros CORTEX Exported Macros
* @{
*/
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup CORTEX_Exported_Functions CORTEX Exported Functions
* @{
*/
/** @defgroup CORTEX_Exported_Functions_Group1 Initialization and Configuration functions
* @brief Initialization and Configuration functions
* @{
*/
/* Initialization and Configuration functions *****************************/
void HAL_NVIC_SetPriorityGrouping(uint32_t PriorityGroup);
void HAL_NVIC_SetPriority(IRQn_Type IRQn, uint32_t PreemptPriority, uint32_t SubPriority);
void HAL_NVIC_EnableIRQ(IRQn_Type IRQn);
void HAL_NVIC_DisableIRQ(IRQn_Type IRQn);
void HAL_NVIC_SystemReset(void);
uint32_t HAL_SYSTICK_Config(uint32_t TicksNumb);
/**
* @}
*/
/** @defgroup CORTEX_Exported_Functions_Group2 Peripheral Control functions
* @brief Cortex control functions
* @{
*/
/* Peripheral Control functions *************************************************/
void HAL_NVIC_GetPriority(IRQn_Type IRQn, uint32_t PriorityGroup, uint32_t *pPreemptPriority, uint32_t *pSubPriority);
uint32_t HAL_NVIC_GetPriorityGrouping(void);
uint32_t HAL_NVIC_GetPendingIRQ(IRQn_Type IRQn);
void HAL_NVIC_SetPendingIRQ(IRQn_Type IRQn);
void HAL_NVIC_ClearPendingIRQ(IRQn_Type IRQn);
void HAL_SYSTICK_CLKSourceConfig(uint32_t CLKSource);
void HAL_SYSTICK_IRQHandler(void);
void HAL_SYSTICK_Callback(void);
#if (__MPU_PRESENT == 1U)
void HAL_MPU_Enable(uint32_t MPU_Control);
void HAL_MPU_Disable(void);
void HAL_MPU_EnableRegion(uint32_t RegionNumber);
void HAL_MPU_DisableRegion(uint32_t RegionNumber);
void HAL_MPU_ConfigRegion(MPU_Region_InitTypeDef *MPU_Init);
#endif /* __MPU_PRESENT */
/**
* @}
*/
/**
* @}
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/* Private macros ------------------------------------------------------------*/
/** @defgroup CORTEX_Private_Macros CORTEX Private Macros
* @{
*/
#define IS_NVIC_PRIORITY_GROUP(GROUP) (((GROUP) == NVIC_PRIORITYGROUP_0) || \
((GROUP) == NVIC_PRIORITYGROUP_1) || \
((GROUP) == NVIC_PRIORITYGROUP_2) || \
((GROUP) == NVIC_PRIORITYGROUP_3) || \
((GROUP) == NVIC_PRIORITYGROUP_4))
#define IS_NVIC_PREEMPTION_PRIORITY(PRIORITY) ((PRIORITY) < 0x10U)
#define IS_NVIC_SUB_PRIORITY(PRIORITY) ((PRIORITY) < 0x10U)
#define IS_NVIC_DEVICE_IRQ(IRQ) ((IRQ) > SysTick_IRQn)
#define IS_SYSTICK_CLK_SOURCE(SOURCE) (((SOURCE) == SYSTICK_CLKSOURCE_HCLK) || \
((SOURCE) == SYSTICK_CLKSOURCE_HCLK_DIV8))
#if (__MPU_PRESENT == 1)
#define IS_MPU_REGION_ENABLE(STATE) (((STATE) == MPU_REGION_ENABLE) || \
((STATE) == MPU_REGION_DISABLE))
#define IS_MPU_INSTRUCTION_ACCESS(STATE) (((STATE) == MPU_INSTRUCTION_ACCESS_ENABLE) || \
((STATE) == MPU_INSTRUCTION_ACCESS_DISABLE))
#define IS_MPU_ACCESS_SHAREABLE(STATE) (((STATE) == MPU_ACCESS_SHAREABLE) || \
((STATE) == MPU_ACCESS_NOT_SHAREABLE))
#define IS_MPU_ACCESS_CACHEABLE(STATE) (((STATE) == MPU_ACCESS_CACHEABLE) || \
((STATE) == MPU_ACCESS_NOT_CACHEABLE))
#define IS_MPU_ACCESS_BUFFERABLE(STATE) (((STATE) == MPU_ACCESS_BUFFERABLE) || \
((STATE) == MPU_ACCESS_NOT_BUFFERABLE))
#define IS_MPU_TEX_LEVEL(TYPE) (((TYPE) == MPU_TEX_LEVEL0) || \
((TYPE) == MPU_TEX_LEVEL1) || \
((TYPE) == MPU_TEX_LEVEL2))
#define IS_MPU_REGION_PERMISSION_ATTRIBUTE(TYPE) (((TYPE) == MPU_REGION_NO_ACCESS) || \
((TYPE) == MPU_REGION_PRIV_RW) || \
((TYPE) == MPU_REGION_PRIV_RW_URO) || \
((TYPE) == MPU_REGION_FULL_ACCESS) || \
((TYPE) == MPU_REGION_PRIV_RO) || \
((TYPE) == MPU_REGION_PRIV_RO_URO))
#define IS_MPU_REGION_NUMBER(NUMBER) (((NUMBER) == MPU_REGION_NUMBER0) || \
((NUMBER) == MPU_REGION_NUMBER1) || \
((NUMBER) == MPU_REGION_NUMBER2) || \
((NUMBER) == MPU_REGION_NUMBER3) || \
((NUMBER) == MPU_REGION_NUMBER4) || \
((NUMBER) == MPU_REGION_NUMBER5) || \
((NUMBER) == MPU_REGION_NUMBER6) || \
((NUMBER) == MPU_REGION_NUMBER7))
#define IS_MPU_REGION_SIZE(SIZE) (((SIZE) == MPU_REGION_SIZE_32B) || \
((SIZE) == MPU_REGION_SIZE_64B) || \
((SIZE) == MPU_REGION_SIZE_128B) || \
((SIZE) == MPU_REGION_SIZE_256B) || \
((SIZE) == MPU_REGION_SIZE_512B) || \
((SIZE) == MPU_REGION_SIZE_1KB) || \
((SIZE) == MPU_REGION_SIZE_2KB) || \
((SIZE) == MPU_REGION_SIZE_4KB) || \
((SIZE) == MPU_REGION_SIZE_8KB) || \
((SIZE) == MPU_REGION_SIZE_16KB) || \
((SIZE) == MPU_REGION_SIZE_32KB) || \
((SIZE) == MPU_REGION_SIZE_64KB) || \
((SIZE) == MPU_REGION_SIZE_128KB) || \
((SIZE) == MPU_REGION_SIZE_256KB) || \
((SIZE) == MPU_REGION_SIZE_512KB) || \
((SIZE) == MPU_REGION_SIZE_1MB) || \
((SIZE) == MPU_REGION_SIZE_2MB) || \
((SIZE) == MPU_REGION_SIZE_4MB) || \
((SIZE) == MPU_REGION_SIZE_8MB) || \
((SIZE) == MPU_REGION_SIZE_16MB) || \
((SIZE) == MPU_REGION_SIZE_32MB) || \
((SIZE) == MPU_REGION_SIZE_64MB) || \
((SIZE) == MPU_REGION_SIZE_128MB) || \
((SIZE) == MPU_REGION_SIZE_256MB) || \
((SIZE) == MPU_REGION_SIZE_512MB) || \
((SIZE) == MPU_REGION_SIZE_1GB) || \
((SIZE) == MPU_REGION_SIZE_2GB) || \
((SIZE) == MPU_REGION_SIZE_4GB))
#define IS_MPU_SUB_REGION_DISABLE(SUBREGION) ((SUBREGION) < (uint16_t)0x00FFU)
#endif /* __MPU_PRESENT */
/**
* @}
*/
/* Private functions ---------------------------------------------------------*/
/**
* @}
*/
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* STM32WBxx_HAL_CORTEX_H */

View File

@@ -0,0 +1,210 @@
/**
******************************************************************************
* @file stm32wbxx_hal_def.h
* @author MCD Application Team
* @brief This file contains HAL common defines, enumeration, macros and
* structures definitions.
******************************************************************************
* @attention
*
* Copyright (c) 2019 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32WBxx_HAL_DEF
#define __STM32WBxx_HAL_DEF
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32wbxx.h"
#include "Legacy/stm32_hal_legacy.h" /* Aliases file for old names compatibility */
#include <stddef.h>
/* Exported types ------------------------------------------------------------*/
/**
* @brief HAL Status structures definition
*/
typedef enum
{
HAL_OK = 0x00,
HAL_ERROR = 0x01,
HAL_BUSY = 0x02,
HAL_TIMEOUT = 0x03
} HAL_StatusTypeDef;
/**
* @brief HAL Lock structures definition
*/
typedef enum
{
HAL_UNLOCKED = 0x00,
HAL_LOCKED = 0x01
} HAL_LockTypeDef;
/* Exported macros -----------------------------------------------------------*/
#ifndef UNUSED
#define UNUSED(X) (void)(X) /* To avoid gcc/g++ warnings */
#endif /* UNUSED */
#define HAL_MAX_DELAY 0xFFFFFFFFU
#define HAL_IS_BIT_SET(REG, BIT) (((REG) & (BIT)) == (BIT))
#define HAL_IS_BIT_CLR(REG, BIT) (((REG) & (BIT)) == 0U)
#define __HAL_LINKDMA(__HANDLE__, __PPP_DMA_FIELD__, __DMA_HANDLE__) \
do{ \
(__HANDLE__)->__PPP_DMA_FIELD__ = &(__DMA_HANDLE__); \
(__DMA_HANDLE__).Parent = (__HANDLE__); \
} while(0)
/** @brief Reset the Handle's State field.
* @param __HANDLE__ specifies the Peripheral Handle.
* @note This macro can be used for the following purpose:
* - When the Handle is declared as local variable; before passing it as parameter
* to HAL_PPP_Init() for the first time, it is mandatory to use this macro
* to set to 0 the Handle's "State" field.
* Otherwise, "State" field may have any random value and the first time the function
* HAL_PPP_Init() is called, the low level hardware initialization will be missed
* (i.e. HAL_PPP_MspInit() will not be executed).
* - When there is a need to reconfigure the low level hardware: instead of calling
* HAL_PPP_DeInit() then HAL_PPP_Init(), user can make a call to this macro then HAL_PPP_Init().
* In this later function, when the Handle's "State" field is set to 0, it will execute the function
* HAL_PPP_MspInit() which will reconfigure the low level hardware.
* @retval None
*/
#define __HAL_RESET_HANDLE_STATE(__HANDLE__) ((__HANDLE__)->State = 0)
#if (USE_RTOS == 1)
/* Reserved for future use */
#error " USE_RTOS should be 0 in the current HAL release "
#else
#define __HAL_LOCK(__HANDLE__) \
do { \
if((__HANDLE__)->Lock == HAL_LOCKED) \
{ \
return HAL_BUSY; \
} \
else \
{ \
(__HANDLE__)->Lock = HAL_LOCKED; \
} \
} while (0)
#define __HAL_UNLOCK(__HANDLE__) \
do { \
(__HANDLE__)->Lock = HAL_UNLOCKED; \
} while (0)
#endif /* USE_RTOS */
#if defined (__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050) /* ARM Compiler V6 */
#ifndef __weak
#define __weak __attribute__((weak))
#endif /* __weak */
#ifndef __packed
#define __packed __attribute__((packed))
#endif /* __packed */
#elif defined ( __GNUC__ ) && !defined (__CC_ARM) /* GNU Compiler */
#ifndef __weak
#define __weak __attribute__((weak))
#endif /* __weak */
#ifndef __packed
#define __packed __attribute__((__packed__))
#endif /* __packed */
#endif /* __GNUC__ */
/* Macro to get variable aligned on 4-bytes, for __ICCARM__ the directive "#pragma data_alignment=4" must be used instead */
#if defined (__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050) /* ARM Compiler V6 */
#ifndef __ALIGN_BEGIN
#define __ALIGN_BEGIN
#endif /* __ALIGN_BEGIN */
#ifndef __ALIGN_END
#define __ALIGN_END __attribute__ ((aligned (4)))
#endif /* __ALIGN_END */
#elif defined ( __GNUC__ ) && !defined (__CC_ARM) /* GNU Compiler */
#ifndef __ALIGN_END
#define __ALIGN_END __attribute__ ((aligned (4)))
#endif /* __ALIGN_END */
#ifndef __ALIGN_BEGIN
#define __ALIGN_BEGIN
#endif /* __ALIGN_BEGIN */
#else
#ifndef __ALIGN_END
#define __ALIGN_END
#endif /* __ALIGN_END */
#ifndef __ALIGN_BEGIN
#if defined (__CC_ARM) /* ARM Compiler V5 */
#define __ALIGN_BEGIN __align(4)
#elif defined (__ICCARM__) /* IAR Compiler */
#define __ALIGN_BEGIN
#endif /* __CC_ARM */
#endif /* __ALIGN_BEGIN */
#endif /* __GNUC__ */
/**
* @brief __RAM_FUNC definition
*/
#if defined ( __CC_ARM ) || (defined (__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050))
/* ARM Compiler V4/V5 and V6
--------------------------
RAM functions are defined using the toolchain options.
Functions that are executed in RAM should reside in a separate source module.
Using the 'Options for File' dialog you can simply change the 'Code / Const'
area of a module to a memory space in physical RAM.
Available memory areas are declared in the 'Target' tab of the 'Options for Target'
dialog.
*/
#define __RAM_FUNC
#elif defined ( __ICCARM__ )
/* ICCARM Compiler
---------------
RAM functions are defined using a specific toolchain keyword "__ramfunc".
*/
#define __RAM_FUNC __ramfunc
#elif defined ( __GNUC__ )
/* GNU Compiler
------------
RAM functions are defined using a specific toolchain attribute
"__attribute__((section(".RamFunc")))".
*/
#define __RAM_FUNC __attribute__((section(".RamFunc")))
#endif /* __CC_ARM || ... */
/**
* @brief __NOINLINE definition
*/
#if defined ( __CC_ARM ) || (defined (__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)) || defined ( __GNUC__ )
/* ARM V4/V5 and V6 & GNU Compiler
-------------------------------
*/
#define __NOINLINE __attribute__ ( (noinline) )
#elif defined ( __ICCARM__ )
/* ICCARM Compiler
---------------
*/
#define __NOINLINE _Pragma("optimize = no_inline")
#endif /* __CC_ARM || ... */
#ifdef __cplusplus
}
#endif
#endif /* ___STM32WBxx_HAL_DEF */

View File

@@ -0,0 +1,714 @@
/**
******************************************************************************
* @file stm32wbxx_hal_dma.h
* @author MCD Application Team
* @brief Header file of DMA HAL module.
******************************************************************************
* @attention
*
* Copyright (c) 2019 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef STM32WBxx_HAL_DMA_H
#define STM32WBxx_HAL_DMA_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32wbxx_hal_def.h"
#include "stm32wbxx_ll_dma.h"
/** @addtogroup STM32WBxx_HAL_Driver
* @{
*/
/** @addtogroup DMA
* @{
*/
/* Exported types ------------------------------------------------------------*/
/** @defgroup DMA_Exported_Types DMA Exported Types
* @{
*/
/**
* @brief DMA Configuration Structure definition
*/
typedef struct
{
uint32_t Request; /*!< Specifies the request selected for the specified channel.
This parameter can be a value of @ref DMA_request */
uint32_t Direction; /*!< Specifies if the data will be transferred from memory to peripheral,
from memory to memory or from peripheral to memory.
This parameter can be a value of @ref DMA_Data_transfer_direction */
uint32_t PeriphInc; /*!< Specifies whether the Peripheral address register should be incremented or not.
This parameter can be a value of @ref DMA_Peripheral_incremented_mode */
uint32_t MemInc; /*!< Specifies whether the memory address register should be incremented or not.
This parameter can be a value of @ref DMA_Memory_incremented_mode */
uint32_t PeriphDataAlignment; /*!< Specifies the Peripheral data width.
This parameter can be a value of @ref DMA_Peripheral_data_size */
uint32_t MemDataAlignment; /*!< Specifies the Memory data width.
This parameter can be a value of @ref DMA_Memory_data_size */
uint32_t Mode; /*!< Specifies the operation mode of the DMAy Channelx.
This parameter can be a value of @ref DMA_mode
@note The circular buffer mode cannot be used if the memory-to-memory
data transfer is configured on the selected Channel */
uint32_t Priority; /*!< Specifies the software priority for the DMAy Channelx.
This parameter can be a value of @ref DMA_Priority_level */
} DMA_InitTypeDef;
/**
* @brief HAL DMA State structures definition
*/
typedef enum
{
HAL_DMA_STATE_RESET = 0x00U, /*!< DMA not yet initialized or disabled */
HAL_DMA_STATE_READY = 0x01U, /*!< DMA initialized and ready for use */
HAL_DMA_STATE_BUSY = 0x02U, /*!< DMA process is ongoing */
HAL_DMA_STATE_TIMEOUT = 0x03U, /*!< DMA timeout state */
} HAL_DMA_StateTypeDef;
/**
* @brief HAL DMA Error Code structure definition
*/
typedef enum
{
HAL_DMA_FULL_TRANSFER = 0x00U, /*!< Full transfer */
HAL_DMA_HALF_TRANSFER = 0x01U /*!< Half Transfer */
} HAL_DMA_LevelCompleteTypeDef;
/**
* @brief HAL DMA Callback ID structure definition
*/
typedef enum
{
HAL_DMA_XFER_CPLT_CB_ID = 0x00U, /*!< Full transfer */
HAL_DMA_XFER_HALFCPLT_CB_ID = 0x01U, /*!< Half transfer */
HAL_DMA_XFER_ERROR_CB_ID = 0x02U, /*!< Error */
HAL_DMA_XFER_ABORT_CB_ID = 0x03U, /*!< Abort */
HAL_DMA_XFER_ALL_CB_ID = 0x04U /*!< All */
} HAL_DMA_CallbackIDTypeDef;
/**
* @brief DMA handle Structure definition
*/
typedef struct __DMA_HandleTypeDef
{
DMA_Channel_TypeDef *Instance; /*!< Register base address */
DMA_InitTypeDef Init; /*!< DMA communication parameters */
HAL_LockTypeDef Lock; /*!< DMA locking object */
__IO HAL_DMA_StateTypeDef State; /*!< DMA transfer state */
void *Parent; /*!< Parent object state */
void (* XferCpltCallback)(struct __DMA_HandleTypeDef *hdma); /*!< DMA transfer complete callback */
void (* XferHalfCpltCallback)(struct __DMA_HandleTypeDef *hdma); /*!< DMA Half transfer complete callback */
void (* XferErrorCallback)(struct __DMA_HandleTypeDef *hdma); /*!< DMA transfer error callback */
void (* XferAbortCallback)(struct __DMA_HandleTypeDef *hdma); /*!< DMA transfer abort callback */
__IO uint32_t ErrorCode; /*!< DMA Error code */
DMA_TypeDef *DmaBaseAddress; /*!< DMA Channel Base Address */
uint32_t ChannelIndex; /*!< DMA Channel Index */
DMAMUX_Channel_TypeDef *DMAmuxChannel; /*!< Register base address */
DMAMUX_ChannelStatus_TypeDef *DMAmuxChannelStatus; /*!< DMAMUX Channels Status Base Address */
uint32_t DMAmuxChannelStatusMask; /*!< DMAMUX Channel Status Mask */
DMAMUX_RequestGen_TypeDef *DMAmuxRequestGen; /*!< DMAMUX request generator Base Address */
DMAMUX_RequestGenStatus_TypeDef *DMAmuxRequestGenStatus; /*!< DMAMUX request generator Address */
uint32_t DMAmuxRequestGenStatusMask; /*!< DMAMUX request generator Status mask */
} DMA_HandleTypeDef;
/**
* @}
*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup DMA_Exported_Constants DMA Exported Constants
* @{
*/
/** @defgroup DMA_Error_Code DMA Error Code
* @{
*/
#define HAL_DMA_ERROR_NONE 0x00000000U /*!< No error */
#define HAL_DMA_ERROR_TE 0x00000001U /*!< Transfer error */
#define HAL_DMA_ERROR_NO_XFER 0x00000004U /*!< Abort requested with no Xfer ongoing */
#define HAL_DMA_ERROR_TIMEOUT 0x00000020U /*!< Timeout error */
#define HAL_DMA_ERROR_NOT_SUPPORTED 0x00000100U /*!< Not supported mode */
#define HAL_DMA_ERROR_SYNC 0x00000200U /*!< DMAMUX sync overrun error */
#define HAL_DMA_ERROR_REQGEN 0x00000400U /*!< DMAMUX request generator overrun error */
/**
* @}
*/
/** @defgroup DMA_request DMA request
* @{
*/
#define DMA_REQUEST_MEM2MEM LL_DMAMUX_REQ_MEM2MEM /*!< memory to memory transfer */
#define DMA_REQUEST_GENERATOR0 LL_DMAMUX_REQ_GENERATOR0 /*!< DMAMUX request generator 0 */
#define DMA_REQUEST_GENERATOR1 LL_DMAMUX_REQ_GENERATOR1 /*!< DMAMUX request generator 1 */
#define DMA_REQUEST_GENERATOR2 LL_DMAMUX_REQ_GENERATOR2 /*!< DMAMUX request generator 2 */
#define DMA_REQUEST_GENERATOR3 LL_DMAMUX_REQ_GENERATOR3 /*!< DMAMUX request generator 3 */
#define DMA_REQUEST_ADC1 LL_DMAMUX_REQ_ADC1 /*!< DMAMUX ADC1 request */
#define DMA_REQUEST_SPI1_RX LL_DMAMUX_REQ_SPI1_RX /*!< DMAMUX SPI1 RX request */
#define DMA_REQUEST_SPI1_TX LL_DMAMUX_REQ_SPI1_TX /*!< DMAMUX SPI1 TX request */
#if defined(SPI2)
#define DMA_REQUEST_SPI2_RX LL_DMAMUX_REQ_SPI2_RX /*!< DMAMUX SPI2 RX request */
#define DMA_REQUEST_SPI2_TX LL_DMAMUX_REQ_SPI2_TX /*!< DMAMUX SPI2 TX request */
#endif /* SPI2 */
#define DMA_REQUEST_I2C1_RX LL_DMAMUX_REQ_I2C1_RX /*!< DMAMUX I2C1 RX request */
#define DMA_REQUEST_I2C1_TX LL_DMAMUX_REQ_I2C1_TX /*!< DMAMUX I2C1 TX request */
#if defined(I2C3)
#define DMA_REQUEST_I2C3_RX LL_DMAMUX_REQ_I2C3_RX /*!< DMAMUX I2C3 RX request */
#define DMA_REQUEST_I2C3_TX LL_DMAMUX_REQ_I2C3_TX /*!< DMAMUX I2C3 TX request */
#endif /* I2C3 */
#define DMA_REQUEST_USART1_RX LL_DMAMUX_REQ_USART1_RX /*!< DMAMUX USART1 RX request */
#define DMA_REQUEST_USART1_TX LL_DMAMUX_REQ_USART1_TX /*!< DMAMUX USART1 TX request */
#if defined(LPUART1)
#define DMA_REQUEST_LPUART1_RX LL_DMAMUX_REQ_LPUART1_RX /*!< DMAMUX LP_UART1_RX request */
#define DMA_REQUEST_LPUART1_TX LL_DMAMUX_REQ_LPUART1_TX /*!< DMAMUX LP_UART1_RX request */
#endif /* LPUART1 */
#if defined (SAI1)
#define DMA_REQUEST_SAI1_A LL_DMAMUX_REQ_SAI1_A /*!< DMAMUX SAI1 A request */
#define DMA_REQUEST_SAI1_B LL_DMAMUX_REQ_SAI1_B /*!< DMAMUX SAI1 B request */
#endif /* SAI1 */
#if defined(QUADSPI)
#define DMA_REQUEST_QUADSPI LL_DMAMUX_REQ_QUADSPI /*!< DMAMUX QUADSPI request */
#endif /* QUADSPI */
#define DMA_REQUEST_TIM1_CH1 LL_DMAMUX_REQ_TIM1_CH1 /*!< DMAMUX TIM1 CH1 request */
#define DMA_REQUEST_TIM1_CH2 LL_DMAMUX_REQ_TIM1_CH2 /*!< DMAMUX TIM1 CH2 request */
#define DMA_REQUEST_TIM1_CH3 LL_DMAMUX_REQ_TIM1_CH3 /*!< DMAMUX TIM1 CH3 request */
#define DMA_REQUEST_TIM1_CH4 LL_DMAMUX_REQ_TIM1_CH4 /*!< DMAMUX TIM1 CH4 request */
#define DMA_REQUEST_TIM1_UP LL_DMAMUX_REQ_TIM1_UP /*!< DMAMUX TIM1 UP request */
#define DMA_REQUEST_TIM1_TRIG LL_DMAMUX_REQ_TIM1_TRIG /*!< DMAMUX TIM1 TRIG request */
#define DMA_REQUEST_TIM1_COM LL_DMAMUX_REQ_TIM1_COM /*!< DMAMUX TIM1 COM request */
#define DMA_REQUEST_TIM2_CH1 LL_DMAMUX_REQ_TIM2_CH1 /*!< DMAMUX TIM2 CH1 request */
#define DMA_REQUEST_TIM2_CH2 LL_DMAMUX_REQ_TIM2_CH2 /*!< DMAMUX TIM2 CH2 request */
#define DMA_REQUEST_TIM2_CH3 LL_DMAMUX_REQ_TIM2_CH3 /*!< DMAMUX TIM2 CH3 request */
#define DMA_REQUEST_TIM2_CH4 LL_DMAMUX_REQ_TIM2_CH4 /*!< DMAMUX TIM2 CH4 request */
#define DMA_REQUEST_TIM2_UP LL_DMAMUX_REQ_TIM2_UP /*!< DMAMUX TIM2 UP request */
#define DMA_REQUEST_TIM16_CH1 LL_DMAMUX_REQ_TIM16_CH1 /*!< DMAMUX TIM16 CH1 request */
#define DMA_REQUEST_TIM16_UP LL_DMAMUX_REQ_TIM16_UP /*!< DMAMUX TIM16 UP request */
#define DMA_REQUEST_TIM17_CH1 LL_DMAMUX_REQ_TIM17_CH1 /*!< DMAMUX TIM17 CH1 request */
#define DMA_REQUEST_TIM17_UP LL_DMAMUX_REQ_TIM17_UP /*!< DMAMUX TIM17 UP request */
#if defined(AES1)
#define DMA_REQUEST_AES1_IN LL_DMAMUX_REQ_AES1_IN /*!< DMAMUX AES1 IN request */
#define DMA_REQUEST_AES1_OUT LL_DMAMUX_REQ_AES1_OUT /*!< DMAMUX AES1 OUT request */
#endif /* AES1 */
#define DMA_REQUEST_AES2_IN LL_DMAMUX_REQ_AES2_IN /*!< DMAMUX AES2 IN request */
#define DMA_REQUEST_AES2_OUT LL_DMAMUX_REQ_AES2_OUT /*!< DMAMUX AES2 OUT request */
/**
* @}
*/
/** @defgroup DMA_Data_transfer_direction DMA Data transfer direction
* @{
*/
#define DMA_PERIPH_TO_MEMORY LL_DMA_DIRECTION_PERIPH_TO_MEMORY /*!< Peripheral to memory direction */
#define DMA_MEMORY_TO_PERIPH LL_DMA_DIRECTION_MEMORY_TO_PERIPH /*!< Memory to peripheral direction */
#define DMA_MEMORY_TO_MEMORY LL_DMA_DIRECTION_MEMORY_TO_MEMORY /*!< Memory to memory direction */
/**
* @}
*/
/** @defgroup DMA_Peripheral_incremented_mode DMA Peripheral incremented mode
* @{
*/
#define DMA_PINC_ENABLE LL_DMA_PERIPH_INCREMENT /*!< Peripheral increment mode Enable */
#define DMA_PINC_DISABLE LL_DMA_PERIPH_NOINCREMENT /*!< Peripheral increment mode Disable */
/**
* @}
*/
/** @defgroup DMA_Memory_incremented_mode DMA Memory incremented mode
* @{
*/
#define DMA_MINC_ENABLE LL_DMA_MEMORY_INCREMENT /*!< Memory increment mode Enable */
#define DMA_MINC_DISABLE LL_DMA_MEMORY_NOINCREMENT /*!< Memory increment mode Disable */
/**
* @}
*/
/** @defgroup DMA_Peripheral_data_size DMA Peripheral data size
* @{
*/
#define DMA_PDATAALIGN_BYTE LL_DMA_PDATAALIGN_BYTE /*!< Peripheral data alignment : Byte */
#define DMA_PDATAALIGN_HALFWORD LL_DMA_PDATAALIGN_HALFWORD /*!< Peripheral data alignment : HalfWord */
#define DMA_PDATAALIGN_WORD LL_DMA_PDATAALIGN_WORD /*!< Peripheral data alignment : Word */
/**
* @}
*/
/** @defgroup DMA_Memory_data_size DMA Memory data size
* @{
*/
#define DMA_MDATAALIGN_BYTE LL_DMA_MDATAALIGN_BYTE /*!< Memory data alignment : Byte */
#define DMA_MDATAALIGN_HALFWORD LL_DMA_MDATAALIGN_HALFWORD /*!< Memory data alignment : HalfWord */
#define DMA_MDATAALIGN_WORD LL_DMA_MDATAALIGN_WORD /*!< Memory data alignment : Word */
/**
* @}
*/
/** @defgroup DMA_mode DMA mode
* @{
*/
#define DMA_NORMAL LL_DMA_MODE_NORMAL /*!< Normal mode */
#define DMA_CIRCULAR LL_DMA_MODE_CIRCULAR /*!< Circular mode */
/**
* @}
*/
/** @defgroup DMA_Priority_level DMA Priority level
* @{
*/
#define DMA_PRIORITY_LOW LL_DMA_PRIORITY_LOW /*!< Priority level : Low */
#define DMA_PRIORITY_MEDIUM LL_DMA_PRIORITY_MEDIUM /*!< Priority level : Medium */
#define DMA_PRIORITY_HIGH LL_DMA_PRIORITY_HIGH /*!< Priority level : High */
#define DMA_PRIORITY_VERY_HIGH LL_DMA_PRIORITY_VERYHIGH /*!< Priority level : Very_High */
/**
* @}
*/
/** @defgroup DMA_interrupt_enable_definitions DMA interrupt enable definitions
* @{
*/
#define DMA_IT_TC LL_DMA_CCR_TCIE /*!< Transfer complete interrupt */
#define DMA_IT_HT LL_DMA_CCR_HTIE /*!< Half Transfer interrupt */
#define DMA_IT_TE LL_DMA_CCR_TEIE /*!< Transfer error interrupt */
/**
* @}
*/
/** @defgroup DMA_flag_definitions DMA flag definitions
* @{
*/
#define DMA_FLAG_GL1 LL_DMA_ISR_GIF1 /*!< Channel 1 global flag */
#define DMA_FLAG_TC1 LL_DMA_ISR_TCIF1 /*!< Channel 1 transfer complete flag */
#define DMA_FLAG_HT1 LL_DMA_ISR_HTIF1 /*!< Channel 1 half transfer flag */
#define DMA_FLAG_TE1 LL_DMA_ISR_TEIF1 /*!< Channel 1 transfer error flag */
#define DMA_FLAG_GL2 LL_DMA_ISR_GIF2 /*!< Channel 2 global flag */
#define DMA_FLAG_TC2 LL_DMA_ISR_TCIF2 /*!< Channel 2 transfer complete flag */
#define DMA_FLAG_HT2 LL_DMA_ISR_HTIF2 /*!< Channel 2 half transfer flag */
#define DMA_FLAG_TE2 LL_DMA_ISR_TEIF2 /*!< Channel 2 transfer error flag */
#define DMA_FLAG_GL3 LL_DMA_ISR_GIF3 /*!< Channel 3 global flag */
#define DMA_FLAG_TC3 LL_DMA_ISR_TCIF3 /*!< Channel 3 transfer complete flag */
#define DMA_FLAG_HT3 LL_DMA_ISR_HTIF3 /*!< Channel 3 half transfer flag */
#define DMA_FLAG_TE3 LL_DMA_ISR_TEIF3 /*!< Channel 3 transfer error flag */
#define DMA_FLAG_GL4 LL_DMA_ISR_GIF4 /*!< Channel 4 global flag */
#define DMA_FLAG_TC4 LL_DMA_ISR_TCIF4 /*!< Channel 4 transfer complete flag */
#define DMA_FLAG_HT4 LL_DMA_ISR_HTIF4 /*!< Channel 4 half transfer flag */
#define DMA_FLAG_TE4 LL_DMA_ISR_TEIF4 /*!< Channel 4 transfer error flag */
#define DMA_FLAG_GL5 LL_DMA_ISR_GIF5 /*!< Channel 5 global flag */
#define DMA_FLAG_TC5 LL_DMA_ISR_TCIF5 /*!< Channel 5 transfer complete flag */
#define DMA_FLAG_HT5 LL_DMA_ISR_HTIF5 /*!< Channel 5 half transfer flag */
#define DMA_FLAG_TE5 LL_DMA_ISR_TEIF5 /*!< Channel 5 transfer error flag */
#define DMA_FLAG_GL6 LL_DMA_ISR_GIF6 /*!< Channel 6 global flag */
#define DMA_FLAG_TC6 LL_DMA_ISR_TCIF6 /*!< Channel 6 transfer complete flag */
#define DMA_FLAG_HT6 LL_DMA_ISR_HTIF6 /*!< Channel 6 half transfer flag */
#define DMA_FLAG_TE6 LL_DMA_ISR_TEIF6 /*!< Channel 6 transfer error flag */
#define DMA_FLAG_GL7 LL_DMA_ISR_GIF7 /*!< Channel 7 global flag */
#define DMA_FLAG_TC7 LL_DMA_ISR_TCIF7 /*!< Channel 7 transfer complete flag */
#define DMA_FLAG_HT7 LL_DMA_ISR_HTIF7 /*!< Channel 7 half transfer flag */
#define DMA_FLAG_TE7 LL_DMA_ISR_TEIF7 /*!< Channel 7 transfer error flag */
/**
* @}
*/
/**
* @}
*/
/* Exported macros -----------------------------------------------------------*/
/** @defgroup DMA_Exported_Macros DMA Exported Macros
* @{
*/
/** @brief Reset DMA handle state.
* @param __HANDLE__ DMA handle
* @retval None
*/
#define __HAL_DMA_RESET_HANDLE_STATE(__HANDLE__) ((__HANDLE__)->State = HAL_DMA_STATE_RESET)
/**
* @brief Enable the specified DMA Channel.
* @param __HANDLE__ DMA handle
* @retval None
*/
#define __HAL_DMA_ENABLE(__HANDLE__) ((__HANDLE__)->Instance->CCR |= DMA_CCR_EN)
/**
* @brief Disable the specified DMA Channel.
* @param __HANDLE__ DMA handle
* @retval None
*/
#define __HAL_DMA_DISABLE(__HANDLE__) ((__HANDLE__)->Instance->CCR &= ~DMA_CCR_EN)
/* Interrupt & Flag management */
/**
* @brief Return the current DMA Channel transfer complete flag.
* @param __HANDLE__ DMA handle
* @retval The specified transfer complete flag index.
*/
#if defined(DMA2)
#define __HAL_DMA_GET_TC_FLAG_INDEX(__HANDLE__) \
(((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel1))? DMA_FLAG_TC1 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel1))? DMA_FLAG_TC1 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel2))? DMA_FLAG_TC2 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel2))? DMA_FLAG_TC2 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel3))? DMA_FLAG_TC3 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel3))? DMA_FLAG_TC3 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel4))? DMA_FLAG_TC4 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel4))? DMA_FLAG_TC4 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel5))? DMA_FLAG_TC5 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel5))? DMA_FLAG_TC5 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel6))? DMA_FLAG_TC6 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel6))? DMA_FLAG_TC6 :\
DMA_FLAG_TC7)
#else
#define __HAL_DMA_GET_TC_FLAG_INDEX(__HANDLE__) \
(((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel1))? DMA_FLAG_TC1 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel2))? DMA_FLAG_TC2 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel3))? DMA_FLAG_TC3 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel4))? DMA_FLAG_TC4 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel5))? DMA_FLAG_TC5 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel6))? DMA_FLAG_TC6 :\
DMA_FLAG_TC7)
#endif /* DMA2 */
/**
* @brief Return the current DMA Channel half transfer complete flag.
* @param __HANDLE__ DMA handle
* @retval The specified half transfer complete flag index.
*/
#if defined(DMA2)
#define __HAL_DMA_GET_HT_FLAG_INDEX(__HANDLE__)\
(((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel1))? DMA_FLAG_HT1 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel1))? DMA_FLAG_HT1 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel2))? DMA_FLAG_HT2 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel2))? DMA_FLAG_HT2 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel3))? DMA_FLAG_HT3 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel3))? DMA_FLAG_HT3 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel4))? DMA_FLAG_HT4 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel4))? DMA_FLAG_HT4 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel5))? DMA_FLAG_HT5 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel5))? DMA_FLAG_HT5 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel6))? DMA_FLAG_HT6 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel6))? DMA_FLAG_HT6 :\
DMA_FLAG_HT7)
#else
#define __HAL_DMA_GET_HT_FLAG_INDEX(__HANDLE__)\
(((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel1))? DMA_FLAG_HT1 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel2))? DMA_FLAG_HT2 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel3))? DMA_FLAG_HT3 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel4))? DMA_FLAG_HT4 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel5))? DMA_FLAG_HT5 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel6))? DMA_FLAG_HT6 :\
DMA_FLAG_HT7)
#endif /* DMA2 */
/**
* @brief Return the current DMA Channel transfer error flag.
* @param __HANDLE__ DMA handle
* @retval The specified transfer error flag index.
*/
#if defined(DMA2)
#define __HAL_DMA_GET_TE_FLAG_INDEX(__HANDLE__)\
(((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel1))? DMA_FLAG_TE1 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel1))? DMA_FLAG_TE1 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel2))? DMA_FLAG_TE2 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel2))? DMA_FLAG_TE2 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel3))? DMA_FLAG_TE3 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel3))? DMA_FLAG_TE3 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel4))? DMA_FLAG_TE4 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel4))? DMA_FLAG_TE4 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel5))? DMA_FLAG_TE5 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel5))? DMA_FLAG_TE5 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel6))? DMA_FLAG_TE6 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel6))? DMA_FLAG_TE6 :\
DMA_FLAG_TE7)
#else
#define __HAL_DMA_GET_TE_FLAG_INDEX(__HANDLE__)\
(((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel1))? DMA_FLAG_TE1 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel2))? DMA_FLAG_TE2 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel3))? DMA_FLAG_TE3 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel4))? DMA_FLAG_TE4 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel5))? DMA_FLAG_TE5 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel6))? DMA_FLAG_TE6 :\
DMA_FLAG_TE7)
#endif /* DMA2 */
/**
* @brief Return the current DMA Channel Global interrupt flag.
* @param __HANDLE__ DMA handle
* @retval The specified transfer error flag index.
*/
#if defined(DMA2)
#define __HAL_DMA_GET_GI_FLAG_INDEX(__HANDLE__)\
(((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel1))? DMA_ISR_GIF1 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel1))? DMA_ISR_GIF1 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel2))? DMA_ISR_GIF2 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel2))? DMA_ISR_GIF2 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel3))? DMA_ISR_GIF3 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel3))? DMA_ISR_GIF3 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel4))? DMA_ISR_GIF4 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel4))? DMA_ISR_GIF4 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel5))? DMA_ISR_GIF5 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel5))? DMA_ISR_GIF5 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel6))? DMA_ISR_GIF6 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA2_Channel6))? DMA_ISR_GIF6 :\
DMA_ISR_GIF7)
#else
#define __HAL_DMA_GET_GI_FLAG_INDEX(__HANDLE__)\
(((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel1))? DMA_ISR_GIF1 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel2))? DMA_ISR_GIF2 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel3))? DMA_ISR_GIF3 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel4))? DMA_ISR_GIF4 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel5))? DMA_ISR_GIF5 :\
((uint32_t)((__HANDLE__)->Instance) == ((uint32_t)DMA1_Channel6))? DMA_ISR_GIF6 :\
DMA_ISR_GIF7)
#endif /* DMA2 */
/**
* @brief Get the DMA Channel pending flags.
* @param __HANDLE__ DMA handle
* @param __FLAG__ Get the specified flag.
* This parameter can be any combination of the following values:
* @arg DMA_FLAG_TCx: Transfer complete flag
* @arg DMA_FLAG_HTx: Half transfer complete flag
* @arg DMA_FLAG_TEx: Transfer error flag
* @arg DMA_FLAG_GLx: Global interrupt flag
* Where x can be from 1 to 7 to select the DMA Channel x flag.
* @retval The state of FLAG (SET or RESET).
*/
#if defined(DMA2)
#define __HAL_DMA_GET_FLAG(__HANDLE__, __FLAG__) (((uint32_t)((__HANDLE__)->Instance) > ((uint32_t)DMA1_Channel7))? \
(DMA2->ISR & (__FLAG__)) : (DMA1->ISR & (__FLAG__)))
#else
#define __HAL_DMA_GET_FLAG(__HANDLE__, __FLAG__) (DMA1->ISR & (__FLAG__))
#endif /* DMA2 */
/**
* @brief Clear the DMA Channel pending flags.
* @param __HANDLE__ DMA handle
* @param __FLAG__ specifies the flag to clear.
* This parameter can be any combination of the following values:
* @arg DMA_FLAG_TCx: Transfer complete flag
* @arg DMA_FLAG_HTx: Half transfer complete flag
* @arg DMA_FLAG_TEx: Transfer error flag
* @arg DMA_FLAG_GLx: Global interrupt flag
* Where x can be from 1 to 7 to select the DMA Channel x flag.
* @retval None
*/
#if defined(DMA2)
#define __HAL_DMA_CLEAR_FLAG(__HANDLE__, __FLAG__) (((uint32_t)((__HANDLE__)->Instance) > ((uint32_t)DMA1_Channel7))? \
(DMA2->IFCR = (__FLAG__)) : (DMA1->IFCR = (__FLAG__)))
#else
#define __HAL_DMA_CLEAR_FLAG(__HANDLE__, __FLAG__) (DMA1->IFCR = (__FLAG__))
#endif /* DMA2 */
/**
* @brief Enable the specified DMA Channel interrupts.
* @param __HANDLE__ DMA handle
* @param __INTERRUPT__ specifies the DMA interrupt sources to be enabled or disabled.
* This parameter can be any combination of the following values:
* @arg DMA_IT_TC: Transfer complete interrupt mask
* @arg DMA_IT_HT: Half transfer complete interrupt mask
* @arg DMA_IT_TE: Transfer error interrupt mask
* @retval None
*/
#define __HAL_DMA_ENABLE_IT(__HANDLE__, __INTERRUPT__) ((__HANDLE__)->Instance->CCR |= (__INTERRUPT__))
/**
* @brief Disable the specified DMA Channel interrupts.
* @param __HANDLE__ DMA handle
* @param __INTERRUPT__ specifies the DMA interrupt sources to be enabled or disabled.
* This parameter can be any combination of the following values:
* @arg DMA_IT_TC: Transfer complete interrupt mask
* @arg DMA_IT_HT: Half transfer complete interrupt mask
* @arg DMA_IT_TE: Transfer error interrupt mask
* @retval None
*/
#define __HAL_DMA_DISABLE_IT(__HANDLE__, __INTERRUPT__) ((__HANDLE__)->Instance->CCR &= ~(__INTERRUPT__))
/**
* @brief Check whether the specified DMA Channel interrupt is enabled or not.
* @param __HANDLE__ DMA handle
* @param __INTERRUPT__ specifies the DMA interrupt source to check.
* This parameter can be one of the following values:
* @arg DMA_IT_TC: Transfer complete interrupt mask
* @arg DMA_IT_HT: Half transfer complete interrupt mask
* @arg DMA_IT_TE: Transfer error interrupt mask
* @retval The state of DMA_IT (SET or RESET).
*/
#define __HAL_DMA_GET_IT_SOURCE(__HANDLE__, __INTERRUPT__) (((__HANDLE__)->Instance->CCR & (__INTERRUPT__)))
/**
* @brief Return the number of remaining data units in the current DMA Channel transfer.
* @param __HANDLE__ DMA handle
* @retval The number of remaining data units in the current DMA Channel transfer.
*/
#define __HAL_DMA_GET_COUNTER(__HANDLE__) ((__HANDLE__)->Instance->CNDTR)
/**
* @}
*/
/* Include DMA HAL Extension module */
#include "stm32wbxx_hal_dma_ex.h"
/* Exported functions --------------------------------------------------------*/
/** @addtogroup DMA_Exported_Functions
* @{
*/
/** @addtogroup DMA_Exported_Functions_Group1
* @{
*/
/* Initialization and de-initialization functions *****************************/
HAL_StatusTypeDef HAL_DMA_Init(DMA_HandleTypeDef *hdma);
HAL_StatusTypeDef HAL_DMA_DeInit(DMA_HandleTypeDef *hdma);
/**
* @}
*/
/** @addtogroup DMA_Exported_Functions_Group2
* @{
*/
/* IO operation functions *****************************************************/
HAL_StatusTypeDef HAL_DMA_Start(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength);
HAL_StatusTypeDef HAL_DMA_Start_IT(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress,
uint32_t DataLength);
HAL_StatusTypeDef HAL_DMA_Abort(DMA_HandleTypeDef *hdma);
HAL_StatusTypeDef HAL_DMA_Abort_IT(DMA_HandleTypeDef *hdma);
HAL_StatusTypeDef HAL_DMA_PollForTransfer(DMA_HandleTypeDef *hdma, HAL_DMA_LevelCompleteTypeDef CompleteLevel,
uint32_t Timeout);
void HAL_DMA_IRQHandler(DMA_HandleTypeDef *hdma);
HAL_StatusTypeDef HAL_DMA_RegisterCallback(DMA_HandleTypeDef *hdma, HAL_DMA_CallbackIDTypeDef CallbackID, void (* pCallback)(DMA_HandleTypeDef *_hdma));
HAL_StatusTypeDef HAL_DMA_UnRegisterCallback(DMA_HandleTypeDef *hdma, HAL_DMA_CallbackIDTypeDef CallbackID);
/**
* @}
*/
/** @addtogroup DMA_Exported_Functions_Group3
* @{
*/
/* Peripheral State and Error functions ***************************************/
HAL_DMA_StateTypeDef HAL_DMA_GetState(DMA_HandleTypeDef *hdma);
uint32_t HAL_DMA_GetError(DMA_HandleTypeDef *hdma);
/**
* @}
*/
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/** @defgroup DMA_Private_Macros DMA Private Macros
* @{
*/
#define IS_DMA_DIRECTION(DIRECTION) (((DIRECTION) == DMA_PERIPH_TO_MEMORY ) || \
((DIRECTION) == DMA_MEMORY_TO_PERIPH) || \
((DIRECTION) == DMA_MEMORY_TO_MEMORY))
#define IS_DMA_BUFFER_SIZE(SIZE) (((SIZE) >= 0x1U) && ((SIZE) < 0x10000U))
#define IS_DMA_PERIPHERAL_INC_STATE(STATE) (((STATE) == DMA_PINC_ENABLE) || \
((STATE) == DMA_PINC_DISABLE))
#define IS_DMA_MEMORY_INC_STATE(STATE) (((STATE) == DMA_MINC_ENABLE) || \
((STATE) == DMA_MINC_DISABLE))
#define IS_DMA_ALL_REQUEST(REQUEST) ((REQUEST) <= DMA_REQUEST_AES2_OUT)
#define IS_DMA_PERIPHERAL_DATA_SIZE(SIZE) (((SIZE) == DMA_PDATAALIGN_BYTE) || \
((SIZE) == DMA_PDATAALIGN_HALFWORD) || \
((SIZE) == DMA_PDATAALIGN_WORD))
#define IS_DMA_MEMORY_DATA_SIZE(SIZE) (((SIZE) == DMA_MDATAALIGN_BYTE) || \
((SIZE) == DMA_MDATAALIGN_HALFWORD) || \
((SIZE) == DMA_MDATAALIGN_WORD ))
#define IS_DMA_MODE(MODE) (((MODE) == DMA_NORMAL ) || \
((MODE) == DMA_CIRCULAR))
#define IS_DMA_PRIORITY(PRIORITY) (((PRIORITY) == DMA_PRIORITY_LOW ) || \
((PRIORITY) == DMA_PRIORITY_MEDIUM) || \
((PRIORITY) == DMA_PRIORITY_HIGH) || \
((PRIORITY) == DMA_PRIORITY_VERY_HIGH))
/**
* @}
*/
/* Private functions ---------------------------------------------------------*/
/**
* @}
*/
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* STM32WBxx_HAL_DMA_H */

View File

@@ -0,0 +1,262 @@
/**
******************************************************************************
* @file stm32wbxx_hal_dma_ex.h
* @author MCD Application Team
* @brief Header file of DMA HAL extension module.
******************************************************************************
* @attention
*
* Copyright (c) 2019 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef STM32WBxx_HAL_DMA_EX_H
#define STM32WBxx_HAL_DMA_EX_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32wbxx_hal_def.h"
#include "stm32wbxx_ll_dmamux.h"
/** @addtogroup STM32WBxx_HAL_Driver
* @{
*/
/** @addtogroup DMAEx
* @{
*/
/* Exported types ------------------------------------------------------------*/
/** @defgroup DMAEx_Exported_Types DMAEx Exported Types
* @{
*/
/**
* @brief HAL DMA Synchro definition
*/
/**
* @brief HAL DMAMUX Synchronization configuration structure definition
*/
typedef struct
{
uint32_t SyncSignalID; /*!< Specifies the synchronization signal gating the DMA request in periodic mode.
This parameter can be a value of @ref DMAEx_DMAMUX_SyncSignalID_selection */
uint32_t SyncPolarity; /*!< Specifies the polarity of the signal on which the DMA request is synchronized.
This parameter can be a value of @ref DMAEx_DMAMUX_SyncPolarity_selection */
FunctionalState SyncEnable; /*!< Specifies if the synchronization shall be enabled or disabled
This parameter can take the value ENABLE or DISABLE*/
FunctionalState EventEnable; /*!< Specifies if an event shall be generated once the RequestNumber is reached.
This parameter can take the value ENABLE or DISABLE */
uint32_t RequestNumber; /*!< Specifies the number of DMA request that will be authorized after a sync event
This parameter must be a number between Min_Data = 1 and Max_Data = 32 */
} HAL_DMA_MuxSyncConfigTypeDef;
/**
* @brief HAL DMAMUX request generator parameters structure definition
*/
typedef struct
{
uint32_t SignalID; /*!< Specifies the ID of the signal used for DMAMUX request generator
This parameter can be a value of @ref DMAEx_DMAMUX_SignalGeneratorID_selection */
uint32_t Polarity; /*!< Specifies the polarity of the signal on which the request is generated.
This parameter can be a value of @ref DMAEx_DMAMUX_RequestGeneneratorPolarity_selection */
uint32_t RequestNumber; /*!< Specifies the number of DMA request that will be generated after a signal event
This parameter must be a number between Min_Data = 1 and Max_Data = 32 */
} HAL_DMA_MuxRequestGeneratorConfigTypeDef;
/**
* @}
*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup DMAEx_Exported_Constants DMAEx Exported Constants
* @{
*/
/** @defgroup DMAEx_DMAMUX_SyncSignalID_selection DMAMUX SyncSignalID selection
* @{
*/
#define HAL_DMAMUX1_SYNC_EXTI0 LL_DMAMUX_SYNC_EXTI_LINE0 /*!< Synchronization Signal is EXTI0 IT */
#define HAL_DMAMUX1_SYNC_EXTI1 LL_DMAMUX_SYNC_EXTI_LINE1 /*!< Synchronization Signal is EXTI1 IT */
#define HAL_DMAMUX1_SYNC_EXTI2 LL_DMAMUX_SYNC_EXTI_LINE2 /*!< Synchronization Signal is EXTI2 IT */
#define HAL_DMAMUX1_SYNC_EXTI3 LL_DMAMUX_SYNC_EXTI_LINE3 /*!< Synchronization Signal is EXTI3 IT */
#define HAL_DMAMUX1_SYNC_EXTI4 LL_DMAMUX_SYNC_EXTI_LINE4 /*!< Synchronization Signal is EXTI4 IT */
#define HAL_DMAMUX1_SYNC_EXTI5 LL_DMAMUX_SYNC_EXTI_LINE5 /*!< Synchronization Signal is EXTI5 IT */
#define HAL_DMAMUX1_SYNC_EXTI6 LL_DMAMUX_SYNC_EXTI_LINE6 /*!< Synchronization Signal is EXTI6 IT */
#define HAL_DMAMUX1_SYNC_EXTI7 LL_DMAMUX_SYNC_EXTI_LINE7 /*!< Synchronization Signal is EXTI7 IT */
#define HAL_DMAMUX1_SYNC_EXTI8 LL_DMAMUX_SYNC_EXTI_LINE8 /*!< Synchronization Signal is EXTI8 IT */
#define HAL_DMAMUX1_SYNC_EXTI9 LL_DMAMUX_SYNC_EXTI_LINE9 /*!< Synchronization Signal is EXTI9 IT */
#define HAL_DMAMUX1_SYNC_EXTI10 LL_DMAMUX_SYNC_EXTI_LINE10 /*!< Synchronization Signal is EXTI10 IT */
#define HAL_DMAMUX1_SYNC_EXTI11 LL_DMAMUX_SYNC_EXTI_LINE11 /*!< Synchronization Signal is EXTI11 IT */
#define HAL_DMAMUX1_SYNC_EXTI12 LL_DMAMUX_SYNC_EXTI_LINE12 /*!< Synchronization Signal is EXTI12 IT */
#define HAL_DMAMUX1_SYNC_EXTI13 LL_DMAMUX_SYNC_EXTI_LINE13 /*!< Synchronization Signal is EXTI13 IT */
#define HAL_DMAMUX1_SYNC_EXTI14 LL_DMAMUX_SYNC_EXTI_LINE14 /*!< Synchronization Signal is EXTI14 IT */
#define HAL_DMAMUX1_SYNC_EXTI15 LL_DMAMUX_SYNC_EXTI_LINE15 /*!< Synchronization Signal is EXTI15 IT */
#define HAL_DMAMUX1_SYNC_DMAMUX1_CH0_EVT LL_DMAMUX_SYNC_DMAMUX_CH0 /*!< Synchronization Signal is DMAMUX1 Channel0 Event */
#define HAL_DMAMUX1_SYNC_DMAMUX1_CH1_EVT LL_DMAMUX_SYNC_DMAMUX_CH1 /*!< Synchronization Signal is DMAMUX1 Channel1 Event */
#define HAL_DMAMUX1_SYNC_LPTIM1_OUT LL_DMAMUX_SYNC_LPTIM1_OUT /*!< Synchronization Signal is LPTIM1 OUT */
#define HAL_DMAMUX1_SYNC_LPTIM2_OUT LL_DMAMUX_SYNC_LPTIM2_OUT /*!< Synchronization Signal is LPTIM2 OUT */
/**
* @}
*/
/** @defgroup DMAEx_DMAMUX_SyncPolarity_selection DMAMUX SyncPolarity selection
* @{
*/
#define HAL_DMAMUX_SYNC_NO_EVENT LL_DMAMUX_SYNC_NO_EVENT /*!< block synchronization events */
#define HAL_DMAMUX_SYNC_RISING LL_DMAMUX_SYNC_POL_RISING /*!< synchronize with rising edge events */
#define HAL_DMAMUX_SYNC_FALLING LL_DMAMUX_SYNC_POL_FALLING /*!< synchronize with falling edge events */
#define HAL_DMAMUX_SYNC_RISING_FALLING LL_DMAMUX_SYNC_POL_RISING_FALLING /*!< synchronize with rising and falling edge events */
/**
* @}
*/
/** @defgroup DMAEx_DMAMUX_SignalGeneratorID_selection DMAMUX SignalGeneratorID selection
* @{
*/
#define HAL_DMAMUX1_REQ_GEN_EXTI0 LL_DMAMUX_REQ_GEN_EXTI_LINE0 /*!< Request generator Signal is EXTI0 IT */
#define HAL_DMAMUX1_REQ_GEN_EXTI1 LL_DMAMUX_REQ_GEN_EXTI_LINE1 /*!< Request generator Signal is EXTI1 IT */
#define HAL_DMAMUX1_REQ_GEN_EXTI2 LL_DMAMUX_REQ_GEN_EXTI_LINE2 /*!< Request generator Signal is EXTI2 IT */
#define HAL_DMAMUX1_REQ_GEN_EXTI3 LL_DMAMUX_REQ_GEN_EXTI_LINE3 /*!< Request generator Signal is EXTI3 IT */
#define HAL_DMAMUX1_REQ_GEN_EXTI4 LL_DMAMUX_REQ_GEN_EXTI_LINE4 /*!< Request generator Signal is EXTI4 IT */
#define HAL_DMAMUX1_REQ_GEN_EXTI5 LL_DMAMUX_REQ_GEN_EXTI_LINE5 /*!< Request generator Signal is EXTI5 IT */
#define HAL_DMAMUX1_REQ_GEN_EXTI6 LL_DMAMUX_REQ_GEN_EXTI_LINE6 /*!< Request generator Signal is EXTI6 IT */
#define HAL_DMAMUX1_REQ_GEN_EXTI7 LL_DMAMUX_REQ_GEN_EXTI_LINE7 /*!< Request generator Signal is EXTI7 IT */
#define HAL_DMAMUX1_REQ_GEN_EXTI8 LL_DMAMUX_REQ_GEN_EXTI_LINE8 /*!< Request generator Signal is EXTI8 IT */
#define HAL_DMAMUX1_REQ_GEN_EXTI9 LL_DMAMUX_REQ_GEN_EXTI_LINE9 /*!< Request generator Signal is EXTI9 IT */
#define HAL_DMAMUX1_REQ_GEN_EXTI10 LL_DMAMUX_REQ_GEN_EXTI_LINE10 /*!< Request generator Signal is EXTI10 IT */
#define HAL_DMAMUX1_REQ_GEN_EXTI11 LL_DMAMUX_REQ_GEN_EXTI_LINE11 /*!< Request generator Signal is EXTI11 IT */
#define HAL_DMAMUX1_REQ_GEN_EXTI12 LL_DMAMUX_REQ_GEN_EXTI_LINE12 /*!< Request generator Signal is EXTI12 IT */
#define HAL_DMAMUX1_REQ_GEN_EXTI13 LL_DMAMUX_REQ_GEN_EXTI_LINE13 /*!< Request generator Signal is EXTI13 IT */
#define HAL_DMAMUX1_REQ_GEN_EXTI14 LL_DMAMUX_REQ_GEN_EXTI_LINE14 /*!< Request generator Signal is EXTI14 IT */
#define HAL_DMAMUX1_REQ_GEN_EXTI15 LL_DMAMUX_REQ_GEN_EXTI_LINE15 /*!< Request generator Signal is EXTI15 IT */
#define HAL_DMAMUX1_REQ_GEN_DMAMUX1_CH0_EVT LL_DMAMUX_REQ_GEN_DMAMUX_CH0 /*!< Request generator Signal is DMAMUX1 Channel0 Event */
#define HAL_DMAMUX1_REQ_GEN_DMAMUX1_CH1_EVT LL_DMAMUX_REQ_GEN_DMAMUX_CH1 /*!< Request generator Signal is DMAMUX1 Channel1 Event */
#define HAL_DMAMUX1_REQ_GEN_LPTIM1_OUT LL_DMAMUX_REQ_GEN_LPTIM1_OUT /*!< Request generator Signal is LPTIM1 OUT */
#define HAL_DMAMUX1_REQ_GEN_LPTIM2_OUT LL_DMAMUX_REQ_GEN_LPTIM2_OUT /*!< Request generator Signal is LPTIM2 OUT */
/**
* @}
*/
/** @defgroup DMAEx_DMAMUX_RequestGeneneratorPolarity_selection DMAMUX RequestGeneneratorPolarity selection
* @{
*/
#define HAL_DMAMUX_REQ_GEN_NO_EVENT LL_DMAMUX_REQ_GEN_NO_EVENT /*!< block request generator events */
#define HAL_DMAMUX_REQ_GEN_RISING LL_DMAMUX_REQ_GEN_POL_RISING /*!< generate request on rising edge events */
#define HAL_DMAMUX_REQ_GEN_FALLING LL_DMAMUX_REQ_GEN_POL_FALLING /*!< generate request on falling edge events */
#define HAL_DMAMUX_REQ_GEN_RISING_FALLING LL_DMAMUX_REQ_GEN_POL_RISING_FALLING /*!< generate request on rising and falling edge events */
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup DMAEx_Exported_Functions
* @{
*/
/* IO operation functions *****************************************************/
/** @addtogroup DMAEx_Exported_Functions_Group1
* @{
*/
/* ------------------------- REQUEST -----------------------------------------*/
HAL_StatusTypeDef HAL_DMAEx_ConfigMuxRequestGenerator(DMA_HandleTypeDef *hdma,
HAL_DMA_MuxRequestGeneratorConfigTypeDef *pRequestGeneratorConfig);
HAL_StatusTypeDef HAL_DMAEx_EnableMuxRequestGenerator(DMA_HandleTypeDef *hdma);
HAL_StatusTypeDef HAL_DMAEx_DisableMuxRequestGenerator(DMA_HandleTypeDef *hdma);
/* -------------------------------------------------------------------------- */
/* ------------------------- SYNCHRO -----------------------------------------*/
HAL_StatusTypeDef HAL_DMAEx_ConfigMuxSync(DMA_HandleTypeDef *hdma, HAL_DMA_MuxSyncConfigTypeDef *pSyncConfig);
/* -------------------------------------------------------------------------- */
void HAL_DMAEx_MUX_IRQHandler(DMA_HandleTypeDef *hdma);
/**
* @}
*/
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/** @defgroup DMAEx_Private_Macros DMAEx Private Macros
* @brief DMAEx private macros
* @{
*/
#define IS_DMAMUX_SYNC_SIGNAL_ID(SIGNAL_ID) ((SIGNAL_ID) <= HAL_DMAMUX1_SYNC_LPTIM2_OUT)
#define IS_DMAMUX_SYNC_REQUEST_NUMBER(REQUEST_NUMBER) (((REQUEST_NUMBER) > 0U) && ((REQUEST_NUMBER) <= 32U))
#define IS_DMAMUX_SYNC_POLARITY(POLARITY) (((POLARITY) == HAL_DMAMUX_SYNC_NO_EVENT) || \
((POLARITY) == HAL_DMAMUX_SYNC_RISING) || \
((POLARITY) == HAL_DMAMUX_SYNC_FALLING) || \
((POLARITY) == HAL_DMAMUX_SYNC_RISING_FALLING))
#define IS_DMAMUX_SYNC_STATE(SYNC) (((SYNC) == DISABLE) || ((SYNC) == ENABLE))
#define IS_DMAMUX_SYNC_EVENT(EVENT) (((EVENT) == DISABLE) || \
((EVENT) == ENABLE))
#define IS_DMAMUX_REQUEST_GEN_SIGNAL_ID(SIGNAL_ID) ((SIGNAL_ID) <= HAL_DMAMUX1_REQ_GEN_LPTIM2_OUT)
#define IS_DMAMUX_REQUEST_GEN_REQUEST_NUMBER(REQUEST_NUMBER) (((REQUEST_NUMBER) > 0U) && ((REQUEST_NUMBER) <= 32U))
#define IS_DMAMUX_REQUEST_GEN_POLARITY(POLARITY) (((POLARITY) == HAL_DMAMUX_REQ_GEN_NO_EVENT) || \
((POLARITY) == HAL_DMAMUX_REQ_GEN_RISING) || \
((POLARITY) == HAL_DMAMUX_REQ_GEN_FALLING) || \
((POLARITY) == HAL_DMAMUX_REQ_GEN_RISING_FALLING))
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* STM32WBxx_HAL_DMA_EX_H */

View File

@@ -0,0 +1,363 @@
/**
******************************************************************************
* @file stm32wbxx_hal_exti.h
* @author MCD Application Team
* @brief Header file of EXTI HAL module.
******************************************************************************
* @attention
*
* Copyright (c) 2019 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef STM32WBxx_HAL_EXTI_H
#define STM32WBxx_HAL_EXTI_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32wbxx_hal_def.h"
/** @addtogroup STM32WBxx_HAL_Driver
* @{
*/
/** @defgroup EXTI EXTI
* @brief EXTI HAL module driver
* @{
*/
/* Exported types ------------------------------------------------------------*/
/** @defgroup EXTI_Exported_Types EXTI Exported Types
* @{
*/
typedef enum
{
HAL_EXTI_COMMON_CB_ID = 0x00U,
} EXTI_CallbackIDTypeDef;
/**
* @brief EXTI Handle structure definition
*/
typedef struct
{
uint32_t Line; /*!< Exti line number */
void (* PendingCallback)(void); /*!< Exti pending callback */
} EXTI_HandleTypeDef;
/**
* @brief EXTI Configuration structure definition
*/
typedef struct
{
uint32_t Line; /*!< The Exti line to be configured. This parameter
can be a value of @ref EXTI_Line */
uint32_t Mode; /*!< The Exit Mode to be configured for a core.
This parameter can be a combination of @ref EXTI_Mode */
uint32_t Trigger; /*!< The Exti Trigger to be configured. This parameter
can be a value of @ref EXTI_Trigger */
uint32_t GPIOSel; /*!< The Exti GPIO multiplexer selection to be configured.
This parameter is only possible for line 0 to 15. It
can be a value of @ref EXTI_GPIOSel */
} EXTI_ConfigTypeDef;
/**
* @}
*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup EXTI_Exported_Constants EXTI Exported Constants
* @{
*/
/** @defgroup EXTI_Line EXTI Line
* @{
*/
#define EXTI_LINE_0 (EXTI_GPIO | EXTI_EVENT | EXTI_REG1 | 0x00u)
#define EXTI_LINE_1 (EXTI_GPIO | EXTI_EVENT | EXTI_REG1 | 0x01u)
#define EXTI_LINE_2 (EXTI_GPIO | EXTI_EVENT | EXTI_REG1 | 0x02u)
#define EXTI_LINE_3 (EXTI_GPIO | EXTI_EVENT | EXTI_REG1 | 0x03u)
#define EXTI_LINE_4 (EXTI_GPIO | EXTI_EVENT | EXTI_REG1 | 0x04u)
#define EXTI_LINE_5 (EXTI_GPIO | EXTI_EVENT | EXTI_REG1 | 0x05u)
#define EXTI_LINE_6 (EXTI_GPIO | EXTI_EVENT | EXTI_REG1 | 0x06u)
#define EXTI_LINE_7 (EXTI_GPIO | EXTI_EVENT | EXTI_REG1 | 0x07u)
#define EXTI_LINE_8 (EXTI_GPIO | EXTI_EVENT | EXTI_REG1 | 0x08u)
#define EXTI_LINE_9 (EXTI_GPIO | EXTI_EVENT | EXTI_REG1 | 0x09u)
#define EXTI_LINE_10 (EXTI_GPIO | EXTI_EVENT | EXTI_REG1 | 0x0Au)
#define EXTI_LINE_11 (EXTI_GPIO | EXTI_EVENT | EXTI_REG1 | 0x0Bu)
#define EXTI_LINE_12 (EXTI_GPIO | EXTI_EVENT | EXTI_REG1 | 0x0Cu)
#define EXTI_LINE_13 (EXTI_GPIO | EXTI_EVENT | EXTI_REG1 | 0x0Du)
#define EXTI_LINE_14 (EXTI_GPIO | EXTI_EVENT | EXTI_REG1 | 0x0Eu)
#define EXTI_LINE_15 (EXTI_GPIO | EXTI_EVENT | EXTI_REG1 | 0x0Fu)
#define EXTI_LINE_16 (EXTI_CONFIG | EXTI_REG1 | 0x10u)
#define EXTI_LINE_17 (EXTI_CONFIG | EXTI_EVENT | EXTI_REG1 | 0x11u)
#define EXTI_LINE_18 (EXTI_CONFIG | EXTI_EVENT | EXTI_REG1 | 0x12u)
#define EXTI_LINE_19 (EXTI_CONFIG | EXTI_EVENT | EXTI_REG1 | 0x13u)
#if defined (STM32WB55xx) || defined (STM32WB5Mxx) || defined (STM32WB35xx) || defined (STM32WB15xx) || defined(STM32WB1Mxx)
#define EXTI_LINE_20 (EXTI_CONFIG | EXTI_EVENT | EXTI_REG1 | 0x14u)
#else
#define EXTI_LINE_20 (EXTI_RESERVED | EXTI_REG1 | 0x14u)
#endif /* STM32WB55xx || STM32WB5Mxx || ... */
#if defined (STM32WB55xx) || defined (STM32WB5Mxx) || defined (STM32WB35xx)
#define EXTI_LINE_21 (EXTI_CONFIG | EXTI_EVENT | EXTI_REG1 | 0x15u)
#else
#define EXTI_LINE_21 (EXTI_RESERVED | EXTI_REG1 | 0x15u)
#endif /* STM32WB55xx || STM32WB5Mxx || STM32WB35xx */
#define EXTI_LINE_22 (EXTI_DIRECT | EXTI_REG1 | 0x16u)
#if defined (STM32WB55xx) || defined (STM32WB5Mxx) || defined (STM32WB35xx)
#define EXTI_LINE_23 (EXTI_DIRECT | EXTI_REG1 | 0x17u)
#else
#define EXTI_LINE_23 (EXTI_RESERVED | EXTI_REG1 | 0x17u)
#endif /* STM32WB55xx || STM32WB5Mxx || STM32WB35xx */
#define EXTI_LINE_24 (EXTI_DIRECT | EXTI_REG1 | 0x18u)
#if defined (STM32WB55xx) || defined (STM32WB5Mxx) || defined (STM32WB35xx) || defined (STM32WB15xx) || defined(STM32WB1Mxx)
#define EXTI_LINE_25 (EXTI_DIRECT | EXTI_REG1 | 0x19u)
#else
#define EXTI_LINE_25 (EXTI_RESERVED | EXTI_REG1 | 0x19u)
#endif /* STM32WB55xx || STM32WB5Mxx || ... */
#define EXTI_LINE_26 (EXTI_RESERVED | EXTI_REG1 | 0x1Au)
#define EXTI_LINE_27 (EXTI_RESERVED | EXTI_REG1 | 0x1Bu)
#if defined (STM32WB55xx) || defined (STM32WB5Mxx) || defined (STM32WB35xx)
#define EXTI_LINE_28 (EXTI_DIRECT | EXTI_REG1 | 0x1Cu)
#else
#define EXTI_LINE_28 (EXTI_RESERVED | EXTI_REG1 | 0x1Cu)
#endif /* STM32WB55xx || STM32WB5Mxx || STM32WB35xx */
#define EXTI_LINE_29 (EXTI_DIRECT | EXTI_REG1 | 0x1Du)
#define EXTI_LINE_30 (EXTI_DIRECT | EXTI_REG1 | 0x1Eu)
#if defined (STM32WB55xx) || defined (STM32WB5Mxx) || defined (STM32WB35xx) || defined (STM32WB15xx) || defined(STM32WB1Mxx)
#define EXTI_LINE_31 (EXTI_CONFIG | EXTI_REG1 | 0x1Fu)
#else
#define EXTI_LINE_31 (EXTI_RESERVED | EXTI_REG1 | 0x1Fu)
#endif /* STM32WB55xx || STM32WB5Mxx || ... */
#define EXTI_LINE_32 (EXTI_RESERVED | EXTI_REG2 | 0x00u)
#define EXTI_LINE_33 (EXTI_CONFIG | EXTI_REG2 | 0x01u)
#define EXTI_LINE_34 (EXTI_RESERVED | EXTI_REG2 | 0x02u)
#define EXTI_LINE_35 (EXTI_RESERVED | EXTI_REG2 | 0x03u)
#define EXTI_LINE_36 (EXTI_DIRECT | EXTI_REG2 | 0x04u)
#define EXTI_LINE_37 (EXTI_DIRECT | EXTI_REG2 | 0x05u)
#define EXTI_LINE_38 (EXTI_DIRECT | EXTI_REG2 | 0x06u)
#define EXTI_LINE_39 (EXTI_DIRECT | EXTI_REG2 | 0x07u)
#define EXTI_LINE_40 (EXTI_CONFIG | EXTI_EVENT | EXTI_REG2 | 0x08u)
#define EXTI_LINE_41 (EXTI_CONFIG | EXTI_EVENT | EXTI_REG2 | 0x09u)
#define EXTI_LINE_42 (EXTI_DIRECT | EXTI_REG2 | 0x0Au)
#if defined (STM32WB55xx) || defined (STM32WB5Mxx)
#define EXTI_LINE_43 (EXTI_DIRECT | EXTI_REG2 | 0x0Bu)
#else
#define EXTI_LINE_43 (EXTI_RESERVED | EXTI_REG2 | 0x0Bu)
#endif /* STM32WB55xx || STM32WB5Mxx */
#define EXTI_LINE_44 (EXTI_DIRECT | EXTI_REG2 | 0x0Cu)
#define EXTI_LINE_45 (EXTI_DIRECT | EXTI_REG2 | 0x0Du)
#if defined (STM32WB55xx) || defined (STM32WB5Mxx) || defined (STM32WB50xx) || defined (STM32WB35xx) || defined (STM32WB30xx)
#define EXTI_LINE_46 (EXTI_DIRECT | EXTI_REG2 | 0x0Eu)
#else
#define EXTI_LINE_46 (EXTI_RESERVED | EXTI_REG2 | 0x0Eu)
#endif /* STM32WB55xx || STM32WB5Mxx || ... */
#define EXTI_LINE_47 (EXTI_RESERVED | EXTI_REG2 | 0x0Fu)
#define EXTI_LINE_48 (EXTI_DIRECT | EXTI_REG2 | 0x10u)
/**
* @}
*/
/** @defgroup EXTI_Mode EXTI Mode
* @{
*/
#define EXTI_MODE_NONE 0x00000000u
#define EXTI_MODE_INTERRUPT 0x00000001u
#define EXTI_MODE_EVENT 0x00000002u
/**
* @}
*/
/** @defgroup EXTI_Trigger EXTI Trigger
* @{
*/
#define EXTI_TRIGGER_NONE 0x00000000u
#define EXTI_TRIGGER_RISING 0x00000001u
#define EXTI_TRIGGER_FALLING 0x00000002u
#define EXTI_TRIGGER_RISING_FALLING (EXTI_TRIGGER_RISING | EXTI_TRIGGER_FALLING)
/**
* @}
*/
/** @defgroup EXTI_GPIOSel EXTI GPIOSel
* @brief
* @{
*/
#define EXTI_GPIOA 0x00000000u
#define EXTI_GPIOB 0x00000001u
#define EXTI_GPIOC 0x00000002u
#if defined (STM32WB55xx) || defined (STM32WB5Mxx)
#define EXTI_GPIOD 0x00000003u
#endif /* STM32WB55xx || STM32WB5Mxx */
#define EXTI_GPIOE 0x00000004u
#define EXTI_GPIOH 0x00000007u
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/** @defgroup EXTI_Exported_Macros EXTI Exported Macros
* @{
*/
/**
* @}
*/
/* Private constants --------------------------------------------------------*/
/** @defgroup EXTI_Private_Constants EXTI Private Constants
* @{
*/
/**
* @brief EXTI Line property definition
*/
#define EXTI_PROPERTY_SHIFT 24u
#define EXTI_DIRECT (0x01uL << EXTI_PROPERTY_SHIFT)
#define EXTI_CONFIG (0x02uL << EXTI_PROPERTY_SHIFT)
#define EXTI_GPIO ((0x04uL << EXTI_PROPERTY_SHIFT) | EXTI_CONFIG)
#define EXTI_RESERVED (0x08uL << EXTI_PROPERTY_SHIFT)
#define EXTI_PROPERTY_MASK (EXTI_DIRECT | EXTI_CONFIG | EXTI_GPIO)
/**
* @brief EXTI Event presence definition
*/
#define EXTI_EVENT_PRESENCE_SHIFT 28u
#define EXTI_EVENT (0x01uL << EXTI_EVENT_PRESENCE_SHIFT)
#define EXTI_EVENT_PRESENCE_MASK (EXTI_EVENT)
/**
* @brief EXTI Register and bit usage
*/
#define EXTI_REG_SHIFT 16u
#define EXTI_REG1 (0x00uL << EXTI_REG_SHIFT)
#define EXTI_REG2 (0x01uL << EXTI_REG_SHIFT)
#define EXTI_REG_MASK (EXTI_REG1 | EXTI_REG2)
#define EXTI_PIN_MASK 0x0000001Fu
/**
* @brief EXTI Mask for interrupt & event mode
*/
#define EXTI_MODE_MASK (EXTI_MODE_EVENT | EXTI_MODE_INTERRUPT)
/**
* @brief EXTI Mask for trigger possibilities
*/
#define EXTI_TRIGGER_MASK (EXTI_TRIGGER_RISING | EXTI_TRIGGER_FALLING)
/**
* @brief EXTI Line number
*/
#define EXTI_LINE_NB 49uL
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/** @defgroup EXTI_Private_Macros EXTI Private Macros
* @{
*/
#define IS_EXTI_LINE(__EXTI_LINE__) ((((__EXTI_LINE__) & ~(EXTI_PROPERTY_MASK | EXTI_EVENT_PRESENCE_MASK | EXTI_REG_MASK | EXTI_PIN_MASK)) == 0x00u) && \
((((__EXTI_LINE__) & EXTI_PROPERTY_MASK) == EXTI_DIRECT) || \
(((__EXTI_LINE__) & EXTI_PROPERTY_MASK) == EXTI_CONFIG) || \
(((__EXTI_LINE__) & EXTI_PROPERTY_MASK) == EXTI_GPIO)) && \
(((__EXTI_LINE__) & (EXTI_REG_MASK | EXTI_PIN_MASK)) < \
(((EXTI_LINE_NB / 32u) << EXTI_REG_SHIFT) | (EXTI_LINE_NB % 32u))))
#define IS_EXTI_MODE(__EXTI_LINE__) ((((__EXTI_LINE__) & EXTI_MODE_MASK) != 0x00u) && \
(((__EXTI_LINE__) & ~EXTI_MODE_MASK) == 0x00u))
#define IS_EXTI_TRIGGER(__EXTI_LINE__) (((__EXTI_LINE__) & ~EXTI_TRIGGER_MASK) == 0x00u)
#define IS_EXTI_PENDING_EDGE(__EXTI_LINE__) ((__EXTI_LINE__) == EXTI_TRIGGER_RISING_FALLING)
#define IS_EXTI_CONFIG_LINE(__EXTI_LINE__) (((__EXTI_LINE__) & EXTI_CONFIG) != 0x00u)
#if defined (STM32WB55xx) || defined (STM32WB5Mxx)
#define IS_EXTI_GPIO_PORT(__PORT__) (((__PORT__) == EXTI_GPIOA) || \
((__PORT__) == EXTI_GPIOB) || \
((__PORT__) == EXTI_GPIOC) || \
((__PORT__) == EXTI_GPIOD) || \
((__PORT__) == EXTI_GPIOE) || \
((__PORT__) == EXTI_GPIOH))
#else
#define IS_EXTI_GPIO_PORT(__PORT__) (((__PORT__) == EXTI_GPIOA) || \
((__PORT__) == EXTI_GPIOB) || \
((__PORT__) == EXTI_GPIOC) || \
((__PORT__) == EXTI_GPIOE) || \
((__PORT__) == EXTI_GPIOH))
#endif /* STM32WB55xx || STM32WB5Mxx */
#define IS_EXTI_GPIO_PIN(__PIN__) ((__PIN__) < 16u)
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup EXTI_Exported_Functions EXTI Exported Functions
* @brief EXTI Exported Functions
* @{
*/
/** @defgroup EXTI_Exported_Functions_Group1 Configuration functions
* @brief Configuration functions
* @{
*/
/* Configuration functions ****************************************************/
HAL_StatusTypeDef HAL_EXTI_SetConfigLine(EXTI_HandleTypeDef *hexti, EXTI_ConfigTypeDef *pExtiConfig);
HAL_StatusTypeDef HAL_EXTI_GetConfigLine(EXTI_HandleTypeDef *hexti, EXTI_ConfigTypeDef *pExtiConfig);
HAL_StatusTypeDef HAL_EXTI_ClearConfigLine(EXTI_HandleTypeDef *hexti);
HAL_StatusTypeDef HAL_EXTI_RegisterCallback(EXTI_HandleTypeDef *hexti, EXTI_CallbackIDTypeDef CallbackID, void (*pPendingCbfn)(void));
HAL_StatusTypeDef HAL_EXTI_GetHandle(EXTI_HandleTypeDef *hexti, uint32_t ExtiLine);
/**
* @}
*/
/** @defgroup EXTI_Exported_Functions_Group2 IO operation functions
* @brief IO operation functions
* @{
*/
/* IO operation functions *****************************************************/
void HAL_EXTI_IRQHandler(EXTI_HandleTypeDef *hexti);
uint32_t HAL_EXTI_GetPending(EXTI_HandleTypeDef *hexti, uint32_t Edge);
void HAL_EXTI_ClearPending(EXTI_HandleTypeDef *hexti, uint32_t Edge);
void HAL_EXTI_GenerateSWI(EXTI_HandleTypeDef *hexti);
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* STM32WBxx_HAL_EXTI_H */

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,137 @@
/**
******************************************************************************
* @file stm32wbxx_hal_flash_ex.h
* @author MCD Application Team
* @brief Header file of FLASH HAL Extended module.
******************************************************************************
* @attention
*
* Copyright (c) 2019 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef STM32WBxx_HAL_FLASH_EX_H
#define STM32WBxx_HAL_FLASH_EX_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32wbxx_hal_def.h"
/** @addtogroup STM32WBxx_HAL_Driver
* @{
*/
/** @addtogroup FLASHEx
* @{
*/
/* Exported types ------------------------------------------------------------*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup FLASHEx_Exported_Constants FLASH Exported Constants
* @{
*/
/** @defgroup FLASHEx_EMPTY_CHECK FLASHEx Empty Check
* @{
*/
#define FLASH_PROG_NOT_EMPTY 0x00000000U /*!< 1st location in Flash is programmed */
#define FLASH_PROG_EMPTY FLASH_ACR_EMPTY /*!< 1st location in Flash is empty */
/**
* @}
*/
/** @defgroup FLASHEx_ECC_CPUID FLASHEx ECC CPU Identification
* @{
*/
#define FLASH_ECC_CPUID_1 0x00000000U /*!< Bus-ID of the CPU1 access causing the ECC failure. */
#define FLASH_ECC_CPUID_2 FLASH_ECCR_CPUID_0 /*!< Bus-ID of the CPU2 access causing the ECC failure. */
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/** @defgroup FLASHEx_ECC FLASH ECC Macros
* @brief macros to get Error Code Correction information
* @{
*/
/**
* @brief Get the Bus-ID of the CPU access causing the ECC failure
* @retval CPUID
*/
#define __HAL_FLASH_ECC_CPUID() READ_BIT(FLASH->ECCR, FLASH_ECCR_CPUID)
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup FLASHEx_Exported_Functions
* @{
*/
/* Extended Program operation functions *************************************/
/** @addtogroup FLASHEx_Exported_Functions_Group1
* @{
*/
HAL_StatusTypeDef HAL_FLASHEx_Erase(FLASH_EraseInitTypeDef *pEraseInit, uint32_t *PageError);
HAL_StatusTypeDef HAL_FLASHEx_Erase_IT(FLASH_EraseInitTypeDef *pEraseInit);
uint32_t HAL_FLASHEx_FlashEmptyCheck(void);
void HAL_FLASHEx_ForceFlashEmpty(uint32_t FlashEmpty);
HAL_StatusTypeDef HAL_FLASHEx_OBProgram(FLASH_OBProgramInitTypeDef *pOBInit);
void HAL_FLASHEx_OBGetConfig(FLASH_OBProgramInitTypeDef *pOBInit);
void HAL_FLASHEx_SuspendOperation(void);
void HAL_FLASHEx_AllowOperation(void);
uint32_t HAL_FLASHEx_IsOperationSuspended(void);
/**
* @}
*/
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/** @defgroup FLASHEx_Private_Macros FLASHEx Private Macros
* @{
*/
#define IS_FLASH_EMPTY_CHECK(__VALUE__) (((__VALUE__) == FLASH_PROG_EMPTY) || ((__VALUE__) == FLASH_PROG_NOT_EMPTY))
/**
* @}
*/
/* Private Functions ---------------------------------------------------------*/
/** @defgroup FLASHEx_Private_Functions FLASHEx Private Functions
* @{
*/
void FLASH_PageErase(uint32_t Page);
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* STM32WBxx_HAL_FLASH_EX_H */

View File

@@ -0,0 +1,329 @@
/**
******************************************************************************
* @file stm32wbxx_hal_gpio.h
* @author MCD Application Team
* @brief Header file of GPIO HAL module.
******************************************************************************
* @attention
*
* Copyright (c) 2019 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef STM32WBxx_HAL_GPIO_H
#define STM32WBxx_HAL_GPIO_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32wbxx_hal_def.h"
/** @addtogroup STM32WBxx_HAL_Driver
* @{
*/
/** @defgroup GPIO GPIO
* @brief GPIO HAL module driver
* @{
*/
/* Exported types ------------------------------------------------------------*/
/** @defgroup GPIO_Exported_Types GPIO Exported Types
* @{
*/
/**
* @brief GPIO Init structure definition
*/
typedef struct
{
uint32_t Pin; /*!< Specifies the GPIO pins to be configured.
This parameter can be any value of @ref GPIO_pins */
uint32_t Mode; /*!< Specifies the operating mode for the selected pins.
This parameter can be a value of @ref GPIO_mode */
uint32_t Pull; /*!< Specifies the Pull-up or Pull-Down activation for the selected pins.
This parameter can be a value of @ref GPIO_pull */
uint32_t Speed; /*!< Specifies the speed for the selected pins.
This parameter can be a value of @ref GPIO_speed */
uint32_t Alternate; /*!< Peripheral to be connected to the selected pins
This parameter can be a value of @ref GPIOEx_Alternate_function_selection */
} GPIO_InitTypeDef;
/**
* @brief GPIO Bit SET and Bit RESET enumeration
*/
typedef enum
{
GPIO_PIN_RESET = 0U,
GPIO_PIN_SET
} GPIO_PinState;
/**
* @}
*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup GPIO_Exported_Constants GPIO Exported Constants
* @{
*/
/** @defgroup GPIO_pins GPIO pins
* @{
*/
#define GPIO_PIN_0 ((uint16_t)0x0001) /* Pin 0 selected */
#define GPIO_PIN_1 ((uint16_t)0x0002) /* Pin 1 selected */
#define GPIO_PIN_2 ((uint16_t)0x0004) /* Pin 2 selected */
#define GPIO_PIN_3 ((uint16_t)0x0008) /* Pin 3 selected */
#define GPIO_PIN_4 ((uint16_t)0x0010) /* Pin 4 selected */
#define GPIO_PIN_5 ((uint16_t)0x0020) /* Pin 5 selected */
#define GPIO_PIN_6 ((uint16_t)0x0040) /* Pin 6 selected */
#define GPIO_PIN_7 ((uint16_t)0x0080) /* Pin 7 selected */
#define GPIO_PIN_8 ((uint16_t)0x0100) /* Pin 8 selected */
#define GPIO_PIN_9 ((uint16_t)0x0200) /* Pin 9 selected */
#define GPIO_PIN_10 ((uint16_t)0x0400) /* Pin 10 selected */
#define GPIO_PIN_11 ((uint16_t)0x0800) /* Pin 11 selected */
#define GPIO_PIN_12 ((uint16_t)0x1000) /* Pin 12 selected */
#define GPIO_PIN_13 ((uint16_t)0x2000) /* Pin 13 selected */
#define GPIO_PIN_14 ((uint16_t)0x4000) /* Pin 14 selected */
#define GPIO_PIN_15 ((uint16_t)0x8000) /* Pin 15 selected */
#define GPIO_PIN_All ((uint16_t)0xFFFF) /* All pins selected */
#define GPIO_PIN_MASK ((uint32_t)0x0000FFFF) /* PIN mask for assert test */
/**
* @}
*/
/** @defgroup GPIO_mode GPIO mode
* @brief GPIO Configuration Mode
* Elements values convention: 0x00WX00YZ
* - W : EXTI trigger detection on 3 bits
* - X : EXTI mode (IT or Event) on 2 bits
* - Y : Output type (Push Pull or Open Drain) on 1 bit
* - Z : GPIO mode (Input, Output, Alternate or Analog) on 2 bits
* @{
*/
#define GPIO_MODE_INPUT MODE_INPUT /*!< Input Floating Mode */
#define GPIO_MODE_OUTPUT_PP (MODE_OUTPUT | OUTPUT_PP) /*!< Output Push Pull Mode */
#define GPIO_MODE_OUTPUT_OD (MODE_OUTPUT | OUTPUT_OD) /*!< Output Open Drain Mode */
#define GPIO_MODE_AF_PP (MODE_AF | OUTPUT_PP) /*!< Alternate Function Push Pull Mode */
#define GPIO_MODE_AF_OD (MODE_AF | OUTPUT_OD) /*!< Alternate Function Open Drain Mode */
#define GPIO_MODE_ANALOG MODE_ANALOG /*!< Analog Mode */
#define GPIO_MODE_IT_RISING (MODE_INPUT | EXTI_IT | TRIGGER_RISING) /*!< External Interrupt Mode with Rising edge trigger detection */
#define GPIO_MODE_IT_FALLING (MODE_INPUT | EXTI_IT | TRIGGER_FALLING) /*!< External Interrupt Mode with Falling edge trigger detection */
#define GPIO_MODE_IT_RISING_FALLING (MODE_INPUT | EXTI_IT | TRIGGER_RISING | TRIGGER_FALLING) /*!< External Interrupt Mode with Rising/Falling edge trigger detection */
#define GPIO_MODE_EVT_RISING (MODE_INPUT | EXTI_EVT | TRIGGER_RISING) /*!< External Event Mode with Rising edge trigger detection */
#define GPIO_MODE_EVT_FALLING (MODE_INPUT | EXTI_EVT | TRIGGER_FALLING) /*!< External Event Mode with Falling edge trigger detection */
#define GPIO_MODE_EVT_RISING_FALLING (MODE_INPUT | EXTI_EVT | TRIGGER_RISING | TRIGGER_FALLING) /*!< External Event Mode with Rising/Falling edge trigger detection */
/**
* @}
*/
/** @defgroup GPIO_speed GPIO speed
* @brief GPIO Output Maximum frequency
* @{
*/
#define GPIO_SPEED_FREQ_LOW 0x00000000u /*!< Low speed */
#define GPIO_SPEED_FREQ_MEDIUM 0x00000001u /*!< Medium speed */
#define GPIO_SPEED_FREQ_HIGH 0x00000002u /*!< High speed */
#define GPIO_SPEED_FREQ_VERY_HIGH 0x00000003u /*!< Very high speed */
/**
* @}
*/
/** @defgroup GPIO_pull GPIO pull
* @brief GPIO Pull-Up or Pull-Down Activation
* @{
*/
#define GPIO_NOPULL 0x00000000u /*!< No Pull-up or Pull-down activation */
#define GPIO_PULLUP 0x00000001u /*!< Pull-up activation */
#define GPIO_PULLDOWN 0x00000002u /*!< Pull-down activation */
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/** @defgroup GPIO_Exported_Macros GPIO Exported Macros
* @{
*/
/**
* @brief Check whether the specified EXTI line flag is set or not.
* @param __EXTI_LINE__ specifies the EXTI line flag to check.
* This parameter can be GPIO_PIN_x where x can be(0..15)
* @retval The new state of __EXTI_LINE__ (SET or RESET).
*/
#define __HAL_GPIO_EXTI_GET_FLAG(__EXTI_LINE__) (EXTI->PR1 & (__EXTI_LINE__))
/**
* @brief Clear the EXTI's line pending flags.
* @param __EXTI_LINE__ specifies the EXTI lines flags to clear.
* This parameter can be any combination of GPIO_PIN_x where x can be (0..15)
* @retval None
*/
#define __HAL_GPIO_EXTI_CLEAR_FLAG(__EXTI_LINE__) (EXTI->PR1 = (__EXTI_LINE__))
/**
* @brief Check whether the specified EXTI line is asserted or not.
* @param __EXTI_LINE__ specifies the EXTI line to check.
* This parameter can be GPIO_PIN_x where x can be(0..15)
* @retval The new state of __EXTI_LINE__ (SET or RESET).
*/
#define __HAL_GPIO_EXTI_GET_IT(__EXTI_LINE__) (EXTI->PR1 & (__EXTI_LINE__))
/**
* @brief Clear the EXTI's line pending bits.
* @param __EXTI_LINE__ specifies the EXTI lines to clear.
* This parameter can be any combination of GPIO_PIN_x where x can be (0..15)
* @retval None
*/
#define __HAL_GPIO_EXTI_CLEAR_IT(__EXTI_LINE__) (EXTI->PR1 = (__EXTI_LINE__))
/**
* @brief Generate a Software interrupt on selected EXTI line.
* @param __EXTI_LINE__ specifies the EXTI line to check.
* This parameter can be GPIO_PIN_x where x can be(0..15)
* @retval None
*/
#define __HAL_GPIO_EXTI_GENERATE_SWIT(__EXTI_LINE__) (EXTI->SWIER1 |= (__EXTI_LINE__))
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/** @defgroup GPIO_Private_Constants GPIO Private Constants
* @{
*/
#define GPIO_MODE_Pos 0u
#define GPIO_MODE (0x3uL << GPIO_MODE_Pos)
#define MODE_INPUT (0x0uL << GPIO_MODE_Pos)
#define MODE_OUTPUT (0x1uL << GPIO_MODE_Pos)
#define MODE_AF (0x2uL << GPIO_MODE_Pos)
#define MODE_ANALOG (0x3uL << GPIO_MODE_Pos)
#define OUTPUT_TYPE_Pos 4u
#define OUTPUT_TYPE (0x1uL << OUTPUT_TYPE_Pos)
#define OUTPUT_PP (0x0uL << OUTPUT_TYPE_Pos)
#define OUTPUT_OD (0x1uL << OUTPUT_TYPE_Pos)
#define EXTI_MODE_Pos 16u
#define EXTI_MODE (0x3uL << EXTI_MODE_Pos)
#define EXTI_IT (0x1uL << EXTI_MODE_Pos)
#define EXTI_EVT (0x2uL << EXTI_MODE_Pos)
#define TRIGGER_MODE_Pos 20u
#define TRIGGER_MODE (0x7uL << TRIGGER_MODE_Pos)
#define TRIGGER_RISING (0x1uL << TRIGGER_MODE_Pos)
#define TRIGGER_FALLING (0x2uL << TRIGGER_MODE_Pos)
/**
* @}
*/
/** @defgroup GPIO_Private_Macros GPIO Private Macros
* @{
*/
#define IS_GPIO_PIN_ACTION(ACTION) (((ACTION) == GPIO_PIN_RESET) || ((ACTION) == GPIO_PIN_SET))
#define IS_GPIO_PIN(__PIN__) ((((uint32_t)(__PIN__) & GPIO_PIN_MASK) != 0x00u) &&\
(((uint32_t)(__PIN__) & ~GPIO_PIN_MASK) == 0x00u))
#define IS_GPIO_COMMON_PIN(__RESETMASK__, __SETMASK__) \
(((uint32_t)(__RESETMASK__) & (uint32_t)(__SETMASK__)) == 0x00u)
#define IS_GPIO_MODE(__MODE__) (((__MODE__) == GPIO_MODE_INPUT) ||\
((__MODE__) == GPIO_MODE_OUTPUT_PP) ||\
((__MODE__) == GPIO_MODE_OUTPUT_OD) ||\
((__MODE__) == GPIO_MODE_AF_PP) ||\
((__MODE__) == GPIO_MODE_AF_OD) ||\
((__MODE__) == GPIO_MODE_IT_RISING) ||\
((__MODE__) == GPIO_MODE_IT_FALLING) ||\
((__MODE__) == GPIO_MODE_IT_RISING_FALLING) ||\
((__MODE__) == GPIO_MODE_EVT_RISING) ||\
((__MODE__) == GPIO_MODE_EVT_FALLING) ||\
((__MODE__) == GPIO_MODE_EVT_RISING_FALLING) ||\
((__MODE__) == GPIO_MODE_ANALOG))
#define IS_GPIO_SPEED(__SPEED__) (((__SPEED__) == GPIO_SPEED_FREQ_LOW) ||\
((__SPEED__) == GPIO_SPEED_FREQ_MEDIUM) ||\
((__SPEED__) == GPIO_SPEED_FREQ_HIGH) ||\
((__SPEED__) == GPIO_SPEED_FREQ_VERY_HIGH))
#define IS_GPIO_PULL(__PULL__) (((__PULL__) == GPIO_NOPULL) ||\
((__PULL__) == GPIO_PULLUP) || \
((__PULL__) == GPIO_PULLDOWN))
/**
* @}
*/
/* Include GPIO HAL Extended module */
#include "stm32wbxx_hal_gpio_ex.h"
/* Exported functions --------------------------------------------------------*/
/** @defgroup GPIO_Exported_Functions GPIO Exported Functions
* @brief GPIO Exported Functions
* @{
*/
/** @defgroup GPIO_Exported_Functions_Group1 Initialization/de-initialization functions
* @brief Initialization and Configuration functions
* @{
*/
/* Initialization and de-initialization functions *****************************/
void HAL_GPIO_Init(GPIO_TypeDef *GPIOx, GPIO_InitTypeDef *GPIO_Init);
void HAL_GPIO_DeInit(GPIO_TypeDef *GPIOx, uint32_t GPIO_Pin);
/**
* @}
*/
/** @defgroup GPIO_Exported_Functions_Group2 IO operation functions
* @brief IO operation functions
* @{
*/
/* IO operation functions *****************************************************/
GPIO_PinState HAL_GPIO_ReadPin(GPIO_TypeDef *GPIOx, uint16_t GPIO_Pin);
void HAL_GPIO_WritePin(GPIO_TypeDef *GPIOx, uint16_t GPIO_Pin, GPIO_PinState PinState);
void HAL_GPIO_WriteMultipleStatePin(GPIO_TypeDef *GPIOx, uint16_t PinReset, uint16_t PinSet);
void HAL_GPIO_TogglePin(GPIO_TypeDef *GPIOx, uint16_t GPIO_Pin);
HAL_StatusTypeDef HAL_GPIO_LockPin(GPIO_TypeDef *GPIOx, uint16_t GPIO_Pin);
void HAL_GPIO_EXTI_IRQHandler(uint16_t GPIO_Pin);
void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin);
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* STM32WBxx_HAL_GPIO_H */

View File

@@ -0,0 +1,679 @@
/**
******************************************************************************
* @file stm32wbxx_hal_gpio_ex.h
* @author MCD Application Team
* @brief Header file of GPIO HAL Extended module.
******************************************************************************
* @attention
*
* Copyright (c) 2019 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef STM32WBxx_HAL_GPIO_EX_H
#define STM32WBxx_HAL_GPIO_EX_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32wbxx_hal_def.h"
/** @addtogroup STM32WBxx_HAL_Driver
* @{
*/
/** @defgroup GPIOEx GPIOEx
* @brief GPIO Extended HAL module driver
* @{
*/
/* Exported types ------------------------------------------------------------*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup GPIOEx_Exported_Constants GPIOEx Exported Constants
* @{
*/
/** @defgroup GPIOEx_Alternate_function_selection GPIOEx Alternate function selection
* @{
*/
/* The table below gives an overview of the different alternate functions per port.
* For more details refer yourself to the product data sheet.
*
*/
#if defined (STM32WB55xx) || defined (STM32WB5Mxx)
/**
* @brief AF 0 selection
*/
#define GPIO_AF0_MCO ((uint8_t)0x00) /*!< MCO Alternate Function mapping */
#define GPIO_AF0_LSCO ((uint8_t)0x00) /*!< LSCO Alternate Function mapping */
#define GPIO_AF0_JTMS_SWDIO ((uint8_t)0x00) /*!< JTMS-SWDIO Alternate Function mapping */
#define GPIO_AF0_JTCK_SWCLK ((uint8_t)0x00) /*!< JTCK-SWCLK Alternate Function mapping */
#define GPIO_AF0_JTDI ((uint8_t)0x00) /*!< JTDI Alternate Function mapping */
#define GPIO_AF0_RTC_OUT ((uint8_t)0x00) /*!< RCT_OUT Alternate Function mapping */
#define GPIO_AF0_JTD_TRACE ((uint8_t)0x00) /*!< JTDO-TRACESWO Alternate Function mapping */
#define GPIO_AF0_NJTRST ((uint8_t)0x00) /*!< NJTRST Alternate Function mapping */
#define GPIO_AF0_RTC_REFIN ((uint8_t)0x00) /*!< RTC_REFIN Alternate Function mapping */
#define GPIO_AF0_TRACED0 ((uint8_t)0x00) /*!< TRACED0 Alternate Function mapping */
#define GPIO_AF0_TRACED1 ((uint8_t)0x00) /*!< TRACED1 Alternate Function mapping */
#define GPIO_AF0_TRACED2 ((uint8_t)0x00) /*!< TRACED2 Alternate Function mapping */
#define GPIO_AF0_TRACED3 ((uint8_t)0x00) /*!< TRACED3 Alternate Function mapping */
#define GPIO_AF0_TRIG_INOUT ((uint8_t)0x00) /*!< TRIG_INOUT Alternate Function mapping */
#define GPIO_AF0_TRACECK ((uint8_t)0x00) /*!< TRACECK Alternate Function mapping */
#define GPIO_AF0_SYS ((uint8_t)0x00) /*!< System Function mapping */
/**
* @brief AF 1 selection
*/
#define GPIO_AF1_TIM1 ((uint8_t)0x01) /*!< TIM1 Alternate Function mapping */
#define GPIO_AF1_TIM2 ((uint8_t)0x01) /*!< TIM2 Alternate Function mapping */
#define GPIO_AF1_LPTIM1 ((uint8_t)0x01) /*!< LPTIM1 Alternate Function mapping */
/**
* @brief AF 2 selection
*/
#define GPIO_AF2_TIM2 ((uint8_t)0x02) /*!< TIM2 Alternate Function mapping */
#define GPIO_AF2_TIM1 ((uint8_t)0x02) /*!< TIM1 Alternate Function mapping */
/**
* @brief AF 3 selection
*/
#define GPIO_AF3_SAI1 ((uint8_t)0x03) /*!< SAI1_CK1 Alternate Function mapping */
#define GPIO_AF3_SPI2 ((uint8_t)0x03) /*!< SPI2 Alternate Function mapping */
#define GPIO_AF3_TIM1 ((uint8_t)0x03) /*!< TIM1 Alternate Function mapping */
/**
* @brief AF 4 selection
*/
#define GPIO_AF4_I2C1 ((uint8_t)0x04) /*!< I2C1 Alternate Function mapping */
#define GPIO_AF4_I2C3 ((uint8_t)0x04) /*!< I2C3 Alternate Function mapping */
/**
* @brief AF 5 selection
*/
#define GPIO_AF5_SPI1 ((uint8_t)0x05) /*!< SPI1 Alternate Function mapping */
#define GPIO_AF5_SPI2 ((uint8_t)0x05) /*!< SPI2 Alternate Function mapping */
/**
* @brief AF 6 selection
*/
#define GPIO_AF6_MCO ((uint8_t)0x06) /*!< MCO Alternate Function mapping */
#define GPIO_AF6_LSCO ((uint8_t)0x06) /*!< LSCO Alternate Function mapping */
#define GPIO_AF6_RF_DTB0 ((uint8_t)0x06) /*!< RF_DTB0 Alternate Function mapping */
#define GPIO_AF6_RF_DTB1 ((uint8_t)0x06) /*!< RF_DTB1 Alternate Function mapping */
#define GPIO_AF6_RF_DTB2 ((uint8_t)0x06) /*!< RF_DTB2 Alternate Function mapping */
#define GPIO_AF6_RF_DTB3 ((uint8_t)0x06) /*!< RF_DTB3 Alternate Function mapping */
#define GPIO_AF6_RF_DTB4 ((uint8_t)0x06) /*!< RF_DTB4 Alternate Function mapping */
#define GPIO_AF6_RF_DTB5 ((uint8_t)0x06) /*!< RF_DTB5 Alternate Function mapping */
#define GPIO_AF6_RF_DTB6 ((uint8_t)0x06) /*!< RF_DTB6 Alternate Function mapping */
#define GPIO_AF6_RF_DTB7 ((uint8_t)0x06) /*!< RF_DTB7 Alternate Function mapping */
#define GPIO_AF6_RF_DTB8 ((uint8_t)0x06) /*!< RF_DTB8 Alternate Function mapping */
#define GPIO_AF6_RF_DTB9 ((uint8_t)0x06) /*!< RF_DTB9 Alternate Function mapping */
#define GPIO_AF6_RF_DTB10 ((uint8_t)0x06) /*!< RF_DTB10 Alternate Function mapping */
#define GPIO_AF6_RF_DTB11 ((uint8_t)0x06) /*!< RF_DTB11 Alternate Function mapping */
#define GPIO_AF6_RF_DTB12 ((uint8_t)0x06) /*!< RF_DTB12 Alternate Function mapping */
#define GPIO_AF6_RF_DTB13 ((uint8_t)0x06) /*!< RF_DTB13 Alternate Function mapping */
#define GPIO_AF6_RF_DTB14 ((uint8_t)0x06) /*!< RF_DTB14 Alternate Function mapping */
#define GPIO_AF6_RF_DTB15 ((uint8_t)0x06) /*!< RF_DTB15 Alternate Function mapping */
#define GPIO_AF6_RF_DTB16 ((uint8_t)0x06) /*!< RF_DTB16 Alternate Function mapping */
#define GPIO_AF6_RF_DTB17 ((uint8_t)0x06) /*!< RF_DTB17 Alternate Function mapping */
#define GPIO_AF6_RF_DTB18 ((uint8_t)0x06) /*!< RF_DTB18 Alternate Function mapping */
#define GPIO_AF6_RF_MISO ((uint8_t)0x06) /*!< RF_MISO Alternate Function mapping */
#define GPIO_AF6_RF_MOSI ((uint8_t)0x06) /*!< RF_MOSI Alternate Function mapping */
#define GPIO_AF6_RF_SCK ((uint8_t)0x06) /*!< RF_SCK Alternate Function mapping */
#define GPIO_AF6_RF_NSS ((uint8_t)0x06) /*!< RF_NSS Alternate Function mapping */
/**
* @brief AF 7 selection
*/
#define GPIO_AF7_USART1 ((uint8_t)0x07) /*!< USART1 Alternate Function mapping */
/**
* @brief AF 8 selection
*/
#define GPIO_AF8_LPUART1 ((uint8_t)0x08) /*!< LPUART1 Alternate Function mapping */
#define GPIO_AF8_IR ((uint8_t)0x08) /*!< IR Alternate Function mapping */
/**
* @brief AF 9 selection
*/
#define GPIO_AF9_TSC ((uint8_t)0x09) /*!< TSC Alternate Function mapping */
/**
* @brief AF 10 selection
*/
#define GPIO_AF10_QUADSPI ((uint8_t)0x0a) /*!< QUADSPI Alternate Function mapping */
#define GPIO_AF10_USB ((uint8_t)0x0a) /*!< USB Alternate Function mapping */
/**
* @brief AF 11 selection
*/
#define GPIO_AF11_LCD ((uint8_t)0x0b) /*!< LCD Alternate Function mapping */
/**
* @brief AF 12 selection
*/
#define GPIO_AF12_COMP1 ((uint8_t)0x0c) /*!< COMP1 Alternate Function mapping */
#define GPIO_AF12_COMP2 ((uint8_t)0x0c) /*!< COMP2 Alternate Function mapping */
#define GPIO_AF12_TIM1 ((uint8_t)0x0c) /*!< TIM1 Alternate Function mapping */
/**
* @brief AF 13 selection
*/
#define GPIO_AF13_SAI1 ((uint8_t)0x0d) /*!< SAI1 Alternate Function mapping */
/**
* @brief AF 14 selection
*/
#define GPIO_AF14_TIM2 ((uint8_t)0x0e) /*!< TIM2 Alternate Function mapping */
#define GPIO_AF14_TIM16 ((uint8_t)0x0e) /*!< TIM16 Alternate Function mapping */
#define GPIO_AF14_TIM17 ((uint8_t)0x0e) /*!< TIM17 Alternate Function mapping */
#define GPIO_AF14_LPTIM2 ((uint8_t)0x0e) /*!< LPTIM2 Alternate Function mapping */
/**
* @brief AF 15 selection
*/
#define GPIO_AF15_EVENTOUT ((uint8_t)0x0f) /*!< EVENTOUT Alternate Function mapping */
#define IS_GPIO_AF(AF) ((AF) <= (uint8_t)0x0f)
#endif /* STM32WB55xx || STM32WB5Mxx */
#if defined (STM32WB50xx)
/**
* @brief AF 0 selection
*/
#define GPIO_AF0_MCO ((uint8_t)0x00) /*!< MCO Alternate Function mapping */
#define GPIO_AF0_LSCO ((uint8_t)0x00) /*!< LSCO Alternate Function mapping */
#define GPIO_AF0_JTMS_SWDIO ((uint8_t)0x00) /*!< JTMS-SWDIO Alternate Function mapping */
#define GPIO_AF0_JTCK_SWCLK ((uint8_t)0x00) /*!< JTCK-SWCLK Alternate Function mapping */
#define GPIO_AF0_JTDI ((uint8_t)0x00) /*!< JTDI Alternate Function mapping */
#define GPIO_AF0_RTC_OUT ((uint8_t)0x00) /*!< RCT_OUT Alternate Function mapping */
#define GPIO_AF0_JTD_TRACE ((uint8_t)0x00) /*!< JTDO-TRACESWO Alternate Function mapping */
#define GPIO_AF0_NJTRST ((uint8_t)0x00) /*!< NJTRST Alternate Function mapping */
/**
* @brief AF 1 selection
*/
#define GPIO_AF1_TIM1 ((uint8_t)0x01) /*!< TIM1 Alternate Function mapping */
#define GPIO_AF1_TIM2 ((uint8_t)0x01) /*!< TIM2 Alternate Function mapping */
#define GPIO_AF1_LPTIM1 ((uint8_t)0x01) /*!< LPTIM1 Alternate Function mapping */
/**
* @brief AF 2 selection
*/
#define GPIO_AF2_TIM1 ((uint8_t)0x02) /*!< TIM1 Alternate Function mapping */
#define GPIO_AF2_TIM2 ((uint8_t)0x02) /*!< TIM2 Alternate Function mapping */
/**
* @brief AF 3 selection
*/
#define GPIO_AF3_TIM1 ((uint8_t)0x03) /*!< TIM1 Alternate Function mapping */
/**
* @brief AF 4 selection
*/
#define GPIO_AF4_I2C1 ((uint8_t)0x04) /*!< I2C1 Alternate Function mapping */
/**
* @brief AF 5 selection
*/
#define GPIO_AF5_SPI1 ((uint8_t)0x05) /*!< SPI1 Alternate Function mapping */
/**
* @brief AF 6 selection
*/
#define GPIO_AF6_MCO ((uint8_t)0x06) /*!< MCO Alternate Function mapping */
#define GPIO_AF6_LSCO ((uint8_t)0x06) /*!< LSCO Alternate Function mapping */
#define GPIO_AF6_RF_DTB0 ((uint8_t)0x06) /*!< RF_DTB0 Alternate Function mapping */
#define GPIO_AF6_RF_DTB1 ((uint8_t)0x06) /*!< RF_DTB1 Alternate Function mapping */
#define GPIO_AF6_RF_DTB2 ((uint8_t)0x06) /*!< RF_DTB2 Alternate Function mapping */
#define GPIO_AF6_RF_DTB3 ((uint8_t)0x06) /*!< RF_DTB3 Alternate Function mapping */
#define GPIO_AF6_RF_DTB4 ((uint8_t)0x06) /*!< RF_DTB4 Alternate Function mapping */
#define GPIO_AF6_RF_DTB5 ((uint8_t)0x06) /*!< RF_DTB5 Alternate Function mapping */
#define GPIO_AF6_RF_DTB6 ((uint8_t)0x06) /*!< RF_DTB6 Alternate Function mapping */
#define GPIO_AF6_RF_DTB7 ((uint8_t)0x06) /*!< RF_DTB7 Alternate Function mapping */
#define GPIO_AF6_RF_DTB8 ((uint8_t)0x06) /*!< RF_DTB8 Alternate Function mapping */
#define GPIO_AF6_RF_DTB9 ((uint8_t)0x06) /*!< RF_DTB9 Alternate Function mapping */
#define GPIO_AF6_RF_DTB10 ((uint8_t)0x06) /*!< RF_DTB10 Alternate Function mapping */
#define GPIO_AF6_RF_DTB11 ((uint8_t)0x06) /*!< RF_DTB11 Alternate Function mapping */
#define GPIO_AF6_RF_DTB12 ((uint8_t)0x06) /*!< RF_DTB12 Alternate Function mapping */
#define GPIO_AF6_RF_DTB13 ((uint8_t)0x06) /*!< RF_DTB13 Alternate Function mapping */
#define GPIO_AF6_RF_DTB14 ((uint8_t)0x06) /*!< RF_DTB14 Alternate Function mapping */
#define GPIO_AF6_RF_DTB15 ((uint8_t)0x06) /*!< RF_DTB15 Alternate Function mapping */
#define GPIO_AF6_RF_DTB16 ((uint8_t)0x06) /*!< RF_DTB16 Alternate Function mapping */
#define GPIO_AF6_RF_DTB17 ((uint8_t)0x06) /*!< RF_DTB17 Alternate Function mapping */
#define GPIO_AF6_RF_DTB18 ((uint8_t)0x06) /*!< RF_DTB18 Alternate Function mapping */
#define GPIO_AF6_RF_MISO ((uint8_t)0x06) /*!< RF_MISO Alternate Function mapping */
#define GPIO_AF6_RF_MOSI ((uint8_t)0x06) /*!< RF_MOSI Alternate Function mapping */
#define GPIO_AF6_RF_SCK ((uint8_t)0x06) /*!< RF_SCK Alternate Function mapping */
#define GPIO_AF6_RF_NSS ((uint8_t)0x06) /*!< RF_NSS Alternate Function mapping */
/**
* @brief AF 7 selection
*/
#define GPIO_AF7_USART1 ((uint8_t)0x07) /*!< USART1 Alternate Function mapping */
/**
* @brief AF 8 selection
*/
#define GPIO_AF8_IR ((uint8_t)0x08) /*!< IR Alternate Function mapping */
/**
* @brief AF 12 selection
*/
#define GPIO_AF12_TIM1 ((uint8_t)0x0c) /*!< TIM1 Alternate Function mapping */
/**
* @brief AF 14 selection
*/
#define GPIO_AF14_TIM2 ((uint8_t)0x0e) /*!< TIM2 Alternate Function mapping */
#define GPIO_AF14_TIM16 ((uint8_t)0x0e) /*!< TIM16 Alternate Function mapping */
#define GPIO_AF14_TIM17 ((uint8_t)0x0e) /*!< TIM17 Alternate Function mapping */
#define GPIO_AF14_LPTIM2 ((uint8_t)0x0e) /*!< LPTIM2 Alternate Function mapping */
/**
* @brief AF 15 selection
*/
#define GPIO_AF15_EVENTOUT ((uint8_t)0x0f) /*!< EVENTOUT Alternate Function mapping */
#define IS_GPIO_AF(AF) (((AF) <= (uint8_t)0x0F)\
&& ((AF) != (uint8_t)0x09) && ((AF) != (uint8_t)0x0A) && ((AF) != (uint8_t)0x0B) && ((AF) != (uint8_t)0x0D))
#endif /* STM32WB50xx */
#if defined (STM32WB35xx)
/**
* @brief AF 0 selection
*/
#define GPIO_AF0_MCO ((uint8_t)0x00) /*!< MCO Alternate Function mapping */
#define GPIO_AF0_LSCO ((uint8_t)0x00) /*!< LSCO Alternate Function mapping */
#define GPIO_AF0_JTMS_SWDIO ((uint8_t)0x00) /*!< JTMS-SWDIO Alternate Function mapping */
#define GPIO_AF0_JTCK_SWCLK ((uint8_t)0x00) /*!< JTCK-SWCLK Alternate Function mapping */
#define GPIO_AF0_JTDI ((uint8_t)0x00) /*!< JTDI Alternate Function mapping */
#define GPIO_AF0_RTC_OUT ((uint8_t)0x00) /*!< RCT_OUT Alternate Function mapping */
#define GPIO_AF0_JTD_TRACE ((uint8_t)0x00) /*!< JTDO-TRACESWO Alternate Function mapping */
#define GPIO_AF0_NJTRST ((uint8_t)0x00) /*!< NJTRST Alternate Function mapping */
#define GPIO_AF0_TRACED0 ((uint8_t)0x00) /*!< TRACED0 Alternate Function mapping */
#define GPIO_AF0_TRACED1 ((uint8_t)0x00) /*!< TRACED1 Alternate Function mapping */
#define GPIO_AF0_TRACED2 ((uint8_t)0x00) /*!< TRACED2 Alternate Function mapping */
#define GPIO_AF0_TRACED3 ((uint8_t)0x00) /*!< TRACED3 Alternate Function mapping */
/**
* @brief AF 1 selection
*/
#define GPIO_AF1_TIM1 ((uint8_t)0x01) /*!< TIM1 Alternate Function mapping */
#define GPIO_AF1_TIM2 ((uint8_t)0x01) /*!< TIM2 Alternate Function mapping */
#define GPIO_AF1_LPTIM1 ((uint8_t)0x01) /*!< LPTIM1 Alternate Function mapping */
/**
* @brief AF 2 selection
*/
#define GPIO_AF2_TIM1 ((uint8_t)0x02) /*!< TIM1 Alternate Function mapping */
#define GPIO_AF2_TIM2 ((uint8_t)0x02) /*!< TIM2 Alternate Function mapping */
/**
* @brief AF 3 selection
*/
#define GPIO_AF3_SAI1 ((uint8_t)0x03) /*!< SAI1_CK1 Alternate Function mapping */
#define GPIO_AF3_TIM1 ((uint8_t)0x03) /*!< TIM1 Alternate Function mapping */
/**
* @brief AF 4 selection
*/
#define GPIO_AF4_I2C1 ((uint8_t)0x04) /*!< I2C1 Alternate Function mapping */
#define GPIO_AF4_I2C3 ((uint8_t)0x04) /*!< I2C3 Alternate Function mapping */
/**
* @brief AF 5 selection
*/
#define GPIO_AF5_SPI1 ((uint8_t)0x05) /*!< SPI1 Alternate Function mapping */
/**
* @brief AF 6 selection
*/
#define GPIO_AF6_MCO ((uint8_t)0x06) /*!< MCO Alternate Function mapping */
#define GPIO_AF6_LSCO ((uint8_t)0x06) /*!< LSCO Alternate Function mapping */
#define GPIO_AF6_RF_DTB0 ((uint8_t)0x06) /*!< RF_DTB0 Alternate Function mapping */
#define GPIO_AF6_RF_DTB1 ((uint8_t)0x06) /*!< RF_DTB1 Alternate Function mapping */
#define GPIO_AF6_RF_DTB2 ((uint8_t)0x06) /*!< RF_DTB2 Alternate Function mapping */
#define GPIO_AF6_RF_DTB3 ((uint8_t)0x06) /*!< RF_DTB3 Alternate Function mapping */
#define GPIO_AF6_RF_DTB4 ((uint8_t)0x06) /*!< RF_DTB4 Alternate Function mapping */
#define GPIO_AF6_RF_DTB5 ((uint8_t)0x06) /*!< RF_DTB5 Alternate Function mapping */
#define GPIO_AF6_RF_DTB6 ((uint8_t)0x06) /*!< RF_DTB6 Alternate Function mapping */
#define GPIO_AF6_RF_DTB7 ((uint8_t)0x06) /*!< RF_DTB7 Alternate Function mapping */
#define GPIO_AF6_RF_DTB8 ((uint8_t)0x06) /*!< RF_DTB8 Alternate Function mapping */
#define GPIO_AF6_RF_DTB9 ((uint8_t)0x06) /*!< RF_DTB9 Alternate Function mapping */
#define GPIO_AF6_RF_DTB10 ((uint8_t)0x06) /*!< RF_DTB10 Alternate Function mapping */
#define GPIO_AF6_RF_DTB11 ((uint8_t)0x06) /*!< RF_DTB11 Alternate Function mapping */
#define GPIO_AF6_RF_DTB12 ((uint8_t)0x06) /*!< RF_DTB12 Alternate Function mapping */
#define GPIO_AF6_RF_DTB13 ((uint8_t)0x06) /*!< RF_DTB13 Alternate Function mapping */
#define GPIO_AF6_RF_DTB14 ((uint8_t)0x06) /*!< RF_DTB14 Alternate Function mapping */
#define GPIO_AF6_RF_DTB15 ((uint8_t)0x06) /*!< RF_DTB15 Alternate Function mapping */
#define GPIO_AF6_RF_DTB16 ((uint8_t)0x06) /*!< RF_DTB16 Alternate Function mapping */
#define GPIO_AF6_RF_DTB17 ((uint8_t)0x06) /*!< RF_DTB17 Alternate Function mapping */
#define GPIO_AF6_RF_DTB18 ((uint8_t)0x06) /*!< RF_DTB18 Alternate Function mapping */
#define GPIO_AF6_RF_MISO ((uint8_t)0x06) /*!< RF_MISO Alternate Function mapping */
#define GPIO_AF6_RF_MOSI ((uint8_t)0x06) /*!< RF_MOSI Alternate Function mapping */
#define GPIO_AF6_RF_SCK ((uint8_t)0x06) /*!< RF_SCK Alternate Function mapping */
#define GPIO_AF6_RF_NSS ((uint8_t)0x06) /*!< RF_NSS Alternate Function mapping */
/**
* @brief AF 7 selection
*/
#define GPIO_AF7_USART1 ((uint8_t)0x07) /*!< USART1 Alternate Function mapping */
/**
* @brief AF 8 selection
*/
#define GPIO_AF8_IR ((uint8_t)0x08) /*!< IR Alternate Function mapping */
#define GPIO_AF8_LPUART1 ((uint8_t)0x08) /*!< LPUART1 Alternate Function mapping */
/**
* @brief AF 10 selection
*/
#define GPIO_AF10_QUADSPI ((uint8_t)0x0A) /*!< QUADSPI Alternate Function mapping */
#define GPIO_AF10_USB ((uint8_t)0x0A) /*!< USB Alternate Function mapping */
/**
* @brief AF 12 selection
*/
#define GPIO_AF12_COMP1 ((uint8_t)0x0C) /*!< COMP1 Alternate Function mapping */
#define GPIO_AF12_COMP2 ((uint8_t)0x0C) /*!< COMP2 Alternate Function mapping */
#define GPIO_AF12_TIM1 ((uint8_t)0x0C) /*!< TIM1 Alternate Function mapping */
/**
* @brief AF 13 selection
*/
#define GPIO_AF13_SAI1 ((uint8_t)0x0d) /*!< SAI1 Alternate Function mapping */
/**
* @brief AF 14 selection
*/
#define GPIO_AF14_LPTIM2 ((uint8_t)0x0E) /*!< LPTIM2 Alternate Function mapping */
#define GPIO_AF14_TIM2 ((uint8_t)0x0E) /*!< TIM2 Alternate Function mapping */
#define GPIO_AF14_TIM16 ((uint8_t)0x0E) /*!< TIM16 Alternate Function mapping */
#define GPIO_AF14_TIM17 ((uint8_t)0x0E) /*!< TIM17 Alternate Function mapping */
/**
* @brief AF 15 selection
*/
#define GPIO_AF15_EVENTOUT ((uint8_t)0x0F) /*!< EVENTOUT Alternate Function mapping */
#define IS_GPIO_AF(AF) (((AF) <= (uint8_t)0x0F) && ((AF) != (uint8_t)0x0B) && ((AF) != (uint8_t)0x0D))
#endif /* STM32WB35xx */
#if defined (STM32WB30xx)
/**
* @brief AF 0 selection
*/
#define GPIO_AF0_MCO ((uint8_t)0x00) /*!< MCO Alternate Function mapping */
#define GPIO_AF0_LSCO ((uint8_t)0x00) /*!< LSCO Alternate Function mapping */
#define GPIO_AF0_JTMS_SWDIO ((uint8_t)0x00) /*!< JTMS-SWDIO Alternate Function mapping */
#define GPIO_AF0_JTCK_SWCLK ((uint8_t)0x00) /*!< JTCK-SWCLK Alternate Function mapping */
#define GPIO_AF0_JTDI ((uint8_t)0x00) /*!< JTDI Alternate Function mapping */
#define GPIO_AF0_RTC_OUT ((uint8_t)0x00) /*!< RCT_OUT Alternate Function mapping */
#define GPIO_AF0_JTD_TRACE ((uint8_t)0x00) /*!< JTDO-TRACESWO Alternate Function mapping */
#define GPIO_AF0_NJTRST ((uint8_t)0x00) /*!< NJTRST Alternate Function mapping */
#define GPIO_AF0_TRACED0 ((uint8_t)0x00) /*!< TRACED0 Alternate Function mapping */
#define GPIO_AF0_TRACED1 ((uint8_t)0x00) /*!< TRACED1 Alternate Function mapping */
#define GPIO_AF0_TRACED2 ((uint8_t)0x00) /*!< TRACED2 Alternate Function mapping */
#define GPIO_AF0_TRACED3 ((uint8_t)0x00) /*!< TRACED3 Alternate Function mapping */
/**
* @brief AF 1 selection
*/
#define GPIO_AF1_TIM1 ((uint8_t)0x01) /*!< TIM1 Alternate Function mapping */
#define GPIO_AF1_TIM2 ((uint8_t)0x01) /*!< TIM2 Alternate Function mapping */
#define GPIO_AF1_LPTIM1 ((uint8_t)0x01) /*!< LPTIM1 Alternate Function mapping */
/**
* @brief AF 2 selection
*/
#define GPIO_AF2_TIM1 ((uint8_t)0x02) /*!< TIM1 Alternate Function mapping */
#define GPIO_AF2_TIM2 ((uint8_t)0x02) /*!< TIM2 Alternate Function mapping */
/**
* @brief AF 3 selection
*/
#define GPIO_AF3_TIM1 ((uint8_t)0x03) /*!< TIM1 Alternate Function mapping */
/**
* @brief AF 4 selection
*/
#define GPIO_AF4_I2C1 ((uint8_t)0x04) /*!< I2C1 Alternate Function mapping */
/**
* @brief AF 5 selection
*/
#define GPIO_AF5_SPI1 ((uint8_t)0x05) /*!< SPI1 Alternate Function mapping */
/**
* @brief AF 6 selection
*/
#define GPIO_AF6_MCO ((uint8_t)0x06) /*!< MCO Alternate Function mapping */
#define GPIO_AF6_LSCO ((uint8_t)0x06) /*!< LSCO Alternate Function mapping */
#define GPIO_AF6_RF_DTB0 ((uint8_t)0x06) /*!< RF_DTB0 Alternate Function mapping */
#define GPIO_AF6_RF_DTB1 ((uint8_t)0x06) /*!< RF_DTB1 Alternate Function mapping */
#define GPIO_AF6_RF_DTB2 ((uint8_t)0x06) /*!< RF_DTB2 Alternate Function mapping */
#define GPIO_AF6_RF_DTB3 ((uint8_t)0x06) /*!< RF_DTB3 Alternate Function mapping */
#define GPIO_AF6_RF_DTB4 ((uint8_t)0x06) /*!< RF_DTB4 Alternate Function mapping */
#define GPIO_AF6_RF_DTB5 ((uint8_t)0x06) /*!< RF_DTB5 Alternate Function mapping */
#define GPIO_AF6_RF_DTB6 ((uint8_t)0x06) /*!< RF_DTB6 Alternate Function mapping */
#define GPIO_AF6_RF_DTB7 ((uint8_t)0x06) /*!< RF_DTB7 Alternate Function mapping */
#define GPIO_AF6_RF_DTB8 ((uint8_t)0x06) /*!< RF_DTB8 Alternate Function mapping */
#define GPIO_AF6_RF_DTB9 ((uint8_t)0x06) /*!< RF_DTB9 Alternate Function mapping */
#define GPIO_AF6_RF_DTB10 ((uint8_t)0x06) /*!< RF_DTB10 Alternate Function mapping */
#define GPIO_AF6_RF_DTB11 ((uint8_t)0x06) /*!< RF_DTB11 Alternate Function mapping */
#define GPIO_AF6_RF_DTB12 ((uint8_t)0x06) /*!< RF_DTB12 Alternate Function mapping */
#define GPIO_AF6_RF_DTB13 ((uint8_t)0x06) /*!< RF_DTB13 Alternate Function mapping */
#define GPIO_AF6_RF_DTB14 ((uint8_t)0x06) /*!< RF_DTB14 Alternate Function mapping */
#define GPIO_AF6_RF_DTB15 ((uint8_t)0x06) /*!< RF_DTB15 Alternate Function mapping */
#define GPIO_AF6_RF_DTB16 ((uint8_t)0x06) /*!< RF_DTB16 Alternate Function mapping */
#define GPIO_AF6_RF_DTB17 ((uint8_t)0x06) /*!< RF_DTB17 Alternate Function mapping */
#define GPIO_AF6_RF_DTB18 ((uint8_t)0x06) /*!< RF_DTB18 Alternate Function mapping */
#define GPIO_AF6_RF_MISO ((uint8_t)0x06) /*!< RF_MISO Alternate Function mapping */
#define GPIO_AF6_RF_MOSI ((uint8_t)0x06) /*!< RF_MOSI Alternate Function mapping */
#define GPIO_AF6_RF_SCK ((uint8_t)0x06) /*!< RF_SCK Alternate Function mapping */
#define GPIO_AF6_RF_NSS ((uint8_t)0x06) /*!< RF_NSS Alternate Function mapping */
/**
* @brief AF 7 selection
*/
#define GPIO_AF7_USART1 ((uint8_t)0x07) /*!< USART1 Alternate Function mapping */
/**
* @brief AF 8 selection
*/
#define GPIO_AF8_IR ((uint8_t)0x08) /*!< IR Alternate Function mapping */
/**
* @brief AF 12 selection
*/
#define GPIO_AF12_TIM1 ((uint8_t)0x0C) /*!< TIM1 Alternate Function mapping */
/**
* @brief AF 14 selection
*/
#define GPIO_AF14_LPTIM2 ((uint8_t)0x0E) /*!< LPTIM2 Alternate Function mapping */
#define GPIO_AF14_TIM2 ((uint8_t)0x0E) /*!< TIM2 Alternate Function mapping */
#define GPIO_AF14_TIM16 ((uint8_t)0x0E) /*!< TIM16 Alternate Function mapping */
#define GPIO_AF14_TIM17 ((uint8_t)0x0E) /*!< TIM17 Alternate Function mapping */
/**
* @brief AF 15 selection
*/
#define GPIO_AF15_EVENTOUT ((uint8_t)0x0F) /*!< EVENTOUT Alternate Function mapping */
#define IS_GPIO_AF(AF) (((AF) <= (uint8_t)0x0F)\
&& ((AF) != (uint8_t)0x0A) && ((AF) != (uint8_t)0x0B) && ((AF) != (uint8_t)0x0D))
#endif /* STM32WB30xx */
#if defined (STM32WB15xx) || defined (STM32WB10xx) || defined (STM32WB1Mxx)
/**
* @brief AF 0 selection
*/
#define GPIO_AF0_MCO ((uint8_t)0x00) /*!< MCO Alternate Function mapping */
#define GPIO_AF0_LSCO ((uint8_t)0x00) /*!< LSCO Alternate Function mapping */
#define GPIO_AF0_JTMS_SWDIO ((uint8_t)0x00) /*!< JTMS-SWDIO Alternate Function mapping */
#define GPIO_AF0_JTCK_SWCLK ((uint8_t)0x00) /*!< JTCK-SWCLK Alternate Function mapping */
#define GPIO_AF0_JTDI ((uint8_t)0x00) /*!< JTDI Alternate Function mapping */
#define GPIO_AF0_RTC_OUT ((uint8_t)0x00) /*!< RCT_OUT Alternate Function mapping */
#define GPIO_AF0_JTD_TRACE ((uint8_t)0x00) /*!< JTDO-TRACESWO Alternate Function mapping */
#define GPIO_AF0_NJTRST ((uint8_t)0x00) /*!< NJTRST Alternate Function mapping */
/**
* @brief AF 1 selection
*/
#define GPIO_AF1_TIM1 ((uint8_t)0x01) /*!< TIM1 Alternate Function mapping */
#define GPIO_AF1_TIM2 ((uint8_t)0x01) /*!< TIM2 Alternate Function mapping */
#define GPIO_AF1_LPTIM1 ((uint8_t)0x01) /*!< LPTIM1 Alternate Function mapping */
/**
* @brief AF 2 selection
*/
#define GPIO_AF2_TIM2 ((uint8_t)0x02) /*!< TIM2 Alternate Function mapping */
#define GPIO_AF2_TIM1 ((uint8_t)0x02) /*!< TIM1 Alternate Function mapping */
/**
* @brief AF 3 selection
*/
#define GPIO_AF3_TIM1 ((uint8_t)0x03) /*!< TIM1 Alternate Function mapping */
/**
* @brief AF 4 selection
*/
#define GPIO_AF4_I2C1 ((uint8_t)0x04) /*!< I2C1 Alternate Function mapping */
#define GPIO_AF4_SPI1 ((uint8_t)0x04) /*!< SPI1 Alternate Function mapping */
/**
* @brief AF 5 selection
*/
#define GPIO_AF5_SPI1 ((uint8_t)0x05) /*!< SPI1 Alternate Function mapping */
/**
* @brief AF 6 selection
*/
#define GPIO_AF6_MCO ((uint8_t)0x06) /*!< MCO Alternate Function mapping */
#define GPIO_AF6_RF_DTB0 ((uint8_t)0x06) /*!< RF_DTB0 Alternate Function mapping */
#define GPIO_AF6_RF_DTB1 ((uint8_t)0x06) /*!< RF_DTB1 Alternate Function mapping */
#define GPIO_AF6_RF_DTB2 ((uint8_t)0x06) /*!< RF_DTB2 Alternate Function mapping */
#define GPIO_AF6_RF_DTB3 ((uint8_t)0x06) /*!< RF_DTB3 Alternate Function mapping */
#define GPIO_AF6_RF_DTB4 ((uint8_t)0x06) /*!< RF_DTB4 Alternate Function mapping */
#define GPIO_AF6_RF_DTB5 ((uint8_t)0x06) /*!< RF_DTB5 Alternate Function mapping */
#define GPIO_AF6_RF_DTB6 ((uint8_t)0x06) /*!< RF_DTB6 Alternate Function mapping */
#define GPIO_AF6_RF_DTB7 ((uint8_t)0x06) /*!< RF_DTB7 Alternate Function mapping */
#define GPIO_AF6_RF_DTB8 ((uint8_t)0x06) /*!< RF_DTB8 Alternate Function mapping */
#define GPIO_AF6_RF_DTB9 ((uint8_t)0x06) /*!< RF_DTB9 Alternate Function mapping */
#define GPIO_AF6_RF_DTB10 ((uint8_t)0x06) /*!< RF_DTB10 Alternate Function mapping */
#define GPIO_AF6_RF_DTB11 ((uint8_t)0x06) /*!< RF_DTB11 Alternate Function mapping */
#define GPIO_AF6_RF_DTB12 ((uint8_t)0x06) /*!< RF_DTB12 Alternate Function mapping */
#define GPIO_AF6_RF_DTB13 ((uint8_t)0x06) /*!< RF_DTB13 Alternate Function mapping */
#define GPIO_AF6_RF_DTB14 ((uint8_t)0x06) /*!< RF_DTB14 Alternate Function mapping */
#define GPIO_AF6_RF_DTB15 ((uint8_t)0x06) /*!< RF_DTB15 Alternate Function mapping */
#define GPIO_AF6_RF_DTB16 ((uint8_t)0x06) /*!< RF_DTB16 Alternate Function mapping */
#define GPIO_AF6_RF_DTB17 ((uint8_t)0x06) /*!< RF_DTB17 Alternate Function mapping */
#define GPIO_AF6_RF_DTB18 ((uint8_t)0x06) /*!< RF_DTB18 Alternate Function mapping */
#define GPIO_AF6_RF_MISO ((uint8_t)0x06) /*!< RF_MISO Alternate Function mapping */
#define GPIO_AF6_RF_MOSI ((uint8_t)0x06) /*!< RF_MOSI Alternate Function mapping */
#define GPIO_AF6_RF_SCK ((uint8_t)0x06) /*!< RF_SCK Alternate Function mapping */
#define GPIO_AF6_RF_NSS ((uint8_t)0x06) /*!< RF_NSS Alternate Function mapping */
/**
* @brief AF 7 selection
*/
#define GPIO_AF7_USART1 ((uint8_t)0x07) /*!< USART1 Alternate Function mapping */
/**
* @brief AF 8 selection
*/
#define GPIO_AF8_LPUART1 ((uint8_t)0x08) /*!< LPUART1 Alternate Function mapping */
/**
* @brief AF 9 selection
*/
#define GPIO_AF9_TSC ((uint8_t)0x09) /*!< TSC Alternate Function mapping */
/**
* @brief AF 12 selection
*/
#define GPIO_AF12_COMP1 ((uint8_t)0x0c) /*!< COMP1 Alternate Function mapping */
#define GPIO_AF12_TIM1 ((uint8_t)0x0c) /*!< TIM1 Alternate Function mapping */
/**
* @brief AF 14 selection
*/
#define GPIO_AF14_TIM2 ((uint8_t)0x0e) /*!< TIM2 Alternate Function mapping */
#define GPIO_AF14_LPTIM2 ((uint8_t)0x0e) /*!< LPTIM2 Alternate Function mapping */
/**
* @brief AF 15 selection
*/
#define GPIO_AF15_EVENTOUT ((uint8_t)0x0f) /*!< EVENTOUT Alternate Function mapping */
#define IS_GPIO_AF(AF) ((AF) <= (uint8_t)0x0f)
#endif /* STM32WB15xx || STM32WB10xx || STM32WB1Mxx */
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/** @defgroup GPIOEx_Exported_Macros GPIOEx Exported Macros
* @{
*/
/** @defgroup GPIOEx_Get_Port_Index GPIOEx Get Port Index
* @{
*/
#if defined (STM32WB55xx) || defined (STM32WB5Mxx)
#define GPIO_GET_INDEX(__GPIOx__) (((__GPIOx__) == (GPIOA))? 0uL :\
((__GPIOx__) == (GPIOB))? 1uL :\
((__GPIOx__) == (GPIOC))? 2uL :\
((__GPIOx__) == (GPIOD))? 3uL :\
((__GPIOx__) == (GPIOE))? 4uL : 7uL)
#else
#define GPIO_GET_INDEX(__GPIOx__) (((__GPIOx__) == (GPIOA))? 0uL :\
((__GPIOx__) == (GPIOB))? 1uL :\
((__GPIOx__) == (GPIOC))? 2uL :\
((__GPIOx__) == (GPIOE))? 4uL : 7uL)
#endif /* STM32WB55xx || STM32WB5Mxx */
/**
* @}
*/
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/**
* @}
*/
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* STM32WBxx_HAL_GPIO_EX_H */

View File

@@ -0,0 +1,187 @@
/**
******************************************************************************
* @file stm32wbxx_hal_hsem.h
* @author MCD Application Team
* @brief Header file of HSEM HAL module.
******************************************************************************
* @attention
*
* Copyright (c) 2019 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef STM32WBxx_HAL_HSEM_H
#define STM32WBxx_HAL_HSEM_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32wbxx_hal_def.h"
/** @addtogroup STM32WBxx_HAL_Driver
* @{
*/
/** @addtogroup HSEM
* @{
*/
/* Exported macro ------------------------------------------------------------*/
/** @defgroup HSEM_Exported_Macros HSEM Exported Macros
* @{
*/
/**
* @brief SemID to mask helper Macro.
* @param __SEMID__: semaphore ID from 0 to 31
* @retval Semaphore Mask.
*/
#define __HAL_HSEM_SEMID_TO_MASK(__SEMID__) (1 << (__SEMID__))
/**
* @brief Enables the specified HSEM interrupts.
* @param __SEM_MASK__: semaphores Mask
* @retval None.
*/
#define __HAL_HSEM_ENABLE_IT(__SEM_MASK__) ((((SCB->CPUID & 0x000000F0) >> 4 )== 0x7) ? \
(HSEM->C1IER |= (__SEM_MASK__)) : \
(HSEM->C2IER |= (__SEM_MASK__)))
/**
* @brief Disables the specified HSEM interrupts.
* @param __SEM_MASK__: semaphores Mask
* @retval None.
*/
#define __HAL_HSEM_DISABLE_IT(__SEM_MASK__) ((((SCB->CPUID & 0x000000F0) >> 4 )== 0x7) ? \
(HSEM->C1IER &= ~(__SEM_MASK__)) : \
(HSEM->C2IER &= ~(__SEM_MASK__)))
/**
* @brief Checks whether interrupt has occurred or not for semaphores specified by a mask.
* @param __SEM_MASK__: semaphores Mask
* @retval semaphores Mask : Semaphores where an interrupt occurred.
*/
#define __HAL_HSEM_GET_IT(__SEM_MASK__) ((((SCB->CPUID & 0x000000F0) >> 4 )== 0x7) ? \
((__SEM_MASK__) & HSEM->C1MISR) : \
((__SEM_MASK__) & HSEM->C2MISR))
/**
* @brief Get the semaphores release status flags.
* @param __SEM_MASK__: semaphores Mask
* @retval semaphores Mask : Semaphores where Release flags rise.
*/
#define __HAL_HSEM_GET_FLAG(__SEM_MASK__) ((((SCB->CPUID & 0x000000F0) >> 4 )== 0x7) ? \
(__SEM_MASK__) & HSEM->C1ISR : \
(__SEM_MASK__) & HSEM->C2ISR)
/**
* @brief Clears the HSEM Interrupt flags.
* @param __SEM_MASK__: semaphores Mask
* @retval None.
*/
#define __HAL_HSEM_CLEAR_FLAG(__SEM_MASK__) ((((SCB->CPUID & 0x000000F0) >> 4 )== 0x7) ? \
(HSEM->C1ICR |= (__SEM_MASK__)) : \
(HSEM->C2ICR |= (__SEM_MASK__)))
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup HSEM_Exported_Functions HSEM Exported Functions
* @{
*/
/** @addtogroup HSEM_Exported_Functions_Group1 Take and Release functions
* @brief HSEM Take and Release functions
* @{
*/
/* HSEM semaphore take (lock) using 2-Step method ****************************/
HAL_StatusTypeDef HAL_HSEM_Take(uint32_t SemID, uint32_t ProcessID);
/* HSEM semaphore fast take (lock) using 1-Step method ***********************/
HAL_StatusTypeDef HAL_HSEM_FastTake(uint32_t SemID);
/* HSEM Release **************************************************************/
void HAL_HSEM_Release(uint32_t SemID, uint32_t ProcessID);
/* HSEM Release All************************************************************/
void HAL_HSEM_ReleaseAll(uint32_t Key, uint32_t CoreID);
/* HSEM Check semaphore state Taken or not **********************************/
uint32_t HAL_HSEM_IsSemTaken(uint32_t SemID);
/**
* @}
*/
/** @addtogroup HSEM_Exported_Functions_Group2 HSEM Set and Get Key functions
* @brief HSEM Set and Get Key functions.
* @{
*/
/* HSEM Set Clear Key *********************************************************/
void HAL_HSEM_SetClearKey(uint32_t Key);
/* HSEM Get Clear Key *********************************************************/
uint32_t HAL_HSEM_GetClearKey(void);
/**
* @}
*/
/** @addtogroup HSEM_Exported_Functions_Group3
* @brief HSEM Notification functions
* @{
*/
/* HSEM Activate HSEM Notification (When a semaphore is released) ) *****************/
void HAL_HSEM_ActivateNotification(uint32_t SemMask);
/* HSEM Deactivate HSEM Notification (When a semaphore is released) ****************/
void HAL_HSEM_DeactivateNotification(uint32_t SemMask);
/* HSEM Free Callback (When a semaphore is released) *******************************/
void HAL_HSEM_FreeCallback(uint32_t SemMask);
/* HSEM IRQ Handler **********************************************************/
void HAL_HSEM_IRQHandler(void);
/**
* @}
*/
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/** @defgroup HSEM_Private_Macros HSEM Private Macros
* @{
*/
#define IS_HSEM_SEMID(__SEMID__) ((__SEMID__) <= HSEM_SEMID_MAX )
#define IS_HSEM_PROCESSID(__PROCESSID__) ((__PROCESSID__) <= HSEM_PROCESSID_MAX )
#define IS_HSEM_KEY(__KEY__) ((__KEY__) <= HSEM_CLEAR_KEY_MAX )
#define IS_HSEM_COREID(__COREID__) (((__COREID__) == HSEM_CPU1_COREID) || \
((__COREID__) == HSEM_CPU2_COREID))
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* STM32WBxx_HAL_HSEM_H */

View File

@@ -0,0 +1,842 @@
/**
******************************************************************************
* @file stm32wbxx_hal_i2c.h
* @author MCD Application Team
* @brief Header file of I2C HAL module.
******************************************************************************
* @attention
*
* Copyright (c) 2019 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef STM32WBxx_HAL_I2C_H
#define STM32WBxx_HAL_I2C_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32wbxx_hal_def.h"
/** @addtogroup STM32WBxx_HAL_Driver
* @{
*/
/** @addtogroup I2C
* @{
*/
/* Exported types ------------------------------------------------------------*/
/** @defgroup I2C_Exported_Types I2C Exported Types
* @{
*/
/** @defgroup I2C_Configuration_Structure_definition I2C Configuration Structure definition
* @brief I2C Configuration Structure definition
* @{
*/
typedef struct
{
uint32_t Timing; /*!< Specifies the I2C_TIMINGR_register value.
This parameter calculated by referring to I2C initialization section
in Reference manual */
uint32_t OwnAddress1; /*!< Specifies the first device own address.
This parameter can be a 7-bit or 10-bit address. */
uint32_t AddressingMode; /*!< Specifies if 7-bit or 10-bit addressing mode is selected.
This parameter can be a value of @ref I2C_ADDRESSING_MODE */
uint32_t DualAddressMode; /*!< Specifies if dual addressing mode is selected.
This parameter can be a value of @ref I2C_DUAL_ADDRESSING_MODE */
uint32_t OwnAddress2; /*!< Specifies the second device own address if dual addressing mode is selected
This parameter can be a 7-bit address. */
uint32_t OwnAddress2Masks; /*!< Specifies the acknowledge mask address second device own address if dual addressing
mode is selected.
This parameter can be a value of @ref I2C_OWN_ADDRESS2_MASKS */
uint32_t GeneralCallMode; /*!< Specifies if general call mode is selected.
This parameter can be a value of @ref I2C_GENERAL_CALL_ADDRESSING_MODE */
uint32_t NoStretchMode; /*!< Specifies if nostretch mode is selected.
This parameter can be a value of @ref I2C_NOSTRETCH_MODE */
} I2C_InitTypeDef;
/**
* @}
*/
/** @defgroup HAL_state_structure_definition HAL state structure definition
* @brief HAL State structure definition
* @note HAL I2C State value coding follow below described bitmap :\n
* b7-b6 Error information\n
* 00 : No Error\n
* 01 : Abort (Abort user request on going)\n
* 10 : Timeout\n
* 11 : Error\n
* b5 Peripheral initialization status\n
* 0 : Reset (peripheral not initialized)\n
* 1 : Init done (peripheral initialized and ready to use. HAL I2C Init function called)\n
* b4 (not used)\n
* x : Should be set to 0\n
* b3\n
* 0 : Ready or Busy (No Listen mode ongoing)\n
* 1 : Listen (peripheral in Address Listen Mode)\n
* b2 Intrinsic process state\n
* 0 : Ready\n
* 1 : Busy (peripheral busy with some configuration or internal operations)\n
* b1 Rx state\n
* 0 : Ready (no Rx operation ongoing)\n
* 1 : Busy (Rx operation ongoing)\n
* b0 Tx state\n
* 0 : Ready (no Tx operation ongoing)\n
* 1 : Busy (Tx operation ongoing)
* @{
*/
typedef enum
{
HAL_I2C_STATE_RESET = 0x00U, /*!< Peripheral is not yet Initialized */
HAL_I2C_STATE_READY = 0x20U, /*!< Peripheral Initialized and ready for use */
HAL_I2C_STATE_BUSY = 0x24U, /*!< An internal process is ongoing */
HAL_I2C_STATE_BUSY_TX = 0x21U, /*!< Data Transmission process is ongoing */
HAL_I2C_STATE_BUSY_RX = 0x22U, /*!< Data Reception process is ongoing */
HAL_I2C_STATE_LISTEN = 0x28U, /*!< Address Listen Mode is ongoing */
HAL_I2C_STATE_BUSY_TX_LISTEN = 0x29U, /*!< Address Listen Mode and Data Transmission
process is ongoing */
HAL_I2C_STATE_BUSY_RX_LISTEN = 0x2AU, /*!< Address Listen Mode and Data Reception
process is ongoing */
HAL_I2C_STATE_ABORT = 0x60U, /*!< Abort user request ongoing */
} HAL_I2C_StateTypeDef;
/**
* @}
*/
/** @defgroup HAL_mode_structure_definition HAL mode structure definition
* @brief HAL Mode structure definition
* @note HAL I2C Mode value coding follow below described bitmap :\n
* b7 (not used)\n
* x : Should be set to 0\n
* b6\n
* 0 : None\n
* 1 : Memory (HAL I2C communication is in Memory Mode)\n
* b5\n
* 0 : None\n
* 1 : Slave (HAL I2C communication is in Slave Mode)\n
* b4\n
* 0 : None\n
* 1 : Master (HAL I2C communication is in Master Mode)\n
* b3-b2-b1-b0 (not used)\n
* xxxx : Should be set to 0000
* @{
*/
typedef enum
{
HAL_I2C_MODE_NONE = 0x00U, /*!< No I2C communication on going */
HAL_I2C_MODE_MASTER = 0x10U, /*!< I2C communication is in Master Mode */
HAL_I2C_MODE_SLAVE = 0x20U, /*!< I2C communication is in Slave Mode */
HAL_I2C_MODE_MEM = 0x40U /*!< I2C communication is in Memory Mode */
} HAL_I2C_ModeTypeDef;
/**
* @}
*/
/** @defgroup I2C_Error_Code_definition I2C Error Code definition
* @brief I2C Error Code definition
* @{
*/
#define HAL_I2C_ERROR_NONE (0x00000000U) /*!< No error */
#define HAL_I2C_ERROR_BERR (0x00000001U) /*!< BERR error */
#define HAL_I2C_ERROR_ARLO (0x00000002U) /*!< ARLO error */
#define HAL_I2C_ERROR_AF (0x00000004U) /*!< ACKF error */
#define HAL_I2C_ERROR_OVR (0x00000008U) /*!< OVR error */
#define HAL_I2C_ERROR_DMA (0x00000010U) /*!< DMA transfer error */
#define HAL_I2C_ERROR_TIMEOUT (0x00000020U) /*!< Timeout error */
#define HAL_I2C_ERROR_SIZE (0x00000040U) /*!< Size Management error */
#define HAL_I2C_ERROR_DMA_PARAM (0x00000080U) /*!< DMA Parameter Error */
#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1)
#define HAL_I2C_ERROR_INVALID_CALLBACK (0x00000100U) /*!< Invalid Callback error */
#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */
#define HAL_I2C_ERROR_INVALID_PARAM (0x00000200U) /*!< Invalid Parameters error */
/**
* @}
*/
/** @defgroup I2C_handle_Structure_definition I2C handle Structure definition
* @brief I2C handle Structure definition
* @{
*/
typedef struct __I2C_HandleTypeDef
{
I2C_TypeDef *Instance; /*!< I2C registers base address */
I2C_InitTypeDef Init; /*!< I2C communication parameters */
uint8_t *pBuffPtr; /*!< Pointer to I2C transfer buffer */
uint16_t XferSize; /*!< I2C transfer size */
__IO uint16_t XferCount; /*!< I2C transfer counter */
__IO uint32_t XferOptions; /*!< I2C sequantial transfer options, this parameter can
be a value of @ref I2C_XFEROPTIONS */
__IO uint32_t PreviousState; /*!< I2C communication Previous state */
HAL_StatusTypeDef(*XferISR)(struct __I2C_HandleTypeDef *hi2c, uint32_t ITFlags, uint32_t ITSources);
/*!< I2C transfer IRQ handler function pointer */
#if defined(HAL_DMA_MODULE_ENABLED)
DMA_HandleTypeDef *hdmatx; /*!< I2C Tx DMA handle parameters */
DMA_HandleTypeDef *hdmarx; /*!< I2C Rx DMA handle parameters */
#endif /*HAL_DMA_MODULE_ENABLED*/
HAL_LockTypeDef Lock; /*!< I2C locking object */
__IO HAL_I2C_StateTypeDef State; /*!< I2C communication state */
__IO HAL_I2C_ModeTypeDef Mode; /*!< I2C communication mode */
__IO uint32_t ErrorCode; /*!< I2C Error code */
__IO uint32_t AddrEventCount; /*!< I2C Address Event counter */
__IO uint32_t Devaddress; /*!< I2C Target device address */
__IO uint32_t Memaddress; /*!< I2C Target memory address */
#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1)
void (* MasterTxCpltCallback)(struct __I2C_HandleTypeDef *hi2c);
/*!< I2C Master Tx Transfer completed callback */
void (* MasterRxCpltCallback)(struct __I2C_HandleTypeDef *hi2c);
/*!< I2C Master Rx Transfer completed callback */
void (* SlaveTxCpltCallback)(struct __I2C_HandleTypeDef *hi2c);
/*!< I2C Slave Tx Transfer completed callback */
void (* SlaveRxCpltCallback)(struct __I2C_HandleTypeDef *hi2c);
/*!< I2C Slave Rx Transfer completed callback */
void (* ListenCpltCallback)(struct __I2C_HandleTypeDef *hi2c);
/*!< I2C Listen Complete callback */
void (* MemTxCpltCallback)(struct __I2C_HandleTypeDef *hi2c);
/*!< I2C Memory Tx Transfer completed callback */
void (* MemRxCpltCallback)(struct __I2C_HandleTypeDef *hi2c);
/*!< I2C Memory Rx Transfer completed callback */
void (* ErrorCallback)(struct __I2C_HandleTypeDef *hi2c);
/*!< I2C Error callback */
void (* AbortCpltCallback)(struct __I2C_HandleTypeDef *hi2c);
/*!< I2C Abort callback */
void (* AddrCallback)(struct __I2C_HandleTypeDef *hi2c, uint8_t TransferDirection, uint16_t AddrMatchCode);
/*!< I2C Slave Address Match callback */
void (* MspInitCallback)(struct __I2C_HandleTypeDef *hi2c);
/*!< I2C Msp Init callback */
void (* MspDeInitCallback)(struct __I2C_HandleTypeDef *hi2c);
/*!< I2C Msp DeInit callback */
#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */
} I2C_HandleTypeDef;
#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1)
/**
* @brief HAL I2C Callback ID enumeration definition
*/
typedef enum
{
HAL_I2C_MASTER_TX_COMPLETE_CB_ID = 0x00U, /*!< I2C Master Tx Transfer completed callback ID */
HAL_I2C_MASTER_RX_COMPLETE_CB_ID = 0x01U, /*!< I2C Master Rx Transfer completed callback ID */
HAL_I2C_SLAVE_TX_COMPLETE_CB_ID = 0x02U, /*!< I2C Slave Tx Transfer completed callback ID */
HAL_I2C_SLAVE_RX_COMPLETE_CB_ID = 0x03U, /*!< I2C Slave Rx Transfer completed callback ID */
HAL_I2C_LISTEN_COMPLETE_CB_ID = 0x04U, /*!< I2C Listen Complete callback ID */
HAL_I2C_MEM_TX_COMPLETE_CB_ID = 0x05U, /*!< I2C Memory Tx Transfer callback ID */
HAL_I2C_MEM_RX_COMPLETE_CB_ID = 0x06U, /*!< I2C Memory Rx Transfer completed callback ID */
HAL_I2C_ERROR_CB_ID = 0x07U, /*!< I2C Error callback ID */
HAL_I2C_ABORT_CB_ID = 0x08U, /*!< I2C Abort callback ID */
HAL_I2C_MSPINIT_CB_ID = 0x09U, /*!< I2C Msp Init callback ID */
HAL_I2C_MSPDEINIT_CB_ID = 0x0AU /*!< I2C Msp DeInit callback ID */
} HAL_I2C_CallbackIDTypeDef;
/**
* @brief HAL I2C Callback pointer definition
*/
typedef void (*pI2C_CallbackTypeDef)(I2C_HandleTypeDef *hi2c);
/*!< pointer to an I2C callback function */
typedef void (*pI2C_AddrCallbackTypeDef)(I2C_HandleTypeDef *hi2c, uint8_t TransferDirection,
uint16_t AddrMatchCode);
/*!< pointer to an I2C Address Match callback function */
#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */
/**
* @}
*/
/**
* @}
*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup I2C_Exported_Constants I2C Exported Constants
* @{
*/
/** @defgroup I2C_XFEROPTIONS I2C Sequential Transfer Options
* @{
*/
#define I2C_FIRST_FRAME ((uint32_t)I2C_SOFTEND_MODE)
#define I2C_FIRST_AND_NEXT_FRAME ((uint32_t)(I2C_RELOAD_MODE | I2C_SOFTEND_MODE))
#define I2C_NEXT_FRAME ((uint32_t)(I2C_RELOAD_MODE | I2C_SOFTEND_MODE))
#define I2C_FIRST_AND_LAST_FRAME ((uint32_t)I2C_AUTOEND_MODE)
#define I2C_LAST_FRAME ((uint32_t)I2C_AUTOEND_MODE)
#define I2C_LAST_FRAME_NO_STOP ((uint32_t)I2C_SOFTEND_MODE)
/* List of XferOptions in usage of :
* 1- Restart condition in all use cases (direction change or not)
*/
#define I2C_OTHER_FRAME (0x000000AAU)
#define I2C_OTHER_AND_LAST_FRAME (0x0000AA00U)
/**
* @}
*/
/** @defgroup I2C_ADDRESSING_MODE I2C Addressing Mode
* @{
*/
#define I2C_ADDRESSINGMODE_7BIT (0x00000001U)
#define I2C_ADDRESSINGMODE_10BIT (0x00000002U)
/**
* @}
*/
/** @defgroup I2C_DUAL_ADDRESSING_MODE I2C Dual Addressing Mode
* @{
*/
#define I2C_DUALADDRESS_DISABLE (0x00000000U)
#define I2C_DUALADDRESS_ENABLE I2C_OAR2_OA2EN
/**
* @}
*/
/** @defgroup I2C_OWN_ADDRESS2_MASKS I2C Own Address2 Masks
* @{
*/
#define I2C_OA2_NOMASK ((uint8_t)0x00U)
#define I2C_OA2_MASK01 ((uint8_t)0x01U)
#define I2C_OA2_MASK02 ((uint8_t)0x02U)
#define I2C_OA2_MASK03 ((uint8_t)0x03U)
#define I2C_OA2_MASK04 ((uint8_t)0x04U)
#define I2C_OA2_MASK05 ((uint8_t)0x05U)
#define I2C_OA2_MASK06 ((uint8_t)0x06U)
#define I2C_OA2_MASK07 ((uint8_t)0x07U)
/**
* @}
*/
/** @defgroup I2C_GENERAL_CALL_ADDRESSING_MODE I2C General Call Addressing Mode
* @{
*/
#define I2C_GENERALCALL_DISABLE (0x00000000U)
#define I2C_GENERALCALL_ENABLE I2C_CR1_GCEN
/**
* @}
*/
/** @defgroup I2C_NOSTRETCH_MODE I2C No-Stretch Mode
* @{
*/
#define I2C_NOSTRETCH_DISABLE (0x00000000U)
#define I2C_NOSTRETCH_ENABLE I2C_CR1_NOSTRETCH
/**
* @}
*/
/** @defgroup I2C_MEMORY_ADDRESS_SIZE I2C Memory Address Size
* @{
*/
#define I2C_MEMADD_SIZE_8BIT (0x00000001U)
#define I2C_MEMADD_SIZE_16BIT (0x00000002U)
/**
* @}
*/
/** @defgroup I2C_XFERDIRECTION I2C Transfer Direction Master Point of View
* @{
*/
#define I2C_DIRECTION_TRANSMIT (0x00000000U)
#define I2C_DIRECTION_RECEIVE (0x00000001U)
/**
* @}
*/
/** @defgroup I2C_RELOAD_END_MODE I2C Reload End Mode
* @{
*/
#define I2C_RELOAD_MODE I2C_CR2_RELOAD
#define I2C_AUTOEND_MODE I2C_CR2_AUTOEND
#define I2C_SOFTEND_MODE (0x00000000U)
/**
* @}
*/
/** @defgroup I2C_START_STOP_MODE I2C Start or Stop Mode
* @{
*/
#define I2C_NO_STARTSTOP (0x00000000U)
#define I2C_GENERATE_STOP (uint32_t)(0x80000000U | I2C_CR2_STOP)
#define I2C_GENERATE_START_READ (uint32_t)(0x80000000U | I2C_CR2_START | I2C_CR2_RD_WRN)
#define I2C_GENERATE_START_WRITE (uint32_t)(0x80000000U | I2C_CR2_START)
/**
* @}
*/
/** @defgroup I2C_Interrupt_configuration_definition I2C Interrupt configuration definition
* @brief I2C Interrupt definition
* Elements values convention: 0xXXXXXXXX
* - XXXXXXXX : Interrupt control mask
* @{
*/
#define I2C_IT_ERRI I2C_CR1_ERRIE
#define I2C_IT_TCI I2C_CR1_TCIE
#define I2C_IT_STOPI I2C_CR1_STOPIE
#define I2C_IT_NACKI I2C_CR1_NACKIE
#define I2C_IT_ADDRI I2C_CR1_ADDRIE
#define I2C_IT_RXI I2C_CR1_RXIE
#define I2C_IT_TXI I2C_CR1_TXIE
/**
* @}
*/
/** @defgroup I2C_Flag_definition I2C Flag definition
* @{
*/
#define I2C_FLAG_TXE I2C_ISR_TXE
#define I2C_FLAG_TXIS I2C_ISR_TXIS
#define I2C_FLAG_RXNE I2C_ISR_RXNE
#define I2C_FLAG_ADDR I2C_ISR_ADDR
#define I2C_FLAG_AF I2C_ISR_NACKF
#define I2C_FLAG_STOPF I2C_ISR_STOPF
#define I2C_FLAG_TC I2C_ISR_TC
#define I2C_FLAG_TCR I2C_ISR_TCR
#define I2C_FLAG_BERR I2C_ISR_BERR
#define I2C_FLAG_ARLO I2C_ISR_ARLO
#define I2C_FLAG_OVR I2C_ISR_OVR
#define I2C_FLAG_PECERR I2C_ISR_PECERR
#define I2C_FLAG_TIMEOUT I2C_ISR_TIMEOUT
#define I2C_FLAG_ALERT I2C_ISR_ALERT
#define I2C_FLAG_BUSY I2C_ISR_BUSY
#define I2C_FLAG_DIR I2C_ISR_DIR
/**
* @}
*/
/**
* @}
*/
/* Exported macros -----------------------------------------------------------*/
/** @defgroup I2C_Exported_Macros I2C Exported Macros
* @{
*/
/** @brief Reset I2C handle state.
* @param __HANDLE__ specifies the I2C Handle.
* @retval None
*/
#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1)
#define __HAL_I2C_RESET_HANDLE_STATE(__HANDLE__) do{ \
(__HANDLE__)->State = HAL_I2C_STATE_RESET; \
(__HANDLE__)->MspInitCallback = NULL; \
(__HANDLE__)->MspDeInitCallback = NULL; \
} while(0)
#else
#define __HAL_I2C_RESET_HANDLE_STATE(__HANDLE__) ((__HANDLE__)->State = HAL_I2C_STATE_RESET)
#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */
/** @brief Enable the specified I2C interrupt.
* @param __HANDLE__ specifies the I2C Handle.
* @param __INTERRUPT__ specifies the interrupt source to enable.
* This parameter can be one of the following values:
* @arg @ref I2C_IT_ERRI Errors interrupt enable
* @arg @ref I2C_IT_TCI Transfer complete interrupt enable
* @arg @ref I2C_IT_STOPI STOP detection interrupt enable
* @arg @ref I2C_IT_NACKI NACK received interrupt enable
* @arg @ref I2C_IT_ADDRI Address match interrupt enable
* @arg @ref I2C_IT_RXI RX interrupt enable
* @arg @ref I2C_IT_TXI TX interrupt enable
*
* @retval None
*/
#define __HAL_I2C_ENABLE_IT(__HANDLE__, __INTERRUPT__) ((__HANDLE__)->Instance->CR1 |= (__INTERRUPT__))
/** @brief Disable the specified I2C interrupt.
* @param __HANDLE__ specifies the I2C Handle.
* @param __INTERRUPT__ specifies the interrupt source to disable.
* This parameter can be one of the following values:
* @arg @ref I2C_IT_ERRI Errors interrupt enable
* @arg @ref I2C_IT_TCI Transfer complete interrupt enable
* @arg @ref I2C_IT_STOPI STOP detection interrupt enable
* @arg @ref I2C_IT_NACKI NACK received interrupt enable
* @arg @ref I2C_IT_ADDRI Address match interrupt enable
* @arg @ref I2C_IT_RXI RX interrupt enable
* @arg @ref I2C_IT_TXI TX interrupt enable
*
* @retval None
*/
#define __HAL_I2C_DISABLE_IT(__HANDLE__, __INTERRUPT__) ((__HANDLE__)->Instance->CR1 &= (~(__INTERRUPT__)))
/** @brief Check whether the specified I2C interrupt source is enabled or not.
* @param __HANDLE__ specifies the I2C Handle.
* @param __INTERRUPT__ specifies the I2C interrupt source to check.
* This parameter can be one of the following values:
* @arg @ref I2C_IT_ERRI Errors interrupt enable
* @arg @ref I2C_IT_TCI Transfer complete interrupt enable
* @arg @ref I2C_IT_STOPI STOP detection interrupt enable
* @arg @ref I2C_IT_NACKI NACK received interrupt enable
* @arg @ref I2C_IT_ADDRI Address match interrupt enable
* @arg @ref I2C_IT_RXI RX interrupt enable
* @arg @ref I2C_IT_TXI TX interrupt enable
*
* @retval The new state of __INTERRUPT__ (SET or RESET).
*/
#define __HAL_I2C_GET_IT_SOURCE(__HANDLE__, __INTERRUPT__) ((((__HANDLE__)->Instance->CR1 & \
(__INTERRUPT__)) == (__INTERRUPT__)) ? SET : RESET)
/** @brief Check whether the specified I2C flag is set or not.
* @param __HANDLE__ specifies the I2C Handle.
* @param __FLAG__ specifies the flag to check.
* This parameter can be one of the following values:
* @arg @ref I2C_FLAG_TXE Transmit data register empty
* @arg @ref I2C_FLAG_TXIS Transmit interrupt status
* @arg @ref I2C_FLAG_RXNE Receive data register not empty
* @arg @ref I2C_FLAG_ADDR Address matched (slave mode)
* @arg @ref I2C_FLAG_AF Acknowledge failure received flag
* @arg @ref I2C_FLAG_STOPF STOP detection flag
* @arg @ref I2C_FLAG_TC Transfer complete (master mode)
* @arg @ref I2C_FLAG_TCR Transfer complete reload
* @arg @ref I2C_FLAG_BERR Bus error
* @arg @ref I2C_FLAG_ARLO Arbitration lost
* @arg @ref I2C_FLAG_OVR Overrun/Underrun
* @arg @ref I2C_FLAG_PECERR PEC error in reception
* @arg @ref I2C_FLAG_TIMEOUT Timeout or Tlow detection flag
* @arg @ref I2C_FLAG_ALERT SMBus alert
* @arg @ref I2C_FLAG_BUSY Bus busy
* @arg @ref I2C_FLAG_DIR Transfer direction (slave mode)
*
* @retval The new state of __FLAG__ (SET or RESET).
*/
#define I2C_FLAG_MASK (0x0001FFFFU)
#define __HAL_I2C_GET_FLAG(__HANDLE__, __FLAG__) (((((__HANDLE__)->Instance->ISR) & \
(__FLAG__)) == (__FLAG__)) ? SET : RESET)
/** @brief Clear the I2C pending flags which are cleared by writing 1 in a specific bit.
* @param __HANDLE__ specifies the I2C Handle.
* @param __FLAG__ specifies the flag to clear.
* This parameter can be any combination of the following values:
* @arg @ref I2C_FLAG_TXE Transmit data register empty
* @arg @ref I2C_FLAG_ADDR Address matched (slave mode)
* @arg @ref I2C_FLAG_AF Acknowledge failure received flag
* @arg @ref I2C_FLAG_STOPF STOP detection flag
* @arg @ref I2C_FLAG_BERR Bus error
* @arg @ref I2C_FLAG_ARLO Arbitration lost
* @arg @ref I2C_FLAG_OVR Overrun/Underrun
* @arg @ref I2C_FLAG_PECERR PEC error in reception
* @arg @ref I2C_FLAG_TIMEOUT Timeout or Tlow detection flag
* @arg @ref I2C_FLAG_ALERT SMBus alert
*
* @retval None
*/
#define __HAL_I2C_CLEAR_FLAG(__HANDLE__, __FLAG__) (((__FLAG__) == I2C_FLAG_TXE) ? \
((__HANDLE__)->Instance->ISR |= (__FLAG__)) : \
((__HANDLE__)->Instance->ICR = (__FLAG__)))
/** @brief Enable the specified I2C peripheral.
* @param __HANDLE__ specifies the I2C Handle.
* @retval None
*/
#define __HAL_I2C_ENABLE(__HANDLE__) (SET_BIT((__HANDLE__)->Instance->CR1, I2C_CR1_PE))
/** @brief Disable the specified I2C peripheral.
* @param __HANDLE__ specifies the I2C Handle.
* @retval None
*/
#define __HAL_I2C_DISABLE(__HANDLE__) (CLEAR_BIT((__HANDLE__)->Instance->CR1, I2C_CR1_PE))
/** @brief Generate a Non-Acknowledge I2C peripheral in Slave mode.
* @param __HANDLE__ specifies the I2C Handle.
* @retval None
*/
#define __HAL_I2C_GENERATE_NACK(__HANDLE__) (SET_BIT((__HANDLE__)->Instance->CR2, I2C_CR2_NACK))
/**
* @}
*/
/* Include I2C HAL Extended module */
#include "stm32wbxx_hal_i2c_ex.h"
/* Exported functions --------------------------------------------------------*/
/** @addtogroup I2C_Exported_Functions
* @{
*/
/** @addtogroup I2C_Exported_Functions_Group1 Initialization and de-initialization functions
* @{
*/
/* Initialization and de-initialization functions******************************/
HAL_StatusTypeDef HAL_I2C_Init(I2C_HandleTypeDef *hi2c);
HAL_StatusTypeDef HAL_I2C_DeInit(I2C_HandleTypeDef *hi2c);
void HAL_I2C_MspInit(I2C_HandleTypeDef *hi2c);
void HAL_I2C_MspDeInit(I2C_HandleTypeDef *hi2c);
/* Callbacks Register/UnRegister functions ***********************************/
#if (USE_HAL_I2C_REGISTER_CALLBACKS == 1)
HAL_StatusTypeDef HAL_I2C_RegisterCallback(I2C_HandleTypeDef *hi2c, HAL_I2C_CallbackIDTypeDef CallbackID,
pI2C_CallbackTypeDef pCallback);
HAL_StatusTypeDef HAL_I2C_UnRegisterCallback(I2C_HandleTypeDef *hi2c, HAL_I2C_CallbackIDTypeDef CallbackID);
HAL_StatusTypeDef HAL_I2C_RegisterAddrCallback(I2C_HandleTypeDef *hi2c, pI2C_AddrCallbackTypeDef pCallback);
HAL_StatusTypeDef HAL_I2C_UnRegisterAddrCallback(I2C_HandleTypeDef *hi2c);
#endif /* USE_HAL_I2C_REGISTER_CALLBACKS */
/**
* @}
*/
/** @addtogroup I2C_Exported_Functions_Group2 Input and Output operation functions
* @{
*/
/* IO operation functions ****************************************************/
/******* Blocking mode: Polling */
HAL_StatusTypeDef HAL_I2C_Master_Transmit(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData,
uint16_t Size, uint32_t Timeout);
HAL_StatusTypeDef HAL_I2C_Master_Receive(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData,
uint16_t Size, uint32_t Timeout);
HAL_StatusTypeDef HAL_I2C_Slave_Transmit(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size,
uint32_t Timeout);
HAL_StatusTypeDef HAL_I2C_Slave_Receive(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size,
uint32_t Timeout);
HAL_StatusTypeDef HAL_I2C_Mem_Write(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress,
uint16_t MemAddSize, uint8_t *pData, uint16_t Size, uint32_t Timeout);
HAL_StatusTypeDef HAL_I2C_Mem_Read(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress,
uint16_t MemAddSize, uint8_t *pData, uint16_t Size, uint32_t Timeout);
HAL_StatusTypeDef HAL_I2C_IsDeviceReady(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint32_t Trials,
uint32_t Timeout);
/******* Non-Blocking mode: Interrupt */
HAL_StatusTypeDef HAL_I2C_Master_Transmit_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData,
uint16_t Size);
HAL_StatusTypeDef HAL_I2C_Master_Receive_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData,
uint16_t Size);
HAL_StatusTypeDef HAL_I2C_Slave_Transmit_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_I2C_Slave_Receive_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_I2C_Mem_Write_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress,
uint16_t MemAddSize, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_I2C_Mem_Read_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress,
uint16_t MemAddSize, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_I2C_Master_Seq_Transmit_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData,
uint16_t Size, uint32_t XferOptions);
HAL_StatusTypeDef HAL_I2C_Master_Seq_Receive_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData,
uint16_t Size, uint32_t XferOptions);
HAL_StatusTypeDef HAL_I2C_Slave_Seq_Transmit_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size,
uint32_t XferOptions);
HAL_StatusTypeDef HAL_I2C_Slave_Seq_Receive_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size,
uint32_t XferOptions);
HAL_StatusTypeDef HAL_I2C_EnableListen_IT(I2C_HandleTypeDef *hi2c);
HAL_StatusTypeDef HAL_I2C_DisableListen_IT(I2C_HandleTypeDef *hi2c);
HAL_StatusTypeDef HAL_I2C_Master_Abort_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress);
#if defined(HAL_DMA_MODULE_ENABLED)
/******* Non-Blocking mode: DMA */
HAL_StatusTypeDef HAL_I2C_Master_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData,
uint16_t Size);
HAL_StatusTypeDef HAL_I2C_Master_Receive_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData,
uint16_t Size);
HAL_StatusTypeDef HAL_I2C_Slave_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_I2C_Slave_Receive_DMA(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_I2C_Mem_Write_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress,
uint16_t MemAddSize, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_I2C_Mem_Read_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress,
uint16_t MemAddSize, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_I2C_Master_Seq_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData,
uint16_t Size, uint32_t XferOptions);
HAL_StatusTypeDef HAL_I2C_Master_Seq_Receive_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData,
uint16_t Size, uint32_t XferOptions);
HAL_StatusTypeDef HAL_I2C_Slave_Seq_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size,
uint32_t XferOptions);
HAL_StatusTypeDef HAL_I2C_Slave_Seq_Receive_DMA(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size,
uint32_t XferOptions);
#endif /*HAL_DMA_MODULE_ENABLED*/
/**
* @}
*/
/** @addtogroup I2C_IRQ_Handler_and_Callbacks IRQ Handler and Callbacks
* @{
*/
/******* I2C IRQHandler and Callbacks used in non blocking modes (Interrupt and DMA) */
void HAL_I2C_EV_IRQHandler(I2C_HandleTypeDef *hi2c);
void HAL_I2C_ER_IRQHandler(I2C_HandleTypeDef *hi2c);
void HAL_I2C_MasterTxCpltCallback(I2C_HandleTypeDef *hi2c);
void HAL_I2C_MasterRxCpltCallback(I2C_HandleTypeDef *hi2c);
void HAL_I2C_SlaveTxCpltCallback(I2C_HandleTypeDef *hi2c);
void HAL_I2C_SlaveRxCpltCallback(I2C_HandleTypeDef *hi2c);
void HAL_I2C_AddrCallback(I2C_HandleTypeDef *hi2c, uint8_t TransferDirection, uint16_t AddrMatchCode);
void HAL_I2C_ListenCpltCallback(I2C_HandleTypeDef *hi2c);
void HAL_I2C_MemTxCpltCallback(I2C_HandleTypeDef *hi2c);
void HAL_I2C_MemRxCpltCallback(I2C_HandleTypeDef *hi2c);
void HAL_I2C_ErrorCallback(I2C_HandleTypeDef *hi2c);
void HAL_I2C_AbortCpltCallback(I2C_HandleTypeDef *hi2c);
/**
* @}
*/
/** @addtogroup I2C_Exported_Functions_Group3 Peripheral State, Mode and Error functions
* @{
*/
/* Peripheral State, Mode and Error functions *********************************/
HAL_I2C_StateTypeDef HAL_I2C_GetState(const I2C_HandleTypeDef *hi2c);
HAL_I2C_ModeTypeDef HAL_I2C_GetMode(const I2C_HandleTypeDef *hi2c);
uint32_t HAL_I2C_GetError(const I2C_HandleTypeDef *hi2c);
/**
* @}
*/
/**
* @}
*/
/* Private constants ---------------------------------------------------------*/
/** @defgroup I2C_Private_Constants I2C Private Constants
* @{
*/
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/** @defgroup I2C_Private_Macro I2C Private Macros
* @{
*/
#define IS_I2C_ADDRESSING_MODE(MODE) (((MODE) == I2C_ADDRESSINGMODE_7BIT) || \
((MODE) == I2C_ADDRESSINGMODE_10BIT))
#define IS_I2C_DUAL_ADDRESS(ADDRESS) (((ADDRESS) == I2C_DUALADDRESS_DISABLE) || \
((ADDRESS) == I2C_DUALADDRESS_ENABLE))
#define IS_I2C_OWN_ADDRESS2_MASK(MASK) (((MASK) == I2C_OA2_NOMASK) || \
((MASK) == I2C_OA2_MASK01) || \
((MASK) == I2C_OA2_MASK02) || \
((MASK) == I2C_OA2_MASK03) || \
((MASK) == I2C_OA2_MASK04) || \
((MASK) == I2C_OA2_MASK05) || \
((MASK) == I2C_OA2_MASK06) || \
((MASK) == I2C_OA2_MASK07))
#define IS_I2C_GENERAL_CALL(CALL) (((CALL) == I2C_GENERALCALL_DISABLE) || \
((CALL) == I2C_GENERALCALL_ENABLE))
#define IS_I2C_NO_STRETCH(STRETCH) (((STRETCH) == I2C_NOSTRETCH_DISABLE) || \
((STRETCH) == I2C_NOSTRETCH_ENABLE))
#define IS_I2C_MEMADD_SIZE(SIZE) (((SIZE) == I2C_MEMADD_SIZE_8BIT) || \
((SIZE) == I2C_MEMADD_SIZE_16BIT))
#define IS_TRANSFER_MODE(MODE) (((MODE) == I2C_RELOAD_MODE) || \
((MODE) == I2C_AUTOEND_MODE) || \
((MODE) == I2C_SOFTEND_MODE))
#define IS_TRANSFER_REQUEST(REQUEST) (((REQUEST) == I2C_GENERATE_STOP) || \
((REQUEST) == I2C_GENERATE_START_READ) || \
((REQUEST) == I2C_GENERATE_START_WRITE) || \
((REQUEST) == I2C_NO_STARTSTOP))
#define IS_I2C_TRANSFER_OPTIONS_REQUEST(REQUEST) (((REQUEST) == I2C_FIRST_FRAME) || \
((REQUEST) == I2C_FIRST_AND_NEXT_FRAME) || \
((REQUEST) == I2C_NEXT_FRAME) || \
((REQUEST) == I2C_FIRST_AND_LAST_FRAME) || \
((REQUEST) == I2C_LAST_FRAME) || \
((REQUEST) == I2C_LAST_FRAME_NO_STOP) || \
IS_I2C_TRANSFER_OTHER_OPTIONS_REQUEST(REQUEST))
#define IS_I2C_TRANSFER_OTHER_OPTIONS_REQUEST(REQUEST) (((REQUEST) == I2C_OTHER_FRAME) || \
((REQUEST) == I2C_OTHER_AND_LAST_FRAME))
#define I2C_RESET_CR2(__HANDLE__) ((__HANDLE__)->Instance->CR2 &= \
(uint32_t)~((uint32_t)(I2C_CR2_SADD | I2C_CR2_HEAD10R | \
I2C_CR2_NBYTES | I2C_CR2_RELOAD | \
I2C_CR2_RD_WRN)))
#define I2C_GET_ADDR_MATCH(__HANDLE__) ((uint16_t)(((__HANDLE__)->Instance->ISR & I2C_ISR_ADDCODE) \
>> 16U))
#define I2C_GET_DIR(__HANDLE__) ((uint8_t)(((__HANDLE__)->Instance->ISR & I2C_ISR_DIR) \
>> 16U))
#define I2C_GET_STOP_MODE(__HANDLE__) ((__HANDLE__)->Instance->CR2 & I2C_CR2_AUTOEND)
#define I2C_GET_OWN_ADDRESS1(__HANDLE__) ((uint16_t)((__HANDLE__)->Instance->OAR1 & I2C_OAR1_OA1))
#define I2C_GET_OWN_ADDRESS2(__HANDLE__) ((uint16_t)((__HANDLE__)->Instance->OAR2 & I2C_OAR2_OA2))
#define IS_I2C_OWN_ADDRESS1(ADDRESS1) ((ADDRESS1) <= 0x000003FFU)
#define IS_I2C_OWN_ADDRESS2(ADDRESS2) ((ADDRESS2) <= (uint16_t)0x00FFU)
#define I2C_MEM_ADD_MSB(__ADDRESS__) ((uint8_t)((uint16_t)(((uint16_t)((__ADDRESS__) & \
(uint16_t)(0xFF00U))) >> 8U)))
#define I2C_MEM_ADD_LSB(__ADDRESS__) ((uint8_t)((uint16_t)((__ADDRESS__) & (uint16_t)(0x00FFU))))
#define I2C_GENERATE_START(__ADDMODE__,__ADDRESS__) (((__ADDMODE__) == I2C_ADDRESSINGMODE_7BIT) ? \
(uint32_t)((((uint32_t)(__ADDRESS__) & (I2C_CR2_SADD)) | \
(I2C_CR2_START) | (I2C_CR2_AUTOEND)) & \
(~I2C_CR2_RD_WRN)) : \
(uint32_t)((((uint32_t)(__ADDRESS__) & (I2C_CR2_SADD)) | \
(I2C_CR2_ADD10) | (I2C_CR2_START) | \
(I2C_CR2_AUTOEND)) & (~I2C_CR2_RD_WRN)))
#define I2C_CHECK_FLAG(__ISR__, __FLAG__) ((((__ISR__) & ((__FLAG__) & I2C_FLAG_MASK)) == \
((__FLAG__) & I2C_FLAG_MASK)) ? SET : RESET)
#define I2C_CHECK_IT_SOURCE(__CR1__, __IT__) ((((__CR1__) & (__IT__)) == (__IT__)) ? SET : RESET)
/**
* @}
*/
/* Private Functions ---------------------------------------------------------*/
/** @defgroup I2C_Private_Functions I2C Private Functions
* @{
*/
/* Private functions are defined in stm32wbxx_hal_i2c.c file */
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* STM32WBxx_HAL_I2C_H */

View File

@@ -0,0 +1,170 @@
/**
******************************************************************************
* @file stm32wbxx_hal_i2c_ex.h
* @author MCD Application Team
* @brief Header file of I2C HAL Extended module.
******************************************************************************
* @attention
*
* Copyright (c) 2019 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef STM32WBxx_HAL_I2C_EX_H
#define STM32WBxx_HAL_I2C_EX_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32wbxx_hal_def.h"
/** @addtogroup STM32WBxx_HAL_Driver
* @{
*/
/** @addtogroup I2CEx
* @{
*/
/* Exported types ------------------------------------------------------------*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup I2CEx_Exported_Constants I2C Extended Exported Constants
* @{
*/
/** @defgroup I2CEx_Analog_Filter I2C Extended Analog Filter
* @{
*/
#define I2C_ANALOGFILTER_ENABLE 0x00000000U
#define I2C_ANALOGFILTER_DISABLE I2C_CR1_ANFOFF
/**
* @}
*/
/** @defgroup I2CEx_FastModePlus I2C Extended Fast Mode Plus
* @{
*/
#define I2C_FMP_NOT_SUPPORTED 0xAAAA0000U /*!< Fast Mode Plus not supported */
#define I2C_FASTMODEPLUS_PB6 SYSCFG_CFGR1_I2C_PB6_FMP /*!< Enable Fast Mode Plus on PB6 */
#define I2C_FASTMODEPLUS_PB7 SYSCFG_CFGR1_I2C_PB7_FMP /*!< Enable Fast Mode Plus on PB7 */
#define I2C_FASTMODEPLUS_PB8 SYSCFG_CFGR1_I2C_PB8_FMP /*!< Enable Fast Mode Plus on PB8 */
#define I2C_FASTMODEPLUS_PB9 SYSCFG_CFGR1_I2C_PB9_FMP /*!< Enable Fast Mode Plus on PB9 */
#define I2C_FASTMODEPLUS_I2C1 SYSCFG_CFGR1_I2C1_FMP /*!< Enable Fast Mode Plus on I2C1 pins */
#if defined(SYSCFG_CFGR1_I2C3_FMP)
#define I2C_FASTMODEPLUS_I2C3 SYSCFG_CFGR1_I2C3_FMP /*!< Enable Fast Mode Plus on I2C3 pins */
#else
#define I2C_FASTMODEPLUS_I2C3 (uint32_t)(0x00000400U | I2C_FMP_NOT_SUPPORTED) /*!< Fast Mode Plus I2C3 not supported */
#endif /* SYSCFG_CFGR1_I2C3_FMP */
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/** @defgroup I2CEx_Exported_Macros I2C Extended Exported Macros
* @{
*/
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup I2CEx_Exported_Functions I2C Extended Exported Functions
* @{
*/
/** @addtogroup I2CEx_Exported_Functions_Group1 Filter Mode Functions
* @{
*/
/* Peripheral Control functions ************************************************/
HAL_StatusTypeDef HAL_I2CEx_ConfigAnalogFilter(I2C_HandleTypeDef *hi2c, uint32_t AnalogFilter);
HAL_StatusTypeDef HAL_I2CEx_ConfigDigitalFilter(I2C_HandleTypeDef *hi2c, uint32_t DigitalFilter);
/**
* @}
*/
/** @addtogroup I2CEx_Exported_Functions_Group2 WakeUp Mode Functions
* @{
*/
HAL_StatusTypeDef HAL_I2CEx_EnableWakeUp(I2C_HandleTypeDef *hi2c);
HAL_StatusTypeDef HAL_I2CEx_DisableWakeUp(I2C_HandleTypeDef *hi2c);
/**
* @}
*/
/** @addtogroup I2CEx_Exported_Functions_Group3 Fast Mode Plus Functions
* @{
*/
void HAL_I2CEx_EnableFastModePlus(uint32_t ConfigFastModePlus);
void HAL_I2CEx_DisableFastModePlus(uint32_t ConfigFastModePlus);
/**
* @}
*/
/**
* @}
*/
/* Private constants ---------------------------------------------------------*/
/** @defgroup I2CEx_Private_Constants I2C Extended Private Constants
* @{
*/
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/** @defgroup I2CEx_Private_Macro I2C Extended Private Macros
* @{
*/
#define IS_I2C_ANALOG_FILTER(FILTER) (((FILTER) == I2C_ANALOGFILTER_ENABLE) || \
((FILTER) == I2C_ANALOGFILTER_DISABLE))
#define IS_I2C_DIGITAL_FILTER(FILTER) ((FILTER) <= 0x0000000FU)
#define IS_I2C_FASTMODEPLUS(__CONFIG__) ((((__CONFIG__) & (I2C_FASTMODEPLUS_PB6)) == I2C_FASTMODEPLUS_PB6) || \
(((__CONFIG__) & (I2C_FASTMODEPLUS_PB7)) == I2C_FASTMODEPLUS_PB7) || \
(((__CONFIG__) & (I2C_FASTMODEPLUS_PB8)) == I2C_FASTMODEPLUS_PB8) || \
(((__CONFIG__) & (I2C_FASTMODEPLUS_PB9)) == I2C_FASTMODEPLUS_PB9) || \
(((__CONFIG__) & (I2C_FASTMODEPLUS_I2C1)) == I2C_FASTMODEPLUS_I2C1) || \
(((__CONFIG__) & (I2C_FASTMODEPLUS_I2C3)) == I2C_FASTMODEPLUS_I2C3))
/**
* @}
*/
/* Private Functions ---------------------------------------------------------*/
/** @defgroup I2CEx_Private_Functions I2C Extended Private Functions
* @{
*/
/* Private functions are defined in stm32wbxx_hal_i2c_ex.c file */
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* STM32WBxx_HAL_I2C_EX_H */

View File

@@ -0,0 +1,991 @@
/**
******************************************************************************
* @file stm32wbxx_hal_pcd.h
* @author MCD Application Team
* @brief Header file of PCD HAL module.
******************************************************************************
* @attention
*
* Copyright (c) 2019 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef STM32WBxx_HAL_PCD_H
#define STM32WBxx_HAL_PCD_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32wbxx_ll_usb.h"
#if defined (USB)
/** @addtogroup STM32WBxx_HAL_Driver
* @{
*/
/** @addtogroup PCD
* @{
*/
/* Exported types ------------------------------------------------------------*/
/** @defgroup PCD_Exported_Types PCD Exported Types
* @{
*/
/**
* @brief PCD State structure definition
*/
typedef enum
{
HAL_PCD_STATE_RESET = 0x00,
HAL_PCD_STATE_READY = 0x01,
HAL_PCD_STATE_ERROR = 0x02,
HAL_PCD_STATE_BUSY = 0x03,
HAL_PCD_STATE_TIMEOUT = 0x04
} PCD_StateTypeDef;
/* Device LPM suspend state */
typedef enum
{
LPM_L0 = 0x00, /* on */
LPM_L1 = 0x01, /* LPM L1 sleep */
LPM_L2 = 0x02, /* suspend */
LPM_L3 = 0x03, /* off */
} PCD_LPM_StateTypeDef;
typedef enum
{
PCD_LPM_L0_ACTIVE = 0x00, /* on */
PCD_LPM_L1_ACTIVE = 0x01, /* LPM L1 sleep */
} PCD_LPM_MsgTypeDef;
typedef enum
{
PCD_BCD_ERROR = 0xFF,
PCD_BCD_CONTACT_DETECTION = 0xFE,
PCD_BCD_STD_DOWNSTREAM_PORT = 0xFD,
PCD_BCD_CHARGING_DOWNSTREAM_PORT = 0xFC,
PCD_BCD_DEDICATED_CHARGING_PORT = 0xFB,
PCD_BCD_DISCOVERY_COMPLETED = 0x00,
} PCD_BCD_MsgTypeDef;
typedef USB_TypeDef PCD_TypeDef;
typedef USB_CfgTypeDef PCD_InitTypeDef;
typedef USB_EPTypeDef PCD_EPTypeDef;
/**
* @brief PCD Handle Structure definition
*/
#if (USE_HAL_PCD_REGISTER_CALLBACKS == 1U)
typedef struct __PCD_HandleTypeDef
#else
typedef struct
#endif /* USE_HAL_PCD_REGISTER_CALLBACKS */
{
PCD_TypeDef *Instance; /*!< Register base address */
PCD_InitTypeDef Init; /*!< PCD required parameters */
__IO uint8_t USB_Address; /*!< USB Address */
PCD_EPTypeDef IN_ep[8]; /*!< IN endpoint parameters */
PCD_EPTypeDef OUT_ep[8]; /*!< OUT endpoint parameters */
HAL_LockTypeDef Lock; /*!< PCD peripheral status */
__IO PCD_StateTypeDef State; /*!< PCD communication state */
__IO uint32_t ErrorCode; /*!< PCD Error code */
uint32_t Setup[12]; /*!< Setup packet buffer */
PCD_LPM_StateTypeDef LPM_State; /*!< LPM State */
uint32_t BESL;
uint32_t lpm_active; /*!< Enable or disable the Link Power Management .
This parameter can be set to ENABLE or DISABLE */
uint32_t battery_charging_active; /*!< Enable or disable Battery charging.
This parameter can be set to ENABLE or DISABLE */
void *pData; /*!< Pointer to upper stack Handler */
#if (USE_HAL_PCD_REGISTER_CALLBACKS == 1U)
void (* SOFCallback)(struct __PCD_HandleTypeDef *hpcd); /*!< USB OTG PCD SOF callback */
void (* SetupStageCallback)(struct __PCD_HandleTypeDef *hpcd); /*!< USB OTG PCD Setup Stage callback */
void (* ResetCallback)(struct __PCD_HandleTypeDef *hpcd); /*!< USB OTG PCD Reset callback */
void (* SuspendCallback)(struct __PCD_HandleTypeDef *hpcd); /*!< USB OTG PCD Suspend callback */
void (* ResumeCallback)(struct __PCD_HandleTypeDef *hpcd); /*!< USB OTG PCD Resume callback */
void (* ConnectCallback)(struct __PCD_HandleTypeDef *hpcd); /*!< USB OTG PCD Connect callback */
void (* DisconnectCallback)(struct __PCD_HandleTypeDef *hpcd); /*!< USB OTG PCD Disconnect callback */
void (* DataOutStageCallback)(struct __PCD_HandleTypeDef *hpcd, uint8_t epnum); /*!< USB OTG PCD Data OUT Stage callback */
void (* DataInStageCallback)(struct __PCD_HandleTypeDef *hpcd, uint8_t epnum); /*!< USB OTG PCD Data IN Stage callback */
void (* ISOOUTIncompleteCallback)(struct __PCD_HandleTypeDef *hpcd, uint8_t epnum); /*!< USB OTG PCD ISO OUT Incomplete callback */
void (* ISOINIncompleteCallback)(struct __PCD_HandleTypeDef *hpcd, uint8_t epnum); /*!< USB OTG PCD ISO IN Incomplete callback */
void (* BCDCallback)(struct __PCD_HandleTypeDef *hpcd, PCD_BCD_MsgTypeDef msg); /*!< USB OTG PCD BCD callback */
void (* LPMCallback)(struct __PCD_HandleTypeDef *hpcd, PCD_LPM_MsgTypeDef msg); /*!< USB OTG PCD LPM callback */
void (* MspInitCallback)(struct __PCD_HandleTypeDef *hpcd); /*!< USB OTG PCD Msp Init callback */
void (* MspDeInitCallback)(struct __PCD_HandleTypeDef *hpcd); /*!< USB OTG PCD Msp DeInit callback */
#endif /* USE_HAL_PCD_REGISTER_CALLBACKS */
} PCD_HandleTypeDef;
/**
* @}
*/
/* Include PCD HAL Extended module */
#include "stm32wbxx_hal_pcd_ex.h"
/* Exported constants --------------------------------------------------------*/
/** @defgroup PCD_Exported_Constants PCD Exported Constants
* @{
*/
/** @defgroup PCD_Speed PCD Speed
* @{
*/
#define PCD_SPEED_FULL USBD_FS_SPEED
/**
* @}
*/
/** @defgroup PCD_PHY_Module PCD PHY Module
* @{
*/
#define PCD_PHY_ULPI 1U
#define PCD_PHY_EMBEDDED 2U
#define PCD_PHY_UTMI 3U
/**
* @}
*/
/** @defgroup PCD_Error_Code_definition PCD Error Code definition
* @brief PCD Error Code definition
* @{
*/
#if (USE_HAL_PCD_REGISTER_CALLBACKS == 1U)
#define HAL_PCD_ERROR_INVALID_CALLBACK (0x00000010U) /*!< Invalid Callback error */
#endif /* USE_HAL_PCD_REGISTER_CALLBACKS */
/**
* @}
*/
/**
* @}
*/
/* Exported macros -----------------------------------------------------------*/
/** @defgroup PCD_Exported_Macros PCD Exported Macros
* @brief macros to handle interrupts and specific clock configurations
* @{
*/
#define __HAL_PCD_ENABLE(__HANDLE__) (void)USB_EnableGlobalInt ((__HANDLE__)->Instance)
#define __HAL_PCD_DISABLE(__HANDLE__) (void)USB_DisableGlobalInt ((__HANDLE__)->Instance)
#define __HAL_PCD_GET_FLAG(__HANDLE__, __INTERRUPT__) \
((USB_ReadInterrupts((__HANDLE__)->Instance) & (__INTERRUPT__)) == (__INTERRUPT__))
#define __HAL_PCD_CLEAR_FLAG(__HANDLE__, __INTERRUPT__) (((__HANDLE__)->Instance->ISTR)\
&= (uint16_t)(~(__INTERRUPT__)))
#define __HAL_USB_WAKEUP_EXTI_ENABLE_IT() EXTI->IMR1 |= USB_WAKEUP_EXTI_LINE
#define __HAL_USB_WAKEUP_EXTI_DISABLE_IT() EXTI->IMR1 &= ~(USB_WAKEUP_EXTI_LINE)
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup PCD_Exported_Functions PCD Exported Functions
* @{
*/
/* Initialization/de-initialization functions ********************************/
/** @addtogroup PCD_Exported_Functions_Group1 Initialization and de-initialization functions
* @{
*/
HAL_StatusTypeDef HAL_PCD_Init(PCD_HandleTypeDef *hpcd);
HAL_StatusTypeDef HAL_PCD_DeInit(PCD_HandleTypeDef *hpcd);
void HAL_PCD_MspInit(PCD_HandleTypeDef *hpcd);
void HAL_PCD_MspDeInit(PCD_HandleTypeDef *hpcd);
#if (USE_HAL_PCD_REGISTER_CALLBACKS == 1U)
/** @defgroup HAL_PCD_Callback_ID_enumeration_definition HAL USB OTG PCD Callback ID enumeration definition
* @brief HAL USB OTG PCD Callback ID enumeration definition
* @{
*/
typedef enum
{
HAL_PCD_SOF_CB_ID = 0x01, /*!< USB PCD SOF callback ID */
HAL_PCD_SETUPSTAGE_CB_ID = 0x02, /*!< USB PCD Setup Stage callback ID */
HAL_PCD_RESET_CB_ID = 0x03, /*!< USB PCD Reset callback ID */
HAL_PCD_SUSPEND_CB_ID = 0x04, /*!< USB PCD Suspend callback ID */
HAL_PCD_RESUME_CB_ID = 0x05, /*!< USB PCD Resume callback ID */
HAL_PCD_CONNECT_CB_ID = 0x06, /*!< USB PCD Connect callback ID */
HAL_PCD_DISCONNECT_CB_ID = 0x07, /*!< USB PCD Disconnect callback ID */
HAL_PCD_MSPINIT_CB_ID = 0x08, /*!< USB PCD MspInit callback ID */
HAL_PCD_MSPDEINIT_CB_ID = 0x09 /*!< USB PCD MspDeInit callback ID */
} HAL_PCD_CallbackIDTypeDef;
/**
* @}
*/
/** @defgroup HAL_PCD_Callback_pointer_definition HAL USB OTG PCD Callback pointer definition
* @brief HAL USB OTG PCD Callback pointer definition
* @{
*/
typedef void (*pPCD_CallbackTypeDef)(PCD_HandleTypeDef *hpcd); /*!< pointer to a common USB OTG PCD callback function */
typedef void (*pPCD_DataOutStageCallbackTypeDef)(PCD_HandleTypeDef *hpcd, uint8_t epnum); /*!< pointer to USB OTG PCD Data OUT Stage callback */
typedef void (*pPCD_DataInStageCallbackTypeDef)(PCD_HandleTypeDef *hpcd, uint8_t epnum); /*!< pointer to USB OTG PCD Data IN Stage callback */
typedef void (*pPCD_IsoOutIncpltCallbackTypeDef)(PCD_HandleTypeDef *hpcd, uint8_t epnum); /*!< pointer to USB OTG PCD ISO OUT Incomplete callback */
typedef void (*pPCD_IsoInIncpltCallbackTypeDef)(PCD_HandleTypeDef *hpcd, uint8_t epnum); /*!< pointer to USB OTG PCD ISO IN Incomplete callback */
typedef void (*pPCD_LpmCallbackTypeDef)(PCD_HandleTypeDef *hpcd, PCD_LPM_MsgTypeDef msg); /*!< pointer to USB OTG PCD LPM callback */
typedef void (*pPCD_BcdCallbackTypeDef)(PCD_HandleTypeDef *hpcd, PCD_BCD_MsgTypeDef msg); /*!< pointer to USB OTG PCD BCD callback */
/**
* @}
*/
HAL_StatusTypeDef HAL_PCD_RegisterCallback(PCD_HandleTypeDef *hpcd, HAL_PCD_CallbackIDTypeDef CallbackID,
pPCD_CallbackTypeDef pCallback);
HAL_StatusTypeDef HAL_PCD_UnRegisterCallback(PCD_HandleTypeDef *hpcd, HAL_PCD_CallbackIDTypeDef CallbackID);
HAL_StatusTypeDef HAL_PCD_RegisterDataOutStageCallback(PCD_HandleTypeDef *hpcd,
pPCD_DataOutStageCallbackTypeDef pCallback);
HAL_StatusTypeDef HAL_PCD_UnRegisterDataOutStageCallback(PCD_HandleTypeDef *hpcd);
HAL_StatusTypeDef HAL_PCD_RegisterDataInStageCallback(PCD_HandleTypeDef *hpcd,
pPCD_DataInStageCallbackTypeDef pCallback);
HAL_StatusTypeDef HAL_PCD_UnRegisterDataInStageCallback(PCD_HandleTypeDef *hpcd);
HAL_StatusTypeDef HAL_PCD_RegisterIsoOutIncpltCallback(PCD_HandleTypeDef *hpcd,
pPCD_IsoOutIncpltCallbackTypeDef pCallback);
HAL_StatusTypeDef HAL_PCD_UnRegisterIsoOutIncpltCallback(PCD_HandleTypeDef *hpcd);
HAL_StatusTypeDef HAL_PCD_RegisterIsoInIncpltCallback(PCD_HandleTypeDef *hpcd,
pPCD_IsoInIncpltCallbackTypeDef pCallback);
HAL_StatusTypeDef HAL_PCD_UnRegisterIsoInIncpltCallback(PCD_HandleTypeDef *hpcd);
HAL_StatusTypeDef HAL_PCD_RegisterBcdCallback(PCD_HandleTypeDef *hpcd, pPCD_BcdCallbackTypeDef pCallback);
HAL_StatusTypeDef HAL_PCD_UnRegisterBcdCallback(PCD_HandleTypeDef *hpcd);
HAL_StatusTypeDef HAL_PCD_RegisterLpmCallback(PCD_HandleTypeDef *hpcd, pPCD_LpmCallbackTypeDef pCallback);
HAL_StatusTypeDef HAL_PCD_UnRegisterLpmCallback(PCD_HandleTypeDef *hpcd);
#endif /* USE_HAL_PCD_REGISTER_CALLBACKS */
/**
* @}
*/
/* I/O operation functions ***************************************************/
/* Non-Blocking mode: Interrupt */
/** @addtogroup PCD_Exported_Functions_Group2 Input and Output operation functions
* @{
*/
HAL_StatusTypeDef HAL_PCD_Start(PCD_HandleTypeDef *hpcd);
HAL_StatusTypeDef HAL_PCD_Stop(PCD_HandleTypeDef *hpcd);
void HAL_PCD_IRQHandler(PCD_HandleTypeDef *hpcd);
void HAL_PCD_SOFCallback(PCD_HandleTypeDef *hpcd);
void HAL_PCD_SetupStageCallback(PCD_HandleTypeDef *hpcd);
void HAL_PCD_ResetCallback(PCD_HandleTypeDef *hpcd);
void HAL_PCD_SuspendCallback(PCD_HandleTypeDef *hpcd);
void HAL_PCD_ResumeCallback(PCD_HandleTypeDef *hpcd);
void HAL_PCD_ConnectCallback(PCD_HandleTypeDef *hpcd);
void HAL_PCD_DisconnectCallback(PCD_HandleTypeDef *hpcd);
void HAL_PCD_DataOutStageCallback(PCD_HandleTypeDef *hpcd, uint8_t epnum);
void HAL_PCD_DataInStageCallback(PCD_HandleTypeDef *hpcd, uint8_t epnum);
void HAL_PCD_ISOOUTIncompleteCallback(PCD_HandleTypeDef *hpcd, uint8_t epnum);
void HAL_PCD_ISOINIncompleteCallback(PCD_HandleTypeDef *hpcd, uint8_t epnum);
/**
* @}
*/
/* Peripheral Control functions **********************************************/
/** @addtogroup PCD_Exported_Functions_Group3 Peripheral Control functions
* @{
*/
HAL_StatusTypeDef HAL_PCD_DevConnect(PCD_HandleTypeDef *hpcd);
HAL_StatusTypeDef HAL_PCD_DevDisconnect(PCD_HandleTypeDef *hpcd);
HAL_StatusTypeDef HAL_PCD_SetAddress(PCD_HandleTypeDef *hpcd, uint8_t address);
HAL_StatusTypeDef HAL_PCD_EP_Open(PCD_HandleTypeDef *hpcd, uint8_t ep_addr, uint16_t ep_mps, uint8_t ep_type);
HAL_StatusTypeDef HAL_PCD_EP_Close(PCD_HandleTypeDef *hpcd, uint8_t ep_addr);
HAL_StatusTypeDef HAL_PCD_EP_Receive(PCD_HandleTypeDef *hpcd, uint8_t ep_addr, uint8_t *pBuf, uint32_t len);
HAL_StatusTypeDef HAL_PCD_EP_Transmit(PCD_HandleTypeDef *hpcd, uint8_t ep_addr, uint8_t *pBuf, uint32_t len);
HAL_StatusTypeDef HAL_PCD_EP_SetStall(PCD_HandleTypeDef *hpcd, uint8_t ep_addr);
HAL_StatusTypeDef HAL_PCD_EP_ClrStall(PCD_HandleTypeDef *hpcd, uint8_t ep_addr);
HAL_StatusTypeDef HAL_PCD_EP_Flush(PCD_HandleTypeDef *hpcd, uint8_t ep_addr);
HAL_StatusTypeDef HAL_PCD_EP_Abort(PCD_HandleTypeDef *hpcd, uint8_t ep_addr);
HAL_StatusTypeDef HAL_PCD_ActivateRemoteWakeup(PCD_HandleTypeDef *hpcd);
HAL_StatusTypeDef HAL_PCD_DeActivateRemoteWakeup(PCD_HandleTypeDef *hpcd);
uint32_t HAL_PCD_EP_GetRxCount(PCD_HandleTypeDef const *hpcd, uint8_t ep_addr);
/**
* @}
*/
/* Peripheral State functions ************************************************/
/** @addtogroup PCD_Exported_Functions_Group4 Peripheral State functions
* @{
*/
PCD_StateTypeDef HAL_PCD_GetState(PCD_HandleTypeDef const *hpcd);
/**
* @}
*/
/**
* @}
*/
/* Private constants ---------------------------------------------------------*/
/** @defgroup PCD_Private_Constants PCD Private Constants
* @{
*/
/** @defgroup USB_EXTI_Line_Interrupt USB EXTI line interrupt
* @{
*/
#define USB_WAKEUP_EXTI_LINE (0x1U << 28) /*!< USB FS EXTI Line WakeUp Interrupt */
/**
* @}
*/
/** @defgroup PCD_EP0_MPS PCD EP0 MPS
* @{
*/
#define PCD_EP0MPS_64 EP_MPS_64
#define PCD_EP0MPS_32 EP_MPS_32
#define PCD_EP0MPS_16 EP_MPS_16
#define PCD_EP0MPS_08 EP_MPS_8
/**
* @}
*/
/** @defgroup PCD_ENDP PCD ENDP
* @{
*/
#define PCD_ENDP0 0U
#define PCD_ENDP1 1U
#define PCD_ENDP2 2U
#define PCD_ENDP3 3U
#define PCD_ENDP4 4U
#define PCD_ENDP5 5U
#define PCD_ENDP6 6U
#define PCD_ENDP7 7U
/**
* @}
*/
/** @defgroup PCD_ENDP_Kind PCD Endpoint Kind
* @{
*/
#define PCD_SNG_BUF 0U
#define PCD_DBL_BUF 1U
/**
* @}
*/
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/** @defgroup PCD_Private_Macros PCD Private Macros
* @{
*/
/******************** Bit definition for USB_COUNTn_RX register *************/
#define USB_CNTRX_NBLK_MSK (0x1FU << 10)
#define USB_CNTRX_BLSIZE (0x1U << 15)
/* SetENDPOINT */
#define PCD_SET_ENDPOINT(USBx, bEpNum, wRegValue) \
(*(__IO uint16_t *)(&(USBx)->EP0R + ((bEpNum) * 2U)) = (uint16_t)(wRegValue))
/* GetENDPOINT */
#define PCD_GET_ENDPOINT(USBx, bEpNum) (*(__IO uint16_t *)(&(USBx)->EP0R + ((bEpNum) * 2U)))
/**
* @brief sets the type in the endpoint register(bits EP_TYPE[1:0])
* @param USBx USB peripheral instance register address.
* @param bEpNum Endpoint Number.
* @param wType Endpoint Type.
* @retval None
*/
#define PCD_SET_EPTYPE(USBx, bEpNum, wType) \
(PCD_SET_ENDPOINT((USBx), (bEpNum), \
((PCD_GET_ENDPOINT((USBx), (bEpNum)) & USB_EP_T_MASK) | (wType) | USB_EP_CTR_TX | USB_EP_CTR_RX)))
/**
* @brief gets the type in the endpoint register(bits EP_TYPE[1:0])
* @param USBx USB peripheral instance register address.
* @param bEpNum Endpoint Number.
* @retval Endpoint Type
*/
#define PCD_GET_EPTYPE(USBx, bEpNum) (PCD_GET_ENDPOINT((USBx), (bEpNum)) & USB_EP_T_FIELD)
/**
* @brief free buffer used from the application realizing it to the line
* toggles bit SW_BUF in the double buffered endpoint register
* @param USBx USB device.
* @param bEpNum, bDir
* @retval None
*/
#define PCD_FREE_USER_BUFFER(USBx, bEpNum, bDir) \
do { \
if ((bDir) == 0U) \
{ \
/* OUT double buffered endpoint */ \
PCD_TX_DTOG((USBx), (bEpNum)); \
} \
else if ((bDir) == 1U) \
{ \
/* IN double buffered endpoint */ \
PCD_RX_DTOG((USBx), (bEpNum)); \
} \
} while(0)
/**
* @brief sets the status for tx transfer (bits STAT_TX[1:0]).
* @param USBx USB peripheral instance register address.
* @param bEpNum Endpoint Number.
* @param wState new state
* @retval None
*/
#define PCD_SET_EP_TX_STATUS(USBx, bEpNum, wState) \
do { \
uint16_t _wRegVal; \
\
_wRegVal = PCD_GET_ENDPOINT((USBx), (bEpNum)) & USB_EPTX_DTOGMASK; \
/* toggle first bit ? */ \
if ((USB_EPTX_DTOG1 & (wState))!= 0U) \
{ \
_wRegVal ^= USB_EPTX_DTOG1; \
} \
/* toggle second bit ? */ \
if ((USB_EPTX_DTOG2 & (wState))!= 0U) \
{ \
_wRegVal ^= USB_EPTX_DTOG2; \
} \
PCD_SET_ENDPOINT((USBx), (bEpNum), (_wRegVal | USB_EP_CTR_RX | USB_EP_CTR_TX)); \
} while(0) /* PCD_SET_EP_TX_STATUS */
/**
* @brief sets the status for rx transfer (bits STAT_TX[1:0])
* @param USBx USB peripheral instance register address.
* @param bEpNum Endpoint Number.
* @param wState new state
* @retval None
*/
#define PCD_SET_EP_RX_STATUS(USBx, bEpNum,wState) \
do { \
uint16_t _wRegVal; \
\
_wRegVal = PCD_GET_ENDPOINT((USBx), (bEpNum)) & USB_EPRX_DTOGMASK; \
/* toggle first bit ? */ \
if ((USB_EPRX_DTOG1 & (wState))!= 0U) \
{ \
_wRegVal ^= USB_EPRX_DTOG1; \
} \
/* toggle second bit ? */ \
if ((USB_EPRX_DTOG2 & (wState))!= 0U) \
{ \
_wRegVal ^= USB_EPRX_DTOG2; \
} \
PCD_SET_ENDPOINT((USBx), (bEpNum), (_wRegVal | USB_EP_CTR_RX | USB_EP_CTR_TX)); \
} while(0) /* PCD_SET_EP_RX_STATUS */
/**
* @brief sets the status for rx & tx (bits STAT_TX[1:0] & STAT_RX[1:0])
* @param USBx USB peripheral instance register address.
* @param bEpNum Endpoint Number.
* @param wStaterx new state.
* @param wStatetx new state.
* @retval None
*/
#define PCD_SET_EP_TXRX_STATUS(USBx, bEpNum, wStaterx, wStatetx) \
do { \
uint16_t _wRegVal; \
\
_wRegVal = PCD_GET_ENDPOINT((USBx), (bEpNum)) & (USB_EPRX_DTOGMASK | USB_EPTX_STAT); \
/* toggle first bit ? */ \
if ((USB_EPRX_DTOG1 & (wStaterx))!= 0U) \
{ \
_wRegVal ^= USB_EPRX_DTOG1; \
} \
/* toggle second bit ? */ \
if ((USB_EPRX_DTOG2 & (wStaterx))!= 0U) \
{ \
_wRegVal ^= USB_EPRX_DTOG2; \
} \
/* toggle first bit ? */ \
if ((USB_EPTX_DTOG1 & (wStatetx))!= 0U) \
{ \
_wRegVal ^= USB_EPTX_DTOG1; \
} \
/* toggle second bit ? */ \
if ((USB_EPTX_DTOG2 & (wStatetx))!= 0U) \
{ \
_wRegVal ^= USB_EPTX_DTOG2; \
} \
\
PCD_SET_ENDPOINT((USBx), (bEpNum), (_wRegVal | USB_EP_CTR_RX | USB_EP_CTR_TX)); \
} while(0) /* PCD_SET_EP_TXRX_STATUS */
/**
* @brief gets the status for tx/rx transfer (bits STAT_TX[1:0]
* /STAT_RX[1:0])
* @param USBx USB peripheral instance register address.
* @param bEpNum Endpoint Number.
* @retval status
*/
#define PCD_GET_EP_TX_STATUS(USBx, bEpNum) ((uint16_t)PCD_GET_ENDPOINT((USBx), (bEpNum)) & USB_EPTX_STAT)
#define PCD_GET_EP_RX_STATUS(USBx, bEpNum) ((uint16_t)PCD_GET_ENDPOINT((USBx), (bEpNum)) & USB_EPRX_STAT)
/**
* @brief sets directly the VALID tx/rx-status into the endpoint register
* @param USBx USB peripheral instance register address.
* @param bEpNum Endpoint Number.
* @retval None
*/
#define PCD_SET_EP_TX_VALID(USBx, bEpNum) (PCD_SET_EP_TX_STATUS((USBx), (bEpNum), USB_EP_TX_VALID))
#define PCD_SET_EP_RX_VALID(USBx, bEpNum) (PCD_SET_EP_RX_STATUS((USBx), (bEpNum), USB_EP_RX_VALID))
/**
* @brief checks stall condition in an endpoint.
* @param USBx USB peripheral instance register address.
* @param bEpNum Endpoint Number.
* @retval TRUE = endpoint in stall condition.
*/
#define PCD_GET_EP_TX_STALL_STATUS(USBx, bEpNum) (PCD_GET_EP_TX_STATUS((USBx), (bEpNum)) == USB_EP_TX_STALL)
#define PCD_GET_EP_RX_STALL_STATUS(USBx, bEpNum) (PCD_GET_EP_RX_STATUS((USBx), (bEpNum)) == USB_EP_RX_STALL)
/**
* @brief set & clear EP_KIND bit.
* @param USBx USB peripheral instance register address.
* @param bEpNum Endpoint Number.
* @retval None
*/
#define PCD_SET_EP_KIND(USBx, bEpNum) \
do { \
uint16_t _wRegVal; \
\
_wRegVal = PCD_GET_ENDPOINT((USBx), (bEpNum)) & USB_EPREG_MASK; \
\
PCD_SET_ENDPOINT((USBx), (bEpNum), (_wRegVal | USB_EP_CTR_RX | USB_EP_CTR_TX | USB_EP_KIND)); \
} while(0) /* PCD_SET_EP_KIND */
#define PCD_CLEAR_EP_KIND(USBx, bEpNum) \
do { \
uint16_t _wRegVal; \
\
_wRegVal = PCD_GET_ENDPOINT((USBx), (bEpNum)) & USB_EPKIND_MASK; \
\
PCD_SET_ENDPOINT((USBx), (bEpNum), (_wRegVal | USB_EP_CTR_RX | USB_EP_CTR_TX)); \
} while(0) /* PCD_CLEAR_EP_KIND */
/**
* @brief Sets/clears directly STATUS_OUT bit in the endpoint register.
* @param USBx USB peripheral instance register address.
* @param bEpNum Endpoint Number.
* @retval None
*/
#define PCD_SET_OUT_STATUS(USBx, bEpNum) PCD_SET_EP_KIND((USBx), (bEpNum))
#define PCD_CLEAR_OUT_STATUS(USBx, bEpNum) PCD_CLEAR_EP_KIND((USBx), (bEpNum))
/**
* @brief Sets/clears directly EP_KIND bit in the endpoint register.
* @param USBx USB peripheral instance register address.
* @param bEpNum Endpoint Number.
* @retval None
*/
#define PCD_SET_BULK_EP_DBUF(USBx, bEpNum) PCD_SET_EP_KIND((USBx), (bEpNum))
#define PCD_CLEAR_BULK_EP_DBUF(USBx, bEpNum) PCD_CLEAR_EP_KIND((USBx), (bEpNum))
/**
* @brief Clears bit CTR_RX / CTR_TX in the endpoint register.
* @param USBx USB peripheral instance register address.
* @param bEpNum Endpoint Number.
* @retval None
*/
#define PCD_CLEAR_RX_EP_CTR(USBx, bEpNum) \
do { \
uint16_t _wRegVal; \
\
_wRegVal = PCD_GET_ENDPOINT((USBx), (bEpNum)) & (0x7FFFU & USB_EPREG_MASK); \
\
PCD_SET_ENDPOINT((USBx), (bEpNum), (_wRegVal | USB_EP_CTR_TX)); \
} while(0) /* PCD_CLEAR_RX_EP_CTR */
#define PCD_CLEAR_TX_EP_CTR(USBx, bEpNum) \
do { \
uint16_t _wRegVal; \
\
_wRegVal = PCD_GET_ENDPOINT((USBx), (bEpNum)) & (0xFF7FU & USB_EPREG_MASK); \
\
PCD_SET_ENDPOINT((USBx), (bEpNum), (_wRegVal | USB_EP_CTR_RX)); \
} while(0) /* PCD_CLEAR_TX_EP_CTR */
/**
* @brief Toggles DTOG_RX / DTOG_TX bit in the endpoint register.
* @param USBx USB peripheral instance register address.
* @param bEpNum Endpoint Number.
* @retval None
*/
#define PCD_RX_DTOG(USBx, bEpNum) \
do { \
uint16_t _wEPVal; \
\
_wEPVal = PCD_GET_ENDPOINT((USBx), (bEpNum)) & USB_EPREG_MASK; \
\
PCD_SET_ENDPOINT((USBx), (bEpNum), (_wEPVal | USB_EP_CTR_RX | USB_EP_CTR_TX | USB_EP_DTOG_RX)); \
} while(0) /* PCD_RX_DTOG */
#define PCD_TX_DTOG(USBx, bEpNum) \
do { \
uint16_t _wEPVal; \
\
_wEPVal = PCD_GET_ENDPOINT((USBx), (bEpNum)) & USB_EPREG_MASK; \
\
PCD_SET_ENDPOINT((USBx), (bEpNum), (_wEPVal | USB_EP_CTR_RX | USB_EP_CTR_TX | USB_EP_DTOG_TX)); \
} while(0) /* PCD_TX_DTOG */
/**
* @brief Clears DTOG_RX / DTOG_TX bit in the endpoint register.
* @param USBx USB peripheral instance register address.
* @param bEpNum Endpoint Number.
* @retval None
*/
#define PCD_CLEAR_RX_DTOG(USBx, bEpNum) \
do { \
uint16_t _wRegVal; \
\
_wRegVal = PCD_GET_ENDPOINT((USBx), (bEpNum)); \
\
if ((_wRegVal & USB_EP_DTOG_RX) != 0U)\
{ \
PCD_RX_DTOG((USBx), (bEpNum)); \
} \
} while(0) /* PCD_CLEAR_RX_DTOG */
#define PCD_CLEAR_TX_DTOG(USBx, bEpNum) \
do { \
uint16_t _wRegVal; \
\
_wRegVal = PCD_GET_ENDPOINT((USBx), (bEpNum)); \
\
if ((_wRegVal & USB_EP_DTOG_TX) != 0U)\
{ \
PCD_TX_DTOG((USBx), (bEpNum)); \
} \
} while(0) /* PCD_CLEAR_TX_DTOG */
/**
* @brief Sets address in an endpoint register.
* @param USBx USB peripheral instance register address.
* @param bEpNum Endpoint Number.
* @param bAddr Address.
* @retval None
*/
#define PCD_SET_EP_ADDRESS(USBx, bEpNum, bAddr) \
do { \
uint16_t _wRegVal; \
\
_wRegVal = (PCD_GET_ENDPOINT((USBx), (bEpNum)) & USB_EPREG_MASK) | (bAddr); \
\
PCD_SET_ENDPOINT((USBx), (bEpNum), (_wRegVal | USB_EP_CTR_RX | USB_EP_CTR_TX)); \
} while(0) /* PCD_SET_EP_ADDRESS */
/**
* @brief Gets address in an endpoint register.
* @param USBx USB peripheral instance register address.
* @param bEpNum Endpoint Number.
* @retval None
*/
#define PCD_GET_EP_ADDRESS(USBx, bEpNum) ((uint8_t)(PCD_GET_ENDPOINT((USBx), (bEpNum)) & USB_EPADDR_FIELD))
#define PCD_EP_TX_CNT(USBx, bEpNum) \
((uint16_t *)((((uint32_t)(USBx)->BTABLE + \
((uint32_t)(bEpNum) * 8U) + 2U) * PMA_ACCESS) + ((uint32_t)(USBx) + 0x400U)))
#define PCD_EP_RX_CNT(USBx, bEpNum) \
((uint16_t *)((((uint32_t)(USBx)->BTABLE + \
((uint32_t)(bEpNum) * 8U) + 6U) * PMA_ACCESS) + ((uint32_t)(USBx) + 0x400U)))
/**
* @brief sets address of the tx/rx buffer.
* @param USBx USB peripheral instance register address.
* @param bEpNum Endpoint Number.
* @param wAddr address to be set (must be word aligned).
* @retval None
*/
#define PCD_SET_EP_TX_ADDRESS(USBx, bEpNum, wAddr) \
do { \
__IO uint16_t *_wRegVal; \
uint32_t _wRegBase = (uint32_t)USBx; \
\
_wRegBase += (uint32_t)(USBx)->BTABLE; \
_wRegVal = (__IO uint16_t *)(_wRegBase + 0x400U + (((uint32_t)(bEpNum) * 8U) * PMA_ACCESS)); \
*_wRegVal = ((wAddr) >> 1) << 1; \
} while(0) /* PCD_SET_EP_TX_ADDRESS */
#define PCD_SET_EP_RX_ADDRESS(USBx, bEpNum, wAddr) \
do { \
__IO uint16_t *_wRegVal; \
uint32_t _wRegBase = (uint32_t)USBx; \
\
_wRegBase += (uint32_t)(USBx)->BTABLE; \
_wRegVal = (__IO uint16_t *)(_wRegBase + 0x400U + ((((uint32_t)(bEpNum) * 8U) + 4U) * PMA_ACCESS)); \
*_wRegVal = ((wAddr) >> 1) << 1; \
} while(0) /* PCD_SET_EP_RX_ADDRESS */
/**
* @brief Gets address of the tx/rx buffer.
* @param USBx USB peripheral instance register address.
* @param bEpNum Endpoint Number.
* @retval address of the buffer.
*/
#define PCD_GET_EP_TX_ADDRESS(USBx, bEpNum) ((uint16_t)*PCD_EP_TX_ADDRESS((USBx), (bEpNum)))
#define PCD_GET_EP_RX_ADDRESS(USBx, bEpNum) ((uint16_t)*PCD_EP_RX_ADDRESS((USBx), (bEpNum)))
/**
* @brief Sets counter of rx buffer with no. of blocks.
* @param pdwReg Register pointer
* @param wCount Counter.
* @param wNBlocks no. of Blocks.
* @retval None
*/
#define PCD_CALC_BLK32(pdwReg, wCount, wNBlocks) \
do { \
(wNBlocks) = (wCount) >> 5; \
if (((wCount) & 0x1fU) == 0U) \
{ \
(wNBlocks)--; \
} \
*(pdwReg) |= (uint16_t)(((wNBlocks) << 10) | USB_CNTRX_BLSIZE); \
} while(0) /* PCD_CALC_BLK32 */
#define PCD_CALC_BLK2(pdwReg, wCount, wNBlocks) \
do { \
(wNBlocks) = (wCount) >> 1; \
if (((wCount) & 0x1U) != 0U) \
{ \
(wNBlocks)++; \
} \
*(pdwReg) |= (uint16_t)((wNBlocks) << 10); \
} while(0) /* PCD_CALC_BLK2 */
#define PCD_SET_EP_CNT_RX_REG(pdwReg, wCount) \
do { \
uint32_t wNBlocks; \
\
*(pdwReg) &= 0x3FFU; \
\
if ((wCount) == 0U) \
{ \
*(pdwReg) |= USB_CNTRX_BLSIZE; \
} \
else if ((wCount) <= 62U) \
{ \
PCD_CALC_BLK2((pdwReg), (wCount), wNBlocks); \
} \
else \
{ \
PCD_CALC_BLK32((pdwReg), (wCount), wNBlocks); \
} \
} while(0) /* PCD_SET_EP_CNT_RX_REG */
#define PCD_SET_EP_RX_DBUF0_CNT(USBx, bEpNum, wCount) \
do { \
uint32_t _wRegBase = (uint32_t)(USBx); \
__IO uint16_t *pdwReg; \
\
_wRegBase += (uint32_t)(USBx)->BTABLE; \
pdwReg = (__IO uint16_t *)(_wRegBase + 0x400U + ((((uint32_t)(bEpNum) * 8U) + 2U) * PMA_ACCESS)); \
PCD_SET_EP_CNT_RX_REG(pdwReg, (wCount)); \
} while(0)
/**
* @brief sets counter for the tx/rx buffer.
* @param USBx USB peripheral instance register address.
* @param bEpNum Endpoint Number.
* @param wCount Counter value.
* @retval None
*/
#define PCD_SET_EP_TX_CNT(USBx, bEpNum, wCount) \
do { \
uint32_t _wRegBase = (uint32_t)(USBx); \
__IO uint16_t *_wRegVal; \
\
_wRegBase += (uint32_t)(USBx)->BTABLE; \
_wRegVal = (__IO uint16_t *)(_wRegBase + 0x400U + ((((uint32_t)(bEpNum) * 8U) + 2U) * PMA_ACCESS)); \
*_wRegVal = (uint16_t)(wCount); \
} while(0)
#define PCD_SET_EP_RX_CNT(USBx, bEpNum, wCount) \
do { \
uint32_t _wRegBase = (uint32_t)(USBx); \
__IO uint16_t *_wRegVal; \
\
_wRegBase += (uint32_t)(USBx)->BTABLE; \
_wRegVal = (__IO uint16_t *)(_wRegBase + 0x400U + ((((uint32_t)(bEpNum) * 8U) + 6U) * PMA_ACCESS)); \
PCD_SET_EP_CNT_RX_REG(_wRegVal, (wCount)); \
} while(0)
/**
* @brief gets counter of the tx buffer.
* @param USBx USB peripheral instance register address.
* @param bEpNum Endpoint Number.
* @retval Counter value
*/
#define PCD_GET_EP_TX_CNT(USBx, bEpNum) ((uint32_t)(*PCD_EP_TX_CNT((USBx), (bEpNum))) & 0x3ffU)
#define PCD_GET_EP_RX_CNT(USBx, bEpNum) ((uint32_t)(*PCD_EP_RX_CNT((USBx), (bEpNum))) & 0x3ffU)
/**
* @brief Sets buffer 0/1 address in a double buffer endpoint.
* @param USBx USB peripheral instance register address.
* @param bEpNum Endpoint Number.
* @param wBuf0Addr buffer 0 address.
* @retval Counter value
*/
#define PCD_SET_EP_DBUF0_ADDR(USBx, bEpNum, wBuf0Addr) \
do { \
PCD_SET_EP_TX_ADDRESS((USBx), (bEpNum), (wBuf0Addr)); \
} while(0) /* PCD_SET_EP_DBUF0_ADDR */
#define PCD_SET_EP_DBUF1_ADDR(USBx, bEpNum, wBuf1Addr) \
do { \
PCD_SET_EP_RX_ADDRESS((USBx), (bEpNum), (wBuf1Addr)); \
} while(0) /* PCD_SET_EP_DBUF1_ADDR */
/**
* @brief Sets addresses in a double buffer endpoint.
* @param USBx USB peripheral instance register address.
* @param bEpNum Endpoint Number.
* @param wBuf0Addr: buffer 0 address.
* @param wBuf1Addr = buffer 1 address.
* @retval None
*/
#define PCD_SET_EP_DBUF_ADDR(USBx, bEpNum, wBuf0Addr, wBuf1Addr) \
do { \
PCD_SET_EP_DBUF0_ADDR((USBx), (bEpNum), (wBuf0Addr)); \
PCD_SET_EP_DBUF1_ADDR((USBx), (bEpNum), (wBuf1Addr)); \
} while(0) /* PCD_SET_EP_DBUF_ADDR */
/**
* @brief Gets buffer 0/1 address of a double buffer endpoint.
* @param USBx USB peripheral instance register address.
* @param bEpNum Endpoint Number.
* @retval None
*/
#define PCD_GET_EP_DBUF0_ADDR(USBx, bEpNum) (PCD_GET_EP_TX_ADDRESS((USBx), (bEpNum)))
#define PCD_GET_EP_DBUF1_ADDR(USBx, bEpNum) (PCD_GET_EP_RX_ADDRESS((USBx), (bEpNum)))
/**
* @brief Gets buffer 0/1 address of a double buffer endpoint.
* @param USBx USB peripheral instance register address.
* @param bEpNum Endpoint Number.
* @param bDir endpoint dir EP_DBUF_OUT = OUT
* EP_DBUF_IN = IN
* @param wCount: Counter value
* @retval None
*/
#define PCD_SET_EP_DBUF0_CNT(USBx, bEpNum, bDir, wCount) \
do { \
if ((bDir) == 0U) \
/* OUT endpoint */ \
{ \
PCD_SET_EP_RX_DBUF0_CNT((USBx), (bEpNum), (wCount)); \
} \
else \
{ \
if ((bDir) == 1U) \
{ \
/* IN endpoint */ \
PCD_SET_EP_TX_CNT((USBx), (bEpNum), (wCount)); \
} \
} \
} while(0) /* SetEPDblBuf0Count*/
#define PCD_SET_EP_DBUF1_CNT(USBx, bEpNum, bDir, wCount) \
do { \
uint32_t _wBase = (uint32_t)(USBx); \
__IO uint16_t *_wEPRegVal; \
\
if ((bDir) == 0U) \
{ \
/* OUT endpoint */ \
PCD_SET_EP_RX_CNT((USBx), (bEpNum), (wCount)); \
} \
else \
{ \
if ((bDir) == 1U) \
{ \
/* IN endpoint */ \
_wBase += (uint32_t)(USBx)->BTABLE; \
_wEPRegVal = (__IO uint16_t *)(_wBase + 0x400U + ((((uint32_t)(bEpNum) * 8U) + 6U) * PMA_ACCESS)); \
*_wEPRegVal = (uint16_t)(wCount); \
} \
} \
} while(0) /* SetEPDblBuf1Count */
#define PCD_SET_EP_DBUF_CNT(USBx, bEpNum, bDir, wCount) \
do { \
PCD_SET_EP_DBUF0_CNT((USBx), (bEpNum), (bDir), (wCount)); \
PCD_SET_EP_DBUF1_CNT((USBx), (bEpNum), (bDir), (wCount)); \
} while(0) /* PCD_SET_EP_DBUF_CNT */
/**
* @brief Gets buffer 0/1 rx/tx counter for double buffering.
* @param USBx USB peripheral instance register address.
* @param bEpNum Endpoint Number.
* @retval None
*/
#define PCD_GET_EP_DBUF0_CNT(USBx, bEpNum) (PCD_GET_EP_TX_CNT((USBx), (bEpNum)))
#define PCD_GET_EP_DBUF1_CNT(USBx, bEpNum) (PCD_GET_EP_RX_CNT((USBx), (bEpNum)))
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#endif /* defined (USB) */
#ifdef __cplusplus
}
#endif
#endif /* STM32WBxx_HAL_PCD_H */

View File

@@ -0,0 +1,87 @@
/**
******************************************************************************
* @file stm32wbxx_hal_pcd_ex.h
* @author MCD Application Team
* @brief Header file of PCD HAL Extension module.
******************************************************************************
* @attention
*
* Copyright (c) 2019 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef STM32WBxx_HAL_PCD_EX_H
#define STM32WBxx_HAL_PCD_EX_H
#ifdef __cplusplus
extern "C" {
#endif /* __cplusplus */
/* Includes ------------------------------------------------------------------*/
#include "stm32wbxx_hal_def.h"
#if defined (USB)
/** @addtogroup STM32WBxx_HAL_Driver
* @{
*/
/** @addtogroup PCDEx
* @{
*/
/* Exported types ------------------------------------------------------------*/
/* Exported constants --------------------------------------------------------*/
/* Exported macros -----------------------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup PCDEx_Exported_Functions PCDEx Exported Functions
* @{
*/
/** @addtogroup PCDEx_Exported_Functions_Group1 Peripheral Control functions
* @{
*/
HAL_StatusTypeDef HAL_PCDEx_PMAConfig(PCD_HandleTypeDef *hpcd, uint16_t ep_addr,
uint16_t ep_kind, uint32_t pmaadress);
HAL_StatusTypeDef HAL_PCDEx_ActivateLPM(PCD_HandleTypeDef *hpcd);
HAL_StatusTypeDef HAL_PCDEx_DeActivateLPM(PCD_HandleTypeDef *hpcd);
HAL_StatusTypeDef HAL_PCDEx_ActivateBCD(PCD_HandleTypeDef *hpcd);
HAL_StatusTypeDef HAL_PCDEx_DeActivateBCD(PCD_HandleTypeDef *hpcd);
void HAL_PCDEx_BCD_VBUSDetect(PCD_HandleTypeDef *hpcd);
void HAL_PCDEx_LPM_Callback(PCD_HandleTypeDef *hpcd, PCD_LPM_MsgTypeDef msg);
void HAL_PCDEx_BCD_Callback(PCD_HandleTypeDef *hpcd, PCD_BCD_MsgTypeDef msg);
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#endif /* defined (USB) */
#ifdef __cplusplus
}
#endif /* __cplusplus */
#endif /* STM32WBxx_HAL_PCD_EX_H */

View File

@@ -0,0 +1,513 @@
/**
******************************************************************************
* @file stm32wbxx_hal_pwr.h
* @author MCD Application Team
* @brief Header file of PWR HAL module.
******************************************************************************
* @attention
*
* Copyright (c) 2019 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef STM32WBxx_HAL_PWR_H
#define STM32WBxx_HAL_PWR_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32wbxx_hal_def.h"
/* Include low level driver */
#include "stm32wbxx_ll_pwr.h"
#include "stm32wbxx_ll_exti.h"
/** @addtogroup STM32WBxx_HAL_Driver
* @{
*/
/** @defgroup PWR PWR
* @brief PWR HAL module driver
* @{
*/
/* Exported types ------------------------------------------------------------*/
/** @defgroup PWR_Exported_Types PWR Exported Types
* @{
*/
/**
* @brief PWR PVD configuration structure definition
*/
typedef struct
{
uint32_t PVDLevel; /*!< PVDLevel: Specifies the PVD detection level.
This parameter can be a value of @ref PWR_PVD_detection_level. */
uint32_t Mode; /*!< Mode: Specifies the operating mode for the selected pins.
This parameter can be a value of @ref PWR_PVD_Mode. */
} PWR_PVDTypeDef;
/**
* @}
*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup PWR_Exported_Constants PWR Exported Constants
* @{
*/
/** @defgroup PWR_PVD_detection_level Power Voltage Detector Level selection
* @note Refer datasheet for selection voltage value
* @{
*/
#define PWR_PVDLEVEL_0 (0x00000000U) /*!< PVD threshold around 2.0 V */
#define PWR_PVDLEVEL_1 ( PWR_CR2_PLS_0) /*!< PVD threshold around 2.2 V */
#define PWR_PVDLEVEL_2 ( PWR_CR2_PLS_1 ) /*!< PVD threshold around 2.4 V */
#define PWR_PVDLEVEL_3 ( PWR_CR2_PLS_1 | PWR_CR2_PLS_0) /*!< PVD threshold around 2.5 V */
#define PWR_PVDLEVEL_4 (PWR_CR2_PLS_2 ) /*!< PVD threshold around 2.6 V */
#define PWR_PVDLEVEL_5 (PWR_CR2_PLS_2 | PWR_CR2_PLS_0) /*!< PVD threshold around 2.8 V */
#define PWR_PVDLEVEL_6 (PWR_CR2_PLS_2 | PWR_CR2_PLS_1 ) /*!< PVD threshold around 2.9 V */
#define PWR_PVDLEVEL_7 (PWR_CR2_PLS_2 | PWR_CR2_PLS_1 | PWR_CR2_PLS_0) /*!< External input analog voltage (compared internally to VREFINT) */
/**
* @}
*/
/** @defgroup PWR_PVD_Mode PWR PVD interrupt and event mode
* @{
*/
/* Note: On STM32WB series, power PVD event is not available on AIEC lines */
/* (only interruption is available through AIEC line 16). */
#define PWR_PVD_MODE_NORMAL (0x00000000U) /*!< Basic mode is used */
#define PWR_PVD_MODE_IT_RISING (PVD_MODE_IT | PVD_RISING_EDGE) /*!< External Interrupt Mode with Rising edge trigger detection */
#define PWR_PVD_MODE_IT_FALLING (PVD_MODE_IT | PVD_FALLING_EDGE) /*!< External Interrupt Mode with Falling edge trigger detection */
#define PWR_PVD_MODE_IT_RISING_FALLING (PVD_MODE_IT | PVD_RISING_FALLING_EDGE) /*!< External Interrupt Mode with Rising/Falling edge trigger detection */
/**
* @}
*/
/* Note: On STM32WB series, power PVD event is not available on AIEC lines */
/* (only interruption is available through AIEC line 16). */
/** @defgroup PWR_Low_Power_Mode_Selection PWR Low Power Mode Selection
* @{
*/
#define PWR_LOWPOWERMODE_STOP0 (0x00000000u) /*!< Stop 0: stop mode with main regulator */
#define PWR_LOWPOWERMODE_STOP1 (PWR_CR1_LPMS_0) /*!< Stop 1: stop mode with low power regulator */
#if defined(PWR_SUPPORT_STOP2)
#define PWR_LOWPOWERMODE_STOP2 (PWR_CR1_LPMS_1) /*!< Stop 2: stop mode with low power regulator and VDD12I interruptible digital core domain supply OFF (less peripherals activated than low power mode stop 1 to reduce power consumption)*/
#endif /* PWR_SUPPORT_STOP2 */
#define PWR_LOWPOWERMODE_STANDBY (PWR_CR1_LPMS_0 | PWR_CR1_LPMS_1) /*!< Standby mode */
#define PWR_LOWPOWERMODE_SHUTDOWN (PWR_CR1_LPMS_2) /*!< Shutdown mode */
/**
* @}
*/
/** @defgroup PWR_Regulator_state_in_SLEEP_STOP_mode PWR regulator mode
* @{
*/
#define PWR_MAINREGULATOR_ON (0x00000000U) /*!< Regulator in main mode */
#define PWR_LOWPOWERREGULATOR_ON (PWR_CR1_LPR) /*!< Regulator in low-power mode */
/**
* @}
*/
/** @defgroup PWR_SLEEP_mode_entry PWR SLEEP mode entry
* @{
*/
#define PWR_SLEEPENTRY_WFI ((uint8_t)0x01) /*!< Wait For Interruption instruction to enter Sleep mode */
#define PWR_SLEEPENTRY_WFE ((uint8_t)0x02) /*!< Wait For Event instruction to enter Sleep mode */
/**
* @}
*/
/** @defgroup PWR_STOP_mode_entry PWR STOP mode entry
* @{
*/
#define PWR_STOPENTRY_WFI ((uint8_t)0x01) /*!< Wait For Interruption instruction to enter Stop mode */
#define PWR_STOPENTRY_WFE ((uint8_t)0x02) /*!< Wait For Event instruction to enter Stop mode */
/**
* @}
*/
/**
* @}
*/
/* Private define ------------------------------------------------------------*/
/** @defgroup PWR_Private_Defines PWR Private Defines
* @{
*/
/** @defgroup PWR_PVD_EXTI_LINE PWR PVD external interrupt line
* @{
*/
#define PWR_EXTI_LINE_PVD (LL_EXTI_LINE_16) /*!< External interrupt line 16 Connected to the PWR PVD */
/**
* @}
*/
/** @defgroup PWR_PVD_Mode_Mask PWR PVD Mode Mask
* @{
*/
/* Note: On STM32WB series, power PVD event is not available on AIEC lines */
/* (only interruption is available through AIEC line 16). */
#define PVD_MODE_IT (0x00010000U) /*!< Mask for interruption yielded by PVD threshold crossing */
#define PVD_RISING_EDGE (0x00000001U) /*!< Mask for rising edge set as PVD trigger */
#define PVD_FALLING_EDGE (0x00000002U) /*!< Mask for falling edge set as PVD trigger */
#define PVD_RISING_FALLING_EDGE (0x00000003U) /*!< Mask for rising and falling edges set as PVD trigger */
/**
* @}
*/
/**
* @}
*/
/* Exported macros -----------------------------------------------------------*/
/** @defgroup PWR_Exported_Macros PWR Exported Macros
* @{
*/
/** @brief Check whether or not a specific PWR flag is set.
* @param __FLAG__ specifies the flag to check.
* This parameter can be one of the following values:
*
* /--------------------------------SR1-------------------------------/
* @arg @ref PWR_FLAG_WUF1 Wake Up Flag 1. Indicates that a wakeup event
* was received from the WKUP pin 1.
* @arg @ref PWR_FLAG_WUF2 Wake Up Flag 2. Indicates that a wakeup event
* was received from the WKUP pin 2.
* @arg @ref PWR_FLAG_WUF3 Wake Up Flag 3. Indicates that a wakeup event
* was received from the WKUP pin 3.
* @arg @ref PWR_FLAG_WUF4 Wake Up Flag 4. Indicates that a wakeup event
* was received from the WKUP pin 4.
* @arg @ref PWR_FLAG_WUF5 Wake Up Flag 5. Indicates that a wakeup event
* was received from the WKUP pin 5.
*
* @arg @ref PWR_FLAG_BHWF BLE_Host WakeUp Flag
* @arg @ref PWR_FLAG_FRCBYPI SMPS Forced in Bypass Interrupt Flag
* @arg @ref PWR_FLAG_RFPHASEI Radio Phase Interrupt Flag
* @arg @ref PWR_FLAG_BLEACTI BLE Activity Interrupt Flag
* @arg @ref PWR_FLAG_802ACTI 802.15.4 Activity Interrupt Flag
* @arg @ref PWR_FLAG_HOLDC2I CPU2 on-Hold Interrupt Flag
* @arg @ref PWR_FLAG_WUFI Wake-Up Flag Internal. Set when a wakeup is detected on
* the internal wakeup line.
*
* @arg @ref PWR_FLAG_SMPSRDYF SMPS Ready Flag
* @arg @ref PWR_FLAG_SMPSBYPF SMPS Bypass Flag
*
* /--------------------------------SR2-------------------------------/
* @arg @ref PWR_FLAG_REGLPS Low Power Regulator Started. Indicates whether or not the
* low-power regulator is ready.
* @arg @ref PWR_FLAG_REGLPF Low Power Regulator Flag. Indicates whether the
* regulator is ready in main mode or is in low-power mode.
*
* @arg @ref PWR_FLAG_VOSF Voltage Scaling Flag. Indicates whether the regulator is ready
* in the selected voltage range or is still changing to the required voltage level.
* @arg @ref PWR_FLAG_PVDO Power Voltage Detector Output. Indicates whether VDD voltage is
* below or above the selected PVD threshold.
*
* @arg @ref PWR_FLAG_PVMO1 Peripheral Voltage Monitoring Output 1. Indicates whether VDDUSB voltage is
* is below or above PVM1 threshold (applicable when USB feature is supported).
* @arg @ref PWR_FLAG_PVMO3 Peripheral Voltage Monitoring Output 3. Indicates whether VDDA voltage is
* is below or above PVM3 threshold.
*
* /----------------------------EXTSCR--------------------------/
* @arg @ref PWR_FLAG_STOP System Stop Flag for CPU1.
* @arg @ref PWR_FLAG_SB System Standby Flag for CPU1.
*
* @arg @ref PWR_FLAG_C2STOP System Stop Flag for CPU2.
* @arg @ref PWR_FLAG_C2SB System Standby Flag for CPU2.
*
* @arg @ref PWR_FLAG_CRITICAL_RF_PHASE Critical radio system phase flag.
*
* @arg @ref PWR_FLAG_C1DEEPSLEEP CPU1 DeepSleep Flag.
* @arg @ref PWR_FLAG_C2DEEPSLEEP CPU2 DeepSleep Flag.
*
* @retval The new state of __FLAG__ (TRUE or FALSE).
*/
#define __HAL_PWR_GET_FLAG(__FLAG__) ((((__FLAG__) & PWR_FLAG_REG_MASK) == PWR_FLAG_REG_SR1) ? \
( \
PWR->SR1 & (1UL << ((__FLAG__) & 31UL)) \
) \
: \
( \
(((__FLAG__) & PWR_FLAG_REG_MASK) == PWR_FLAG_REG_SR2) ? \
( \
PWR->SR2 & (1UL << ((__FLAG__) & 31UL)) \
) \
: \
( \
PWR->EXTSCR & (1UL << ((__FLAG__) & 31UL)) \
) \
) \
)
/** @brief Clear a specific PWR flag.
* @note Clearing of flags {PWR_FLAG_STOP, PWR_FLAG_SB}
* and flags {PWR_FLAG_C2STOP, PWR_FLAG_C2SB} are grouped:
* clearing of one flag also clears the other one.
* @param __FLAG__ specifies the flag to clear.
* This parameter can be one of the following values:
*
* /--------------------------------SCR (SRR)------------------------------/
* @arg @ref PWR_FLAG_WUF1 Wake Up Flag 1. Indicates that a wakeup event
* was received from the WKUP pin 1.
* @arg @ref PWR_FLAG_WUF2 Wake Up Flag 2. Indicates that a wakeup event
* was received from the WKUP pin 2.
* @arg @ref PWR_FLAG_WUF3 Wake Up Flag 3. Indicates that a wakeup event
* was received from the WKUP pin 3.
* @arg @ref PWR_FLAG_WUF4 Wake Up Flag 4. Indicates that a wakeup event
* was received from the WKUP pin 4.
* @arg @ref PWR_FLAG_WUF5 Wake Up Flag 5. Indicates that a wakeup event
* was received from the WKUP pin 5.
* @arg @ref PWR_FLAG_WU Encompasses all five Wake Up Flags.
*
* @arg @ref PWR_FLAG_BHWF Clear BLE_Host Wakeup Flag.
* @arg @ref PWR_FLAG_FRCBYPI Clear SMPS Forced in Bypass Interrupt Flag.
* @arg @ref PWR_FLAG_RFPHASEI RF Phase Interrupt Clear.
* @arg @ref PWR_FLAG_BLEACTI BLE Activity Interrupt Clear.
* @arg @ref PWR_FLAG_802ACTI 802.15.4. Activity Interrupt Clear.
* @arg @ref PWR_FLAG_HOLDC2I CPU2 on-Hold Interrupt Clear.
*
* /----------------------------EXTSCR--------------------------/
* @arg @ref PWR_FLAG_STOP System Stop Flag for CPU1.
* @arg @ref PWR_FLAG_SB System Standby Flag for CPU1.
*
* @arg @ref PWR_FLAG_C2STOP System Stop Flag for CPU2.
* @arg @ref PWR_FLAG_C2SB System Standby Flag for CPU2.
*
* @arg @ref PWR_FLAG_CRITICAL_RF_PHASE RF phase Flag.
*
* @retval None
*/
#define __HAL_PWR_CLEAR_FLAG(__FLAG__) ((((__FLAG__) & PWR_FLAG_REG_MASK) == PWR_FLAG_REG_EXTSCR) ? \
( \
PWR->EXTSCR = (1UL << (((__FLAG__) & PWR_FLAG_EXTSCR_CLR_MASK) >> PWR_FLAG_EXTSCR_CLR_POS)) \
) \
: \
( \
(((__FLAG__)) == PWR_FLAG_WU) ? \
(PWR->SCR = PWR_SCR_CWUF) : \
(PWR->SCR = (1UL << ((__FLAG__) & 31UL))) \
) \
)
/**
* @brief Enable the PVD Extended Interrupt C1 Line.
* @retval None
*/
#define __HAL_PWR_PVD_EXTI_ENABLE_IT() LL_EXTI_EnableIT_0_31(PWR_EXTI_LINE_PVD)
/**
* @brief Enable the PVD Extended Interrupt C2 Line.
* @retval None
*/
#define __HAL_PWR_PVD_EXTIC2_ENABLE_IT() LL_C2_EXTI_EnableIT_0_31(PWR_EXTI_LINE_PVD)
/**
* @brief Disable the PVD Extended Interrupt C1 Line.
* @retval None
*/
#define __HAL_PWR_PVD_EXTI_DISABLE_IT() LL_EXTI_DisableIT_0_31(PWR_EXTI_LINE_PVD)
/**
* @brief Disable the PVD Extended Interrupt C2 Line.
* @retval None
*/
#define __HAL_PWR_PVD_EXTIC2_DISABLE_IT() LL_C2_EXTI_DisableIT_0_31(PWR_EXTI_LINE_PVD)
/* Note: On STM32WB series, power PVD event is not available on AIEC lines */
/* (only interruption is available through AIEC line 16). */
/**
* @brief Enable the PVD Extended Interrupt Rising Trigger.
* @note PVD flag polarity is inverted compared to EXTI line, therefore
* EXTI rising and falling logic edges are inverted versus PVD voltage edges.
* @retval None
*/
#define __HAL_PWR_PVD_EXTI_ENABLE_RISING_EDGE() LL_EXTI_EnableRisingTrig_0_31(PWR_EXTI_LINE_PVD)
/**
* @brief Disable the PVD Extended Interrupt Rising Trigger.
* @note PVD flag polarity is inverted compared to EXTI line, therefore
* EXTI rising and falling logic edges are inverted versus PVD voltage edges.
* @retval None
*/
#define __HAL_PWR_PVD_EXTI_DISABLE_RISING_EDGE() LL_EXTI_DisableFallingTrig_0_31(PWR_EXTI_LINE_PVD)
/**
* @brief Enable the PVD Extended Interrupt Falling Trigger.
* @note PVD flag polarity is inverted compared to EXTI line, therefore
* EXTI rising and falling logic edges are inverted versus PVD voltage edges.
* @retval None
*/
#define __HAL_PWR_PVD_EXTI_ENABLE_FALLING_EDGE() LL_EXTI_EnableFallingTrig_0_31(PWR_EXTI_LINE_PVD)
/**
* @brief Disable the PVD Extended Interrupt Falling Trigger.
* @note PVD flag polarity is inverted compared to EXTI line, therefore
* EXTI rising and falling logic edges are inverted versus PVD voltage edges.
* @retval None
*/
#define __HAL_PWR_PVD_EXTI_DISABLE_FALLING_EDGE() LL_EXTI_DisableRisingTrig_0_31(PWR_EXTI_LINE_PVD)
/**
* @brief Enable the PVD Extended Interrupt Rising & Falling Trigger.
* @retval None
*/
#define __HAL_PWR_PVD_EXTI_ENABLE_RISING_FALLING_EDGE() \
do { \
__HAL_PWR_PVD_EXTI_ENABLE_RISING_EDGE(); \
__HAL_PWR_PVD_EXTI_ENABLE_FALLING_EDGE(); \
} while(0)
/**
* @brief Disable the PVD Extended Interrupt Rising & Falling Trigger.
* @retval None
*/
#define __HAL_PWR_PVD_EXTI_DISABLE_RISING_FALLING_EDGE() \
do { \
__HAL_PWR_PVD_EXTI_DISABLE_RISING_EDGE(); \
__HAL_PWR_PVD_EXTI_DISABLE_FALLING_EDGE(); \
} while(0)
/**
* @brief Generate a Software interrupt on selected EXTI line.
* @retval None
*/
#define __HAL_PWR_PVD_EXTI_GENERATE_SWIT() LL_EXTI_GenerateSWI_0_31(PWR_EXTI_LINE_PVD)
/**
* @brief Check whether or not the PVD EXTI interrupt flag is set.
* @retval EXTI PVD Line Status.
*/
#define __HAL_PWR_PVD_EXTI_GET_FLAG() LL_EXTI_ReadFlag_0_31(PWR_EXTI_LINE_PVD)
/**
* @brief Clear the PVD EXTI interrupt flag.
* @retval None
*/
#define __HAL_PWR_PVD_EXTI_CLEAR_FLAG() LL_EXTI_ClearFlag_0_31(PWR_EXTI_LINE_PVD)
/**
* @}
*/
/* Private macros --------------------------------------------------------*/
/** @defgroup PWR_Private_Macros PWR Private Macros
* @{
*/
#define IS_PWR_PVD_LEVEL(LEVEL) (((LEVEL) == PWR_PVDLEVEL_0) || ((LEVEL) == PWR_PVDLEVEL_1)|| \
((LEVEL) == PWR_PVDLEVEL_2) || ((LEVEL) == PWR_PVDLEVEL_3)|| \
((LEVEL) == PWR_PVDLEVEL_4) || ((LEVEL) == PWR_PVDLEVEL_5)|| \
((LEVEL) == PWR_PVDLEVEL_6) || ((LEVEL) == PWR_PVDLEVEL_7))
#define IS_PWR_PVD_MODE(MODE) (((MODE) == PWR_PVD_MODE_NORMAL) ||\
((MODE) == PWR_PVD_MODE_IT_RISING) ||\
((MODE) == PWR_PVD_MODE_IT_FALLING) ||\
((MODE) == PWR_PVD_MODE_IT_RISING_FALLING))
#define IS_PWR_REGULATOR(REGULATOR) (((REGULATOR) == PWR_MAINREGULATOR_ON) || \
((REGULATOR) == PWR_LOWPOWERREGULATOR_ON))
#define IS_PWR_SLEEP_ENTRY(ENTRY) (((ENTRY) == PWR_SLEEPENTRY_WFI) || \
((ENTRY) == PWR_SLEEPENTRY_WFE))
#define IS_PWR_STOP_ENTRY(ENTRY) (((ENTRY) == PWR_STOPENTRY_WFI) || \
((ENTRY) == PWR_STOPENTRY_WFE))
/**
* @}
*/
/* Include PWR HAL Extended module */
#include "stm32wbxx_hal_pwr_ex.h"
/* Exported functions --------------------------------------------------------*/
/** @defgroup PWR_Exported_Functions PWR Exported Functions
* @{
*/
/** @defgroup PWR_Exported_Functions_Group1 Initialization and de-initialization functions
* @{
*/
/* Initialization and de-initialization functions *******************************/
void HAL_PWR_DeInit(void);
void HAL_PWR_EnableBkUpAccess(void);
void HAL_PWR_DisableBkUpAccess(void);
/**
* @}
*/
/** @defgroup PWR_Exported_Functions_Group2 Peripheral Control functions
* @{
*/
/* Peripheral Control functions ************************************************/
HAL_StatusTypeDef HAL_PWR_ConfigPVD(PWR_PVDTypeDef *sConfigPVD);
void HAL_PWR_EnablePVD(void);
void HAL_PWR_DisablePVD(void);
/* WakeUp pins configuration functions ****************************************/
void HAL_PWR_EnableWakeUpPin(uint32_t WakeUpPinPolarity);
void HAL_PWR_DisableWakeUpPin(uint32_t WakeUpPinx);
/* Low Power modes configuration functions ************************************/
void HAL_PWR_EnterSTOPMode(uint32_t Regulator, uint8_t STOPEntry);
void HAL_PWR_EnterSLEEPMode(uint32_t Regulator, uint8_t SLEEPEntry);
void HAL_PWR_EnterSTANDBYMode(void);
void HAL_PWR_PVDCallback(void);
void HAL_PWR_EnableSleepOnExit(void);
void HAL_PWR_DisableSleepOnExit(void);
void HAL_PWR_EnableSEVOnPend(void);
void HAL_PWR_DisableSEVOnPend(void);
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* STM32WBxx_HAL_PWR_H */

View File

@@ -0,0 +1,976 @@
/**
******************************************************************************
* @file stm32wbxx_hal_pwr_ex.h
* @author MCD Application Team
* @brief Header file of PWR HAL Extended module.
******************************************************************************
* @attention
*
* Copyright (c) 2019 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef STM32WBxx_HAL_PWR_EX_H
#define STM32WBxx_HAL_PWR_EX_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32wbxx_hal_def.h"
/** @addtogroup STM32WBxx_HAL_Driver
* @{
*/
/** @defgroup PWREx PWREx
* @brief PWR Extended HAL module driver
* @{
*/
/* Exported types ------------------------------------------------------------*/
/** @defgroup PWREx_Exported_Types PWR Extended Exported Types
* @{
*/
/**
* @brief PWR PVM configuration structure definition
*/
typedef struct
{
uint32_t PVMType; /*!< PVMType: Specifies which voltage is monitored and against which threshold.
This parameter can be a value of @ref PWREx_PVM_Type.
@arg @ref PWR_PVM_1 Peripheral Voltage Monitoring 1 enable: VDDUSB versus 1.2 V (applicable when USB feature is supported).
@arg @ref PWR_PVM_3 Peripheral Voltage Monitoring 3 enable: VDDA versus 1.62 V.
*/
uint32_t Mode; /*!< Mode: Specifies the operating mode for the selected pins.
This parameter can be a value of @ref PWREx_PVM_Mode. */
uint32_t WakeupTarget; /*!< Specifies the Wakeup Target
This parameter can be a value of @ref PWREx_WakeUpTarget_Definition */
} PWR_PVMTypeDef;
#if defined(PWR_CR5_SMPSEN)
/**
* @brief PWR SMPS step down configuration structure definition
*/
typedef struct
{
uint32_t StartupCurrent; /*!< SMPS step down converter supply startup current selection.
This parameter can be a value of @ref PWREx_SMPS_STARTUP_CURRENT. */
uint32_t OutputVoltage; /*!< SMPS step down converter output voltage scaling voltage level.
This parameter can be a value of @ref PWREx_SMPS_OUTPUT_VOLTAGE_LEVEL */
} PWR_SMPSTypeDef;
#endif /* PWR_CR5_SMPSEN */
/**
* @}
*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup PWREx_Exported_Constants PWR Extended Exported Constants
* @{
*/
/** @defgroup PWREx_WUP_Polarity Shift to apply to retrieve polarity information from PWR_WAKEUP_PINy_xxx constants
* @{
*/
#define PWR_WUP_POLARITY_SHIFT 0x05U /*!< Internal constant used to retrieve wakeup pin polarity */
/**
* @}
*/
/** @defgroup PWREx_WakeUp_Pins PWR wake-up pins
* @{
*/
#define PWR_WAKEUP_PIN1_HIGH PWR_CR3_EWUP1 /*!< Wakeup pin 1 (with high level polarity) */
#if defined(PWR_CR3_EWUP2)
#define PWR_WAKEUP_PIN2_HIGH PWR_CR3_EWUP2 /*!< Wakeup pin 2 (with high level polarity) */
#endif /* PWR_CR3_EWUP2 */
#if defined(PWR_CR3_EWUP3)
#define PWR_WAKEUP_PIN3_HIGH PWR_CR3_EWUP3 /*!< Wakeup pin 3 (with high level polarity) */
#endif /* PWR_CR3_EWUP3 */
#define PWR_WAKEUP_PIN4_HIGH PWR_CR3_EWUP4 /*!< Wakeup pin 4 (with high level polarity) */
#if defined(PWR_CR3_EWUP5)
#define PWR_WAKEUP_PIN5_HIGH PWR_CR3_EWUP5 /*!< Wakeup pin 5 (with high level polarity) */
#endif /* PWR_CR3_EWUP5 */
#define PWR_WAKEUP_PIN1_LOW ((PWR_CR4_WP1<<PWR_WUP_POLARITY_SHIFT) | PWR_CR3_EWUP1) /*!< Wakeup pin 1 (with low level polarity) */
#if defined(PWR_CR3_EWUP2)
#define PWR_WAKEUP_PIN2_LOW ((PWR_CR4_WP2<<PWR_WUP_POLARITY_SHIFT) | PWR_CR3_EWUP2) /*!< Wakeup pin 2 (with low level polarity) */
#endif /* PWR_CR3_EWUP2 */
#if defined(PWR_CR3_EWUP3)
#define PWR_WAKEUP_PIN3_LOW ((PWR_CR4_WP3<<PWR_WUP_POLARITY_SHIFT) | PWR_CR3_EWUP3) /*!< Wakeup pin 3 (with low level polarity) */
#endif /* PWR_CR3_EWUP3 */
#define PWR_WAKEUP_PIN4_LOW ((PWR_CR4_WP4<<PWR_WUP_POLARITY_SHIFT) | PWR_CR3_EWUP4) /*!< Wakeup pin 4 (with low level polarity) */
#if defined(PWR_CR3_EWUP5)
#define PWR_WAKEUP_PIN5_LOW ((PWR_CR4_WP5<<PWR_WUP_POLARITY_SHIFT) | PWR_CR3_EWUP5) /*!< Wakeup pin 5 (with low level polarity) */
#endif /* PWR_CR3_EWUP5 */
/**
* @}
*/
/* Literals kept for legacy purpose */
#define PWR_WAKEUP_PIN1 PWR_CR3_EWUP1 /*!< Wakeup pin 1 (with high level polarity) */
#if defined(PWR_CR3_EWUP2)
#define PWR_WAKEUP_PIN2 PWR_CR3_EWUP2 /*!< Wakeup pin 2 (with high level polarity) */
#endif /* PWR_CR3_EWUP2 */
#if defined(PWR_CR3_EWUP3)
#define PWR_WAKEUP_PIN3 PWR_CR3_EWUP3 /*!< Wakeup pin 3 (with high level polarity) */
#endif /* PWR_CR3_EWUP3 */
#define PWR_WAKEUP_PIN4 PWR_CR3_EWUP4 /*!< Wakeup pin 4 (with high level polarity) */
#if defined(PWR_CR3_EWUP5)
#define PWR_WAKEUP_PIN5 PWR_CR3_EWUP5 /*!< Wakeup pin 5 (with high level polarity) */
#endif /* PWR_CR3_EWUP5 */
/** @defgroup PWREx_PIN_Polarity PWREx Pin Polarity configuration
* @{
*/
#define PWR_PIN_POLARITY_HIGH 0x00000000U
#define PWR_PIN_POLARITY_LOW 0x00000001U
/**
* @}
*/
/** @defgroup PWREx_PVM_Type Peripheral Voltage Monitoring type
* @{
*/
#if defined(PWR_CR2_PVME1)
#define PWR_PVM_1 PWR_CR2_PVME1 /*!< Peripheral Voltage Monitoring 1 enable: VDDUSB versus 1.2 V (applicable when USB feature is supported) */
#endif /* PWR_CR2_PVME1 */
#define PWR_PVM_3 PWR_CR2_PVME3 /*!< Peripheral Voltage Monitoring 3 enable: VDDA versus 1.62 V */
/**
* @}
*/
/** @defgroup PWREx_PVM_Mode PWR PVM interrupt and event mode
* @{
*/
#define PWR_PVM_MODE_NORMAL (0x00000000U) /*!< basic mode is used */
#define PWR_PVM_MODE_IT_RISING (PVM_MODE_IT | PVM_RISING_EDGE) /*!< External Interrupt Mode with Rising edge trigger detection */
#define PWR_PVM_MODE_IT_FALLING (PVM_MODE_IT | PVM_FALLING_EDGE) /*!< External Interrupt Mode with Falling edge trigger detection */
#define PWR_PVM_MODE_IT_RISING_FALLING (PVM_MODE_IT | PVM_RISING_FALLING_EDGE) /*!< External Interrupt Mode with Rising/Falling edge trigger detection */
#define PWR_PVM_MODE_EVENT_RISING (PVM_MODE_EVT | PVM_RISING_EDGE) /*!< Event Mode with Rising edge trigger detection */
#define PWR_PVM_MODE_EVENT_FALLING (PVM_MODE_EVT | PVM_FALLING_EDGE) /*!< Event Mode with Falling edge trigger detection */
#define PWR_PVM_MODE_EVENT_RISING_FALLING (PVM_MODE_EVT | PVM_RISING_FALLING_EDGE) /*!< Event Mode with Rising/Falling edge trigger detection */
/**
* @}
*/
/** @defgroup PWREx_Flash_PowerDown Flash Power Down modes
* @{
*/
#define PWR_FLASHPD_LPRUN PWR_CR1_FPDR /*!< Enable Flash power down in low power run mode */
#define PWR_FLASHPD_LPSLEEP PWR_CR1_FPDS /*!< Enable Flash power down in low power sleep mode */
/**
* @}
*/
/** @defgroup PWREx_Regulator_Voltage_Scale PWR Regulator voltage scale
* @{
*/
#if defined(PWR_CR1_VOS)
#define PWR_REGULATOR_VOLTAGE_SCALE1 PWR_CR1_VOS_0 /*!< Regulator voltage output range 1 mode, typical output voltage at 1.2 V, system frequency up to 64 MHz */
#define PWR_REGULATOR_VOLTAGE_SCALE2 PWR_CR1_VOS_1 /*!< Regulator voltage output range 2 mode, typical output voltage at 1.0 V, system frequency up to 16 MHz */
#else
#define PWR_REGULATOR_VOLTAGE_SCALE1 (0x00000200UL) /*!< Regulator voltage output range 1 mode, typical output voltage at 1.2 V, system frequency up to 64 MHz */
#endif /* PWR_CR1_VOS */
/**
* @}
*/
/** @defgroup PWREx_VBAT_Battery_Charging_Selection PWR battery charging resistor selection
* @{
*/
#define PWR_BATTERY_CHARGING_RESISTOR_5 (0x00000000U) /*!< VBAT charging through a 5 kOhms resistor */
#define PWR_BATTERY_CHARGING_RESISTOR_1_5 PWR_CR4_VBRS /*!< VBAT charging through a 1.5 kOhms resistor */
/**
* @}
*/
/** @defgroup PWREx_VBAT_Battery_Charging PWR battery charging
* @{
*/
#define PWR_BATTERY_CHARGING_DISABLE (0x00000000U)
#define PWR_BATTERY_CHARGING_ENABLE PWR_CR4_VBE
/**
* @}
*/
/** @defgroup PWREx_GPIO_Bit_Number GPIO bit number for I/O setting in standby/shutdown mode
* @{
*/
#define PWR_GPIO_BIT_0 PWR_PUCRA_PA0 /*!< GPIO port I/O pin 0 */
#define PWR_GPIO_BIT_1 PWR_PUCRA_PA1 /*!< GPIO port I/O pin 1 */
#define PWR_GPIO_BIT_2 PWR_PUCRA_PA2 /*!< GPIO port I/O pin 2 */
#define PWR_GPIO_BIT_3 PWR_PUCRA_PA3 /*!< GPIO port I/O pin 3 */
#define PWR_GPIO_BIT_4 PWR_PUCRA_PA4 /*!< GPIO port I/O pin 4 */
#define PWR_GPIO_BIT_5 PWR_PUCRA_PA5 /*!< GPIO port I/O pin 5 */
#define PWR_GPIO_BIT_6 PWR_PUCRA_PA6 /*!< GPIO port I/O pin 6 */
#define PWR_GPIO_BIT_7 PWR_PUCRA_PA7 /*!< GPIO port I/O pin 7 */
#define PWR_GPIO_BIT_8 PWR_PUCRA_PA8 /*!< GPIO port I/O pin 8 */
#define PWR_GPIO_BIT_9 PWR_PUCRA_PA9 /*!< GPIO port I/O pin 9 */
#define PWR_GPIO_BIT_10 PWR_PUCRA_PA10 /*!< GPIO port I/O pin 10 */
#define PWR_GPIO_BIT_11 PWR_PUCRA_PA11 /*!< GPIO port I/O pin 11 */
#define PWR_GPIO_BIT_12 PWR_PUCRA_PA12 /*!< GPIO port I/O pin 12 */
#define PWR_GPIO_BIT_13 PWR_PUCRA_PA13 /*!< GPIO port I/O pin 14 */
#define PWR_GPIO_BIT_14 PWR_PDCRC_PC14 /*!< GPIO port I/O pin 14 */
#define PWR_GPIO_BIT_15 PWR_PUCRC_PC15 /*!< GPIO port I/O pin 15 */
/**
* @}
*/
/** @defgroup PWREx_GPIO GPIO port
* @{
*/
#define PWR_GPIO_A 0x00000000U /*!< GPIO port A */
#define PWR_GPIO_B 0x00000001U /*!< GPIO port B */
#define PWR_GPIO_C 0x00000002U /*!< GPIO port C */
#if defined(GPIOD)
#define PWR_GPIO_D 0x00000003U /*!< GPIO port D */
#endif /* GPIOD */
#define PWR_GPIO_E 0x00000004U /*!< GPIO port E */
#define PWR_GPIO_H 0x00000007U /*!< GPIO port H */
/**
* @}
*/
#if defined(PWR_CR5_SMPSEN)
/** @defgroup PWREx_BOR_CONFIGURATION BOR configuration
* @{
*/
#define PWR_BOR_SYSTEM_RESET (LL_PWR_BOR_SYSTEM_RESET) /*!< BOR will generate a system reset */
#define PWR_BOR_SMPS_FORCE_BYPASS (LL_PWR_BOR_SMPS_FORCE_BYPASS) /*!< BOR will for SMPS step down converter in bypass mode */
/**
* @}
*/
/** @defgroup PWREx_SMPS_OPERATING_MODES SMPS step down converter operating modes
* @{
*/
/* Note: Literals values are defined from register SR2 bits SMPSF and SMPSBF */
/* but they are also used as register CR5 bits SMPSEN and SMPSBEN, */
/* as used by all SMPS operating mode functions targeting different */
/* registers: */
/* "LL_PWR_SMPS_SetMode()", "LL_PWR_SMPS_GetMode()" */
/* and "LL_PWR_SMPS_GetEffectiveMode()". */
#define PWR_SMPS_BYPASS (PWR_SR2_SMPSBF) /*!< SMPS step down in bypass mode */
#define PWR_SMPS_STEP_DOWN (PWR_SR2_SMPSF) /*!< SMPS step down in step down mode if system low power mode is run, LP run or stop0. If system low power mode is stop1, stop2, standby, shutdown, then SMPS is forced in mode open to preserve energy stored in decoupling capacitor as long as possible. */
/**
* @}
*/
/** @defgroup PWREx_SMPS_STARTUP_CURRENT SMPS step down converter supply startup current selection
* @{
*/
#define PWR_SMPS_STARTUP_CURRENT_80MA (0x00000000U) /*!< SMPS step down converter supply startup current 80mA */
#define PWR_SMPS_STARTUP_CURRENT_100MA ( PWR_CR5_SMPSSC_0) /*!< SMPS step down converter supply startup current 100mA */
#define PWR_SMPS_STARTUP_CURRENT_120MA ( PWR_CR5_SMPSSC_1 ) /*!< SMPS step down converter supply startup current 120mA */
#define PWR_SMPS_STARTUP_CURRENT_140MA ( PWR_CR5_SMPSSC_1 | PWR_CR5_SMPSSC_0) /*!< SMPS step down converter supply startup current 140mA */
#define PWR_SMPS_STARTUP_CURRENT_160MA (PWR_CR5_SMPSSC_2 ) /*!< SMPS step down converter supply startup current 160mA */
#define PWR_SMPS_STARTUP_CURRENT_180MA (PWR_CR5_SMPSSC_2 | PWR_CR5_SMPSSC_0) /*!< SMPS step down converter supply startup current 180mA */
#define PWR_SMPS_STARTUP_CURRENT_200MA (PWR_CR5_SMPSSC_2 | PWR_CR5_SMPSSC_1 ) /*!< SMPS step down converter supply startup current 200mA */
#define PWR_SMPS_STARTUP_CURRENT_220MA (PWR_CR5_SMPSSC_2 | PWR_CR5_SMPSSC_1 | PWR_CR5_SMPSSC_0) /*!< SMPS step down converter supply startup current 220mA */
/**
* @}
*/
/** @defgroup PWREx_SMPS_OUTPUT_VOLTAGE_LEVEL SMPS step down converter output voltage scaling voltage level
* @{
*/
/* Note: SMPS voltage is trimmed during device production to control
the actual voltage level variation from device to device. */
#define PWR_SMPS_OUTPUT_VOLTAGE_1V20 (0x00000000U) /*!< SMPS step down converter supply output voltage 1.20V */
#define PWR_SMPS_OUTPUT_VOLTAGE_1V25 ( PWR_CR5_SMPSVOS_0) /*!< SMPS step down converter supply output voltage 1.25V */
#define PWR_SMPS_OUTPUT_VOLTAGE_1V30 ( PWR_CR5_SMPSVOS_1 ) /*!< SMPS step down converter supply output voltage 1.30V */
#define PWR_SMPS_OUTPUT_VOLTAGE_1V35 ( PWR_CR5_SMPSVOS_1 | PWR_CR5_SMPSVOS_0) /*!< SMPS step down converter supply output voltage 1.35V */
#define PWR_SMPS_OUTPUT_VOLTAGE_1V40 ( PWR_CR5_SMPSVOS_2 ) /*!< SMPS step down converter supply output voltage 1.40V */
#define PWR_SMPS_OUTPUT_VOLTAGE_1V45 ( PWR_CR5_SMPSVOS_2 | PWR_CR5_SMPSVOS_0) /*!< SMPS step down converter supply output voltage 1.45V */
#define PWR_SMPS_OUTPUT_VOLTAGE_1V50 ( PWR_CR5_SMPSVOS_2 | PWR_CR5_SMPSVOS_1 ) /*!< SMPS step down converter supply output voltage 1.50V */
#define PWR_SMPS_OUTPUT_VOLTAGE_1V55 ( PWR_CR5_SMPSVOS_2 | PWR_CR5_SMPSVOS_1 | PWR_CR5_SMPSVOS_0) /*!< SMPS step down converter supply output voltage 1.55V */
#define PWR_SMPS_OUTPUT_VOLTAGE_1V60 (PWR_CR5_SMPSVOS_3 ) /*!< SMPS step down converter supply output voltage 1.60V */
#define PWR_SMPS_OUTPUT_VOLTAGE_1V65 (PWR_CR5_SMPSVOS_3 | PWR_CR5_SMPSVOS_0) /*!< SMPS step down converter supply output voltage 1.65V */
#define PWR_SMPS_OUTPUT_VOLTAGE_1V70 (PWR_CR5_SMPSVOS_3 | PWR_CR5_SMPSVOS_1 ) /*!< SMPS step down converter supply output voltage 1.70V */
#define PWR_SMPS_OUTPUT_VOLTAGE_1V75 (PWR_CR5_SMPSVOS_3 | PWR_CR5_SMPSVOS_1 | PWR_CR5_SMPSVOS_0) /*!< SMPS step down converter supply output voltage 1.75V */
#define PWR_SMPS_OUTPUT_VOLTAGE_1V80 (PWR_CR5_SMPSVOS_3 | PWR_CR5_SMPSVOS_2 ) /*!< SMPS step down converter supply output voltage 1.80V */
#define PWR_SMPS_OUTPUT_VOLTAGE_1V85 (PWR_CR5_SMPSVOS_3 | PWR_CR5_SMPSVOS_2 | PWR_CR5_SMPSVOS_0) /*!< SMPS step down converter supply output voltage 1.85V */
#define PWR_SMPS_OUTPUT_VOLTAGE_1V90 (PWR_CR5_SMPSVOS_3 | PWR_CR5_SMPSVOS_2 | PWR_CR5_SMPSVOS_1 ) /*!< SMPS step down converter supply output voltage 1.90V */
/**
* @}
*/
#endif /* PWR_CR5_SMPSEN */
/** @defgroup PWREx_Flag PWR Status Flags
* Elements values convention: 0000 0000 0XXY YYYYb
* - Y YYYY : Flag position in the XX register (5 bits)
* - XX : Status register (2 bits)
* - 01: SR1 register
* - 10: SR2 register
* - 11: EXTSCR register
* The only exception is PWR_FLAG_WUF, encompassing all
* wake-up flags and set to PWR_SR1_WUF.
* @{
*/
/*--------------------------------SR1-------------------------------*/
#define PWR_FLAG_WUF1 (PWR_FLAG_REG_SR1 | PWR_SR1_WUF1_Pos) /*!< Wakeup event on wakeup pin 1 */
#if defined(PWR_CR3_EWUP2)
#define PWR_FLAG_WUF2 (PWR_FLAG_REG_SR1 | PWR_SR1_WUF2_Pos) /*!< Wakeup event on wakeup pin 2 */
#endif /* PWR_CR3_EWUP2 */
#if defined(PWR_CR3_EWUP3)
#define PWR_FLAG_WUF3 (PWR_FLAG_REG_SR1 | PWR_SR1_WUF3_Pos) /*!< Wakeup event on wakeup pin 3 */
#endif /* PWR_CR3_EWUP3 */
#define PWR_FLAG_WUF4 (PWR_FLAG_REG_SR1 | PWR_SR1_WUF4_Pos) /*!< Wakeup event on wakeup pin 4 */
#if defined(PWR_CR3_EWUP5)
#define PWR_FLAG_WUF5 (PWR_FLAG_REG_SR1 | PWR_SR1_WUF5_Pos) /*!< Wakeup event on wakeup pin 5 */
#endif /* PWR_CR3_EWUP5 */
#define PWR_FLAG_WU (PWR_FLAG_REG_SR1 | PWR_SR1_WUF) /*!< Encompass wakeup event on all wakeup pins */
#if defined(PWR_CR5_SMPSEN)
#define PWR_FLAG_FRCBYPI (PWR_FLAG_REG_SR1 | PWR_SR1_SMPSFBF_Pos) /*!< SMPS Forced in Bypass Interrupt Flag */
#endif /* PWR_CR5_SMPSEN */
#define PWR_FLAG_BHWF (PWR_FLAG_REG_SR1 | PWR_SR1_BLEWUF_Pos) /*!< BLE_Host WakeUp Flag */
#define PWR_FLAG_RFPHASEI (PWR_FLAG_REG_SR1 | PWR_SR1_CRPEF_Pos) /*!< Radio Phase Interrupt Flag */
#define PWR_FLAG_BLEACTI (PWR_FLAG_REG_SR1 | PWR_SR1_BLEAF_Pos) /*!< BLE Activity Interrupt Flag */
#define PWR_FLAG_802ACTI (PWR_FLAG_REG_SR1 | PWR_SR1_802AF_Pos) /*!< 802.15.4 Activity Interrupt Flag */
#define PWR_FLAG_HOLDC2I (PWR_FLAG_REG_SR1 | PWR_SR1_C2HF_Pos) /*!< CPU2 on-Hold Interrupt Flag */
#define PWR_FLAG_WUFI (PWR_FLAG_REG_SR1 | PWR_SR1_WUFI_Pos) /*!< Wakeup on internal wakeup line */
/*--------------------------------SR2-------------------------------*/
#if defined(PWR_CR5_SMPSEN)
#define PWR_FLAG_SMPSRDYF (PWR_FLAG_REG_SR2 | PWR_SR2_SMPSBF_Pos) /*!< SMPS Ready Flag */
#define PWR_FLAG_SMPSBYPF (PWR_FLAG_REG_SR2 | PWR_SR2_SMPSF_Pos) /*!< SMPS Bypass Flag */
#endif /* PWR_CR5_SMPSEN */
#define PWR_FLAG_REGLPS (PWR_FLAG_REG_SR2 | PWR_SR2_REGLPS_Pos) /*!< Low-power regulator start flag */
#define PWR_FLAG_REGLPF (PWR_FLAG_REG_SR2 | PWR_SR2_REGLPF_Pos) /*!< Low-power regulator flag */
#if defined(PWR_CR1_VOS)
#define PWR_FLAG_VOSF (PWR_FLAG_REG_SR2 | PWR_SR2_VOSF_Pos) /*!< Voltage scaling flag */
#endif /* PWR_CR1_VOS */
#define PWR_FLAG_PVDO (PWR_FLAG_REG_SR2 | PWR_SR2_PVDO_Pos) /*!< Power Voltage Detector output flag */
#if defined(PWR_CR2_PVME1)
#define PWR_FLAG_PVMO1 (PWR_FLAG_REG_SR2 | PWR_SR2_PVMO1_Pos) /*!< Power Voltage Monitoring 1 output flag */
#endif /* PWR_CR2_PVME1 */
#define PWR_FLAG_PVMO3 (PWR_FLAG_REG_SR2 | PWR_SR2_PVMO3_Pos) /*!< Power Voltage Monitoring 3 output flag */
/*------------------------------EXTSCR---------------------------*/
#define PWR_FLAG_SB (PWR_FLAG_REG_EXTSCR | PWR_EXTSCR_C1SBF_Pos | (PWR_EXTSCR_C1CSSF_Pos << PWR_FLAG_EXTSCR_CLR_POS)) /*!< System Standby flag for CPU1 */
#define PWR_FLAG_STOP (PWR_FLAG_REG_EXTSCR | PWR_EXTSCR_C1STOPF_Pos | (PWR_EXTSCR_C1CSSF_Pos << PWR_FLAG_EXTSCR_CLR_POS)) /*!< System Stop flag for CPU1 */
#define PWR_FLAG_C2SB (PWR_FLAG_REG_EXTSCR | PWR_EXTSCR_C2SBF_Pos | (PWR_EXTSCR_C2CSSF_Pos << PWR_FLAG_EXTSCR_CLR_POS)) /*!< System Standby flag for CPU2 */
#define PWR_FLAG_C2STOP (PWR_FLAG_REG_EXTSCR | PWR_EXTSCR_C2STOPF_Pos | (PWR_EXTSCR_C2CSSF_Pos << PWR_FLAG_EXTSCR_CLR_POS)) /*!< System Stop flag for CPU2 */
#define PWR_FLAG_CRITICAL_RF_PHASE (PWR_FLAG_REG_EXTSCR | PWR_EXTSCR_CRPF_Pos | (PWR_EXTSCR_CCRPF_Pos << PWR_FLAG_EXTSCR_CLR_POS)) /*!< Critical radio system phase flag */
#define PWR_FLAG_C1DEEPSLEEP (PWR_FLAG_REG_EXTSCR | PWR_EXTSCR_C1DS_Pos) /*!< CPU1 DeepSleep Flag */
#define PWR_FLAG_C2DEEPSLEEP (PWR_FLAG_REG_EXTSCR | PWR_EXTSCR_C2DS_Pos) /*!< CPU2 DeepSleep Flag */
/**
* @}
*/
/** @defgroup PWREx_WakeUpTarget_Definition PWR Wakeup Target Definition
* @{
*/
#define PWR_WAKEUPTARGET_CPU1 (0x00000001U)
#define PWR_WAKEUPTARGET_CPU2 (0x00000002U)
#define PWR_WAKEUPTARGET_ALL_CPU (PWR_WAKEUPTARGET_CPU1 | PWR_WAKEUPTARGET_CPU2)
#define PWR_WAKEUPTARGET_RF (0x00000004U)
/**
* @}
*/
/** @defgroup PWREx_Core_Select PWREx Core definition
* @{
*/
#define PWR_CORE_CPU1 (0x00000000U)
#define PWR_CORE_CPU2 (0x00000001U)
/**
* @}
*/
/**
* @}
*/
/* Private define ------------------------------------------------------------*/
/** @defgroup PWR_Private_Defines PWR Private Defines
* @{
*/
/** @defgroup PWREx_PVM_EXTI_LINE PWR PVM external interrupts lines
* @{
*/
#if defined(PWR_CR2_PVME1)
#define PWR_EXTI_LINE_PVM1 (LL_EXTI_LINE_31) /*!< External interrupt line 31 Connected to PVM1 */
#endif /* PWR_CR2_PVME1 */
#define PWR_EXTI_LINE_PVM3 (LL_EXTI_LINE_33) /*!< External interrupt line 33 Connected to PVM3 */
/**
* @}
*/
/** @defgroup PWR_PVM_Mode_Mask PWR PVM Mode Mask
* @{
*/
/* Note: On STM32WB series, power PVD event is not available on AIEC lines */
/* (only interruption is available through AIEC line 16). */
#define PVM_MODE_IT (0x00010000U) /*!< Mask for interruption yielded by PVM threshold crossing */
#define PVM_MODE_EVT (0x00020000U) /*!< Mask for event yielded by PVM threshold crossing */
#define PVM_RISING_EDGE (0x00000001U) /*!< Mask for rising edge set as PVM trigger */
#define PVM_FALLING_EDGE (0x00000002U) /*!< Mask for falling edge set as PVM trigger */
#define PVM_RISING_FALLING_EDGE (0x00000003U) /*!< Mask for rising and falling edges set as PVM trigger */
/**
* @}
*/
/** @defgroup PWR_FLAG_REG PWR flag register
* @{
*/
#define PWR_FLAG_REG_SR1 (0x20UL) /* Bitfield to indicate PWR flag located in register PWR_SR1 */
#define PWR_FLAG_REG_SR2 (0x40UL) /* Bitfield to indicate PWR flag located in register PWR_SR2 */
#define PWR_FLAG_REG_EXTSCR (0x60UL) /* Bitfield to indicate PWR flag located in register PWR_EXTSCR */
#define PWR_FLAG_REG_MASK (PWR_FLAG_REG_SR1 | PWR_FLAG_REG_SR2 | PWR_FLAG_REG_EXTSCR) /* Bitfield mask to indicate PWR flag location in PWR register */
#define PWR_FLAG_EXTSCR_CLR_POS (16UL) /* Bitfield for register PWR_EXTSCR clearable bits positions: position of bitfield in flag literals */
#define PWR_FLAG_EXTSCR_CLR_MASK ((PWR_EXTSCR_C1CSSF_Pos | PWR_EXTSCR_C2CSSF_Pos | PWR_EXTSCR_CCRPF_Pos) << PWR_FLAG_EXTSCR_CLR_POS) /* Bitfield for register PWR_EXTSCR clearable bits positions: mask of bitfield in flag literals */
/**
* @}
*/
/**
* @}
*/
/* Exported macros -----------------------------------------------------------*/
/** @defgroup PWREx_Exported_Macros PWR Extended Exported Macros
* @{
*/
#if defined(PWR_CR2_PVME1)
/**
* @brief Enable the PVM1 Extended Interrupt C1 Line.
* @retval None
*/
#define __HAL_PWR_PVM1_EXTI_ENABLE_IT() LL_EXTI_EnableIT_0_31(PWR_EXTI_LINE_PVM1)
/**
* @brief Enable the PVM1 Extended Interrupt C2 Line.
* @retval None
*/
#define __HAL_PWR_PVM1_EXTIC2_ENABLE_IT() LL_C2_EXTI_EnableIT_0_31(PWR_EXTI_LINE_PVM1)
/**
* @brief Disable the PVM1 Extended Interrupt C1 Line.
* @retval None
*/
#define __HAL_PWR_PVM1_EXTI_DISABLE_IT() LL_EXTI_DisableIT_0_31(PWR_EXTI_LINE_PVM1)
/**
* @brief Disable the PVM1 Extended Interrupt C2 Line.
* @retval None
*/
#define __HAL_PWR_PVM1_EXTIC2_DISABLE_IT() LL_C2_EXTI_DisableIT_0_31(PWR_EXTI_LINE_PVM1)
/**
* @brief Enable the PVM1 Event C1 Line.
* @retval None
*/
#define __HAL_PWR_PVM1_EXTI_ENABLE_EVENT() LL_EXTI_EnableEvent_0_31(PWR_EXTI_LINE_PVM1)
/**
* @brief Enable the PVM1 Event C2 Line.
* @retval None
*/
#define __HAL_PWR_PVM1_EXTIC2_ENABLE_EVENT() LL_C2_EXTI_EnableEvent_0_31(PWR_EXTI_LINE_PVM1)
/**
* @brief Disable the PVM1 Event C1 Line.
* @retval None
*/
#define __HAL_PWR_PVM1_EXTI_DISABLE_EVENT() LL_EXTI_DisableEvent_0_31(PWR_EXTI_LINE_PVM1)
/**
* @brief Disable the PVM1 Event C2 Line.
* @retval None
*/
#define __HAL_PWR_PVM1_EXTIC2_DISABLE_EVENT() LL_C2_EXTI_DisableEvent_0_31(PWR_EXTI_LINE_PVM1)
/**
* @brief Enable the PVM1 Extended Interrupt Rising Trigger.
* @note PVM1 flag polarity is inverted compared to EXTI line, therefore
* EXTI rising and falling logic edges are inverted versus PVM1 voltage edges.
* @retval None
*/
#define __HAL_PWR_PVM1_EXTI_ENABLE_RISING_EDGE() LL_EXTI_EnableRisingTrig_0_31(PWR_EXTI_LINE_PVM1)
/**
* @brief Disable the PVM1 Extended Interrupt Rising Trigger.
* @note PVM1 flag polarity is inverted compared to EXTI line, therefore
* EXTI rising and falling logic edges are inverted versus PVM1 voltage edges.
* @retval None
*/
#define __HAL_PWR_PVM1_EXTI_DISABLE_RISING_EDGE() LL_EXTI_DisableRisingTrig_0_31(PWR_EXTI_LINE_PVM1)
/**
* @brief Enable the PVM1 Extended Interrupt Falling Trigger.
* @note PVM1 flag polarity is inverted compared to EXTI line, therefore
* EXTI rising and falling logic edges are inverted versus PVM1 voltage edges.
* @retval None
*/
#define __HAL_PWR_PVM1_EXTI_ENABLE_FALLING_EDGE() LL_EXTI_EnableFallingTrig_0_31(PWR_EXTI_LINE_PVM1)
/**
* @brief Disable the PVM1 Extended Interrupt Falling Trigger.
* @note PVM1 flag polarity is inverted compared to EXTI line, therefore
* EXTI rising and falling logic edges are inverted versus PVM1 voltage edges.
* @retval None
*/
#define __HAL_PWR_PVM1_EXTI_DISABLE_FALLING_EDGE() LL_EXTI_DisableFallingTrig_0_31(PWR_EXTI_LINE_PVM1)
/**
* @brief PVM1 EXTI line configuration: set rising & falling edge trigger.
* @retval None
*/
#define __HAL_PWR_PVM1_EXTI_ENABLE_RISING_FALLING_EDGE() \
do { \
__HAL_PWR_PVM1_EXTI_ENABLE_RISING_EDGE(); \
__HAL_PWR_PVM1_EXTI_ENABLE_FALLING_EDGE(); \
} while(0)
/**
* @brief Disable the PVM1 Extended Interrupt Rising & Falling Trigger.
* @retval None
*/
#define __HAL_PWR_PVM1_EXTI_DISABLE_RISING_FALLING_EDGE() \
do { \
__HAL_PWR_PVM1_EXTI_DISABLE_RISING_EDGE(); \
__HAL_PWR_PVM1_EXTI_DISABLE_FALLING_EDGE(); \
} while(0)
/**
* @brief Generate a Software interrupt on selected EXTI line.
* @retval None
*/
#define __HAL_PWR_PVM1_EXTI_GENERATE_SWIT() LL_EXTI_GenerateSWI_0_31(PWR_EXTI_LINE_PVM1)
/**
* @brief Check whether the specified PVM1 EXTI interrupt flag is set or not.
* @retval EXTI PVM1 Line Status.
*/
#define __HAL_PWR_PVM1_EXTI_GET_FLAG() LL_EXTI_ReadFlag_0_31(PWR_EXTI_LINE_PVM1)
/**
* @brief Clear the PVM1 EXTI flag.
* @retval None
*/
#define __HAL_PWR_PVM1_EXTI_CLEAR_FLAG() LL_EXTI_ClearFlag_0_31(PWR_EXTI_LINE_PVM1)
#endif /* PWR_CR2_PVME1 */
/**
* @brief Enable the PVM3 Extended Interrupt C1 Line.
* @retval None
*/
#define __HAL_PWR_PVM3_EXTI_ENABLE_IT() LL_EXTI_EnableIT_32_63(PWR_EXTI_LINE_PVM3)
/**
* @brief Enable the PVM3 Extended Interrupt C2 Line.
* @retval None
*/
#define __HAL_PWR_PVM3_EXTIC2_ENABLE_IT() LL_C2_EXTI_EnableIT_32_63(PWR_EXTI_LINE_PVM3)
/**
* @brief Disable the PVM3 Extended Interrupt C1 Line.
* @retval None
*/
#define __HAL_PWR_PVM3_EXTI_DISABLE_IT() LL_EXTI_DisableIT_32_63(PWR_EXTI_LINE_PVM3)
/**
* @brief Disable the PVM3 Extended Interrupt C2 Line.
* @retval None
*/
#define __HAL_PWR_PVM3_EXTIC2_DISABLE_IT() LL_C2_EXTI_DisableIT_32_63(PWR_EXTI_LINE_PVM3)
/**
* @brief Enable the PVM3 Event C1 Line.
* @retval None
*/
#define __HAL_PWR_PVM3_EXTI_ENABLE_EVENT() LL_EXTI_EnableEvent_32_63(PWR_EXTI_LINE_PVM3)
/**
* @brief Enable the PVM3 Event C2 Line.
* @retval None
*/
#define __HAL_PWR_PVM3_EXTIC2_ENABLE_EVENT() LL_C2_EXTI_EnableEvent_32_63(PWR_EXTI_LINE_PVM3)
/**
* @brief Disable the PVM3 Event C1 Line.
* @retval None
*/
#define __HAL_PWR_PVM3_EXTI_DISABLE_EVENT() LL_EXTI_DisableEvent_32_63(PWR_EXTI_LINE_PVM3)
/**
* @brief Disable the PVM3 Event C2 Line.
* @retval None
*/
#define __HAL_PWR_PVM3_EXTIC2_DISABLE_EVENT() LL_C2_EXTI_DisableEvent_32_63(PWR_EXTI_LINE_PVM3)
/**
* @brief Enable the PVM3 Extended Interrupt Rising Trigger.
* @note PVM3 flag polarity is inverted compared to EXTI line, therefore
* EXTI rising and falling logic edges are inverted versus PVM3 voltage edges.
* @retval None
*/
#define __HAL_PWR_PVM3_EXTI_ENABLE_RISING_EDGE() LL_EXTI_EnableRisingTrig_32_63(PWR_EXTI_LINE_PVM3)
/**
* @brief Disable the PVM3 Extended Interrupt Rising Trigger.
* @note PVM3 flag polarity is inverted compared to EXTI line, therefore
* EXTI rising and falling logic edges are inverted versus PVM3 voltage edges.
* @retval None
*/
#define __HAL_PWR_PVM3_EXTI_DISABLE_RISING_EDGE() LL_EXTI_DisableRisingTrig_32_63(PWR_EXTI_LINE_PVM3)
/**
* @brief Enable the PVM3 Extended Interrupt Falling Trigger.
* @note PVM3 flag polarity is inverted compared to EXTI line, therefore
* EXTI rising and falling logic edges are inverted versus PVM3 voltage edges.
* @retval None
*/
#define __HAL_PWR_PVM3_EXTI_ENABLE_FALLING_EDGE() LL_EXTI_EnableFallingTrig_32_63(PWR_EXTI_LINE_PVM3)
/**
* @brief Disable the PVM3 Extended Interrupt Falling Trigger.
* @note PVM3 flag polarity is inverted compared to EXTI line, therefore
* EXTI rising and falling logic edges are inverted versus PVM3 voltage edges.
* @retval None
*/
#define __HAL_PWR_PVM3_EXTI_DISABLE_FALLING_EDGE() LL_EXTI_DisableFallingTrig_32_63(PWR_EXTI_LINE_PVM3)
/**
* @brief PVM3 EXTI line configuration: set rising & falling edge trigger.
* @retval None
*/
#define __HAL_PWR_PVM3_EXTI_ENABLE_RISING_FALLING_EDGE() \
do { \
__HAL_PWR_PVM3_EXTI_ENABLE_RISING_EDGE(); \
__HAL_PWR_PVM3_EXTI_ENABLE_FALLING_EDGE(); \
} while(0)
/**
* @brief Disable the PVM3 Extended Interrupt Rising & Falling Trigger.
* @retval None
*/
#define __HAL_PWR_PVM3_EXTI_DISABLE_RISING_FALLING_EDGE() \
do { \
__HAL_PWR_PVM3_EXTI_DISABLE_RISING_EDGE(); \
__HAL_PWR_PVM3_EXTI_DISABLE_FALLING_EDGE(); \
} while(0)
/**
* @brief Generate a Software interrupt on selected EXTI line.
* @retval None
*/
#define __HAL_PWR_PVM3_EXTI_GENERATE_SWIT() LL_EXTI_GenerateSWI_32_63(PWR_EXTI_LINE_PVM3)
/**
* @brief Check whether the specified PVM3 EXTI interrupt flag is set or not.
* @retval EXTI PVM3 Line Status.
*/
#define __HAL_PWR_PVM3_EXTI_GET_FLAG() LL_EXTI_ReadFlag_32_63(PWR_EXTI_LINE_PVM3)
/**
* @brief Clear the PVM3 EXTI flag.
* @retval None
*/
#define __HAL_PWR_PVM3_EXTI_CLEAR_FLAG() LL_EXTI_ClearFlag_32_63(PWR_EXTI_LINE_PVM3)
#if defined(PWR_CR1_VOS)
/**
* @brief Configure the main internal regulator output voltage.
* @param __REGULATOR__ specifies the regulator output voltage to achieve
* a tradeoff between performance and power consumption.
* This parameter can be one of the following values:
* @arg @ref PWR_REGULATOR_VOLTAGE_SCALE1 Regulator voltage output range 1 mode,
* typical output voltage at 1.2 V,
* system frequency up to 64 MHz.
* @arg @ref PWR_REGULATOR_VOLTAGE_SCALE2 Regulator voltage output range 2 mode,
* typical output voltage at 1.0 V,
* system frequency up to 16 MHz.
* @note This macro is similar to HAL_PWREx_ControlVoltageScaling() API but doesn't check
* whether or not VOSF flag is cleared when moving from range 2 to range 1. User
* may resort to __HAL_PWR_GET_FLAG() macro to check VOSF bit resetting.
* @retval None
*/
#define __HAL_PWR_VOLTAGESCALING_CONFIG(__REGULATOR__) do { \
__IO uint32_t tmpreg; \
MODIFY_REG(PWR->CR1, PWR_CR1_VOS, (__REGULATOR__)); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(PWR->CR1, PWR_CR1_VOS); \
UNUSED(tmpreg); \
} while(0)
#endif /* PWR_CR1_VOS */
/**
* @brief Wakeup BLE controller from its sleep mode
* @note This bit is automatically reset when 802.15.4 controller
* exit its sleep mode.
* @retval None
*/
#define __HAL_C2_PWR_WAKEUP_BLE() LL_C2_PWR_WakeUp_BLE()
/**
* @brief Wakeup 802.15.4 controller from its sleep mode
* @note This bit is automatically reset when 802.15.4 controller
* exit its sleep mode.
* @retval None
*/
#define __HAL_C2_PWR_WAKEUP_802_15_4() LL_C2_PWR_WakeUp_802_15_4()
/**
* @}
*/
/* Private macros --------------------------------------------------------*/
/** @addtogroup PWREx_Private_Macros PWR Extended Private Macros
* @{
*/
#if defined(PWR_CR3_EWUP2)
#define IS_PWR_WAKEUP_PIN(PIN) (((PIN) == PWR_WAKEUP_PIN1_HIGH) || \
((PIN) == PWR_WAKEUP_PIN2_HIGH) || \
((PIN) == PWR_WAKEUP_PIN3_HIGH) || \
((PIN) == PWR_WAKEUP_PIN4_HIGH) || \
((PIN) == PWR_WAKEUP_PIN5_HIGH) || \
((PIN) == PWR_WAKEUP_PIN1_LOW) || \
((PIN) == PWR_WAKEUP_PIN2_LOW) || \
((PIN) == PWR_WAKEUP_PIN3_LOW) || \
((PIN) == PWR_WAKEUP_PIN4_LOW) || \
((PIN) == PWR_WAKEUP_PIN5_LOW))
#else
#define IS_PWR_WAKEUP_PIN(PIN) (((PIN) == PWR_WAKEUP_PIN1_HIGH) || \
((PIN) == PWR_WAKEUP_PIN4_HIGH) || \
((PIN) == PWR_WAKEUP_PIN1_LOW) || \
((PIN) == PWR_WAKEUP_PIN4_LOW))
#endif /* PWR_CR3_EWUP2 */
#define IS_PWR_WAKEUP_PIN_POLARITY(POLARITY) (((POLARITY) == PWR_PIN_POLARITY_HIGH) || \
((POLARITY) == PWR_PIN_POLARITY_LOW))
#if defined(PWR_CR2_PVME1)
#define IS_PWR_PVM_TYPE(TYPE) (((TYPE) == PWR_PVM_1) ||\
((TYPE) == PWR_PVM_3))
#else
#define IS_PWR_PVM_TYPE(TYPE) ((TYPE) == PWR_PVM_3)
#endif /* PWR_CR2_PVME1 */
#define IS_PWR_PVM_MODE(MODE) (((MODE) == PWR_PVM_MODE_NORMAL) ||\
((MODE) == PWR_PVM_MODE_IT_RISING) ||\
((MODE) == PWR_PVM_MODE_IT_FALLING) ||\
((MODE) == PWR_PVM_MODE_IT_RISING_FALLING) ||\
((MODE) == PWR_PVM_MODE_EVENT_RISING) ||\
((MODE) == PWR_PVM_MODE_EVENT_FALLING) ||\
((MODE) == PWR_PVM_MODE_EVENT_RISING_FALLING))
#define IS_PWR_FLASH_POWERDOWN(__MODE__) ((((__MODE__) & (PWR_FLASHPD_LPRUN | PWR_FLASHPD_LPSLEEP)) != 0x00u) && \
(((__MODE__) & ~(PWR_FLASHPD_LPRUN | PWR_FLASHPD_LPSLEEP)) == 0x00u))
#if defined(PWR_CR1_VOS)
#define IS_PWR_VOLTAGE_SCALING_RANGE(RANGE) (((RANGE) == PWR_REGULATOR_VOLTAGE_SCALE1) || \
((RANGE) == PWR_REGULATOR_VOLTAGE_SCALE2))
#endif /* PWR_CR1_VOS */
#define IS_PWR_BATTERY_RESISTOR_SELECT(RESISTOR) (((RESISTOR) == PWR_BATTERY_CHARGING_RESISTOR_5) ||\
((RESISTOR) == PWR_BATTERY_CHARGING_RESISTOR_1_5))
#define IS_PWR_BATTERY_CHARGING(CHARGING) (((CHARGING) == PWR_BATTERY_CHARGING_DISABLE) ||\
((CHARGING) == PWR_BATTERY_CHARGING_ENABLE))
#define IS_PWR_GPIO_BIT_NUMBER(BIT_NUMBER) (((BIT_NUMBER) & GPIO_PIN_MASK) != (uint32_t)0x00)
#if defined(GPIOD)
#define IS_PWR_GPIO(GPIO) (((GPIO) == PWR_GPIO_A) ||\
((GPIO) == PWR_GPIO_B) ||\
((GPIO) == PWR_GPIO_C) ||\
((GPIO) == PWR_GPIO_D) ||\
((GPIO) == PWR_GPIO_E) ||\
((GPIO) == PWR_GPIO_H))
#else
#define IS_PWR_GPIO(GPIO) (((GPIO) == PWR_GPIO_A) ||\
((GPIO) == PWR_GPIO_B) ||\
((GPIO) == PWR_GPIO_C) ||\
((GPIO) == PWR_GPIO_E) ||\
((GPIO) == PWR_GPIO_H))
#endif /* GPIOD */
#if defined(PWR_CR5_SMPSEN)
#define IS_PWR_SMPS_MODE(SMPS_MODE) (((SMPS_MODE) == PWR_SMPS_BYPASS) ||\
((SMPS_MODE) == PWR_SMPS_STEP_DOWN))
#define IS_PWR_SMPS_STARTUP_CURRENT(SMPS_STARTUP_CURRENT) (((SMPS_STARTUP_CURRENT) == PWR_SMPS_STARTUP_CURRENT_80MA) ||\
((SMPS_STARTUP_CURRENT) == PWR_SMPS_STARTUP_CURRENT_100MA) ||\
((SMPS_STARTUP_CURRENT) == PWR_SMPS_STARTUP_CURRENT_120MA) ||\
((SMPS_STARTUP_CURRENT) == PWR_SMPS_STARTUP_CURRENT_140MA) ||\
((SMPS_STARTUP_CURRENT) == PWR_SMPS_STARTUP_CURRENT_160MA) ||\
((SMPS_STARTUP_CURRENT) == PWR_SMPS_STARTUP_CURRENT_180MA) ||\
((SMPS_STARTUP_CURRENT) == PWR_SMPS_STARTUP_CURRENT_200MA) ||\
((SMPS_STARTUP_CURRENT) == PWR_SMPS_STARTUP_CURRENT_220MA))
#define IS_PWR_SMPS_OUTPUT_VOLTAGE(SMPS_OUTPUT_VOLTAGE) (((SMPS_OUTPUT_VOLTAGE) == PWR_SMPS_OUTPUT_VOLTAGE_1V20) ||\
((SMPS_OUTPUT_VOLTAGE) == PWR_SMPS_OUTPUT_VOLTAGE_1V25) ||\
((SMPS_OUTPUT_VOLTAGE) == PWR_SMPS_OUTPUT_VOLTAGE_1V30) ||\
((SMPS_OUTPUT_VOLTAGE) == PWR_SMPS_OUTPUT_VOLTAGE_1V35) ||\
((SMPS_OUTPUT_VOLTAGE) == PWR_SMPS_OUTPUT_VOLTAGE_1V40) ||\
((SMPS_OUTPUT_VOLTAGE) == PWR_SMPS_OUTPUT_VOLTAGE_1V45) ||\
((SMPS_OUTPUT_VOLTAGE) == PWR_SMPS_OUTPUT_VOLTAGE_1V50) ||\
((SMPS_OUTPUT_VOLTAGE) == PWR_SMPS_OUTPUT_VOLTAGE_1V55) ||\
((SMPS_OUTPUT_VOLTAGE) == PWR_SMPS_OUTPUT_VOLTAGE_1V60) ||\
((SMPS_OUTPUT_VOLTAGE) == PWR_SMPS_OUTPUT_VOLTAGE_1V65) ||\
((SMPS_OUTPUT_VOLTAGE) == PWR_SMPS_OUTPUT_VOLTAGE_1V70) ||\
((SMPS_OUTPUT_VOLTAGE) == PWR_SMPS_OUTPUT_VOLTAGE_1V75) ||\
((SMPS_OUTPUT_VOLTAGE) == PWR_SMPS_OUTPUT_VOLTAGE_1V80) ||\
((SMPS_OUTPUT_VOLTAGE) == PWR_SMPS_OUTPUT_VOLTAGE_1V85) ||\
((SMPS_OUTPUT_VOLTAGE) == PWR_SMPS_OUTPUT_VOLTAGE_1V90))
#endif /* PWR_CR5_SMPSEN */
#define IS_PWR_CORE(CPU) (((CPU) == PWR_CORE_CPU1) || ((CPU) == PWR_CORE_CPU2))
#define IS_PWR_CORE_HOLD_RELEASE(CPU) ((CPU) == PWR_CORE_CPU2)
/**
* @}
*/
/** @addtogroup PWREx_Exported_Functions PWR Extended Exported Functions
* @{
*/
/** @addtogroup PWREx_Exported_Functions_Group1 Extended Peripheral Control functions
* @{
*/
/* Peripheral Control functions **********************************************/
uint32_t HAL_PWREx_GetVoltageRange(void);
HAL_StatusTypeDef HAL_PWREx_ControlVoltageScaling(uint32_t VoltageScaling);
void HAL_PWREx_EnableBatteryCharging(uint32_t ResistorSelection);
void HAL_PWREx_DisableBatteryCharging(void);
void HAL_PWREx_EnableVddUSB(void);
void HAL_PWREx_DisableVddUSB(void);
void HAL_PWREx_EnableInternalWakeUpLine(void);
void HAL_PWREx_DisableInternalWakeUpLine(void);
#if defined(PWR_CR5_SMPSEN)
void HAL_PWREx_EnableBORH_SMPSBypassIT(void);
void HAL_PWREx_DisableBORH_SMPSBypassIT(void);
#endif /* PWR_CR5_SMPSEN */
void HAL_PWREx_EnableRFPhaseIT(void);
void HAL_PWREx_DisableRFPhaseIT(void);
void HAL_PWREx_EnableBLEActivityIT(void);
void HAL_PWREx_DisableBLEActivityIT(void);
void HAL_PWREx_Enable802ActivityIT(void);
void HAL_PWREx_Disable802ActivityIT(void);
void HAL_PWREx_EnableHOLDC2IT(void);
void HAL_PWREx_DisableHOLDC2IT(void);
void HAL_PWREx_HoldCore(uint32_t CPU);
void HAL_PWREx_ReleaseCore(uint32_t CPU);
HAL_StatusTypeDef HAL_PWREx_EnableGPIOPullUp(uint32_t GPIO, uint32_t GPIONumber);
HAL_StatusTypeDef HAL_PWREx_DisableGPIOPullUp(uint32_t GPIO, uint32_t GPIONumber);
HAL_StatusTypeDef HAL_PWREx_EnableGPIOPullDown(uint32_t GPIO, uint32_t GPIONumber);
HAL_StatusTypeDef HAL_PWREx_DisableGPIOPullDown(uint32_t GPIO, uint32_t GPIONumber);
void HAL_PWREx_EnablePullUpPullDownConfig(void);
void HAL_PWREx_DisablePullUpPullDownConfig(void);
#if defined(PWR_CR5_SMPSEN)
void HAL_PWREx_SetBORConfig(uint32_t BORConfiguration);
uint32_t HAL_PWREx_GetBORConfig(void);
#endif /* PWR_CR5_SMPSEN */
void HAL_PWREx_EnableSRAMRetention(void);
void HAL_PWREx_DisableSRAMRetention(void);
void HAL_PWREx_EnableFlashPowerDown(uint32_t PowerMode);
void HAL_PWREx_DisableFlashPowerDown(uint32_t PowerMode);
#if defined(PWR_CR2_PVME1)
void HAL_PWREx_EnablePVM1(void);
void HAL_PWREx_DisablePVM1(void);
#endif /* PWR_CR2_PVME1 */
void HAL_PWREx_EnablePVM3(void);
void HAL_PWREx_DisablePVM3(void);
HAL_StatusTypeDef HAL_PWREx_ConfigPVM(PWR_PVMTypeDef *sConfigPVM);
#if defined(PWR_CR5_SMPSEN)
HAL_StatusTypeDef HAL_PWREx_ConfigSMPS(PWR_SMPSTypeDef *sConfigSMPS);
void HAL_PWREx_SMPS_SetMode(uint32_t OperatingMode);
uint32_t HAL_PWREx_SMPS_GetEffectiveMode(void);
#endif /* PWR_CR5_SMPSEN */
/* WakeUp pins configuration functions ****************************************/
void HAL_PWREx_EnableWakeUpPin(uint32_t WakeUpPinPolarity, uint32_t wakeupTarget);
uint32_t HAL_PWREx_GetWakeupFlag(uint32_t WakeUpFlag);
HAL_StatusTypeDef HAL_PWREx_ClearWakeupFlag(uint32_t WakeUpFlag);
/* Low Power modes configuration functions ************************************/
void HAL_PWREx_EnableLowPowerRunMode(void);
HAL_StatusTypeDef HAL_PWREx_DisableLowPowerRunMode(void);
void HAL_PWREx_EnterSTOP0Mode(uint8_t STOPEntry);
void HAL_PWREx_EnterSTOP1Mode(uint8_t STOPEntry);
#if defined(PWR_SUPPORT_STOP2)
void HAL_PWREx_EnterSTOP2Mode(uint8_t STOPEntry);
#endif /* PWR_SUPPORT_STOP2 */
void HAL_PWREx_EnterSHUTDOWNMode(void);
void HAL_PWREx_PVD_PVM_IRQHandler(void);
#if defined(PWR_CR2_PVME1)
void HAL_PWREx_PVM1Callback(void);
#endif /* PWR_CR2_PVME1 */
void HAL_PWREx_PVM3Callback(void);
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* STM32WBxx_HAL_PWR_EX_H */

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,855 @@
/**
******************************************************************************
* @file stm32wbxx_hal_spi.h
* @author MCD Application Team
* @brief Header file of SPI HAL module.
******************************************************************************
* @attention
*
* Copyright (c) 2019 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef STM32WBxx_HAL_SPI_H
#define STM32WBxx_HAL_SPI_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32wbxx_hal_def.h"
/** @addtogroup STM32WBxx_HAL_Driver
* @{
*/
/** @addtogroup SPI
* @{
*/
/* Exported types ------------------------------------------------------------*/
/** @defgroup SPI_Exported_Types SPI Exported Types
* @{
*/
/**
* @brief SPI Configuration Structure definition
*/
typedef struct
{
uint32_t Mode; /*!< Specifies the SPI operating mode.
This parameter can be a value of @ref SPI_Mode */
uint32_t Direction; /*!< Specifies the SPI bidirectional mode state.
This parameter can be a value of @ref SPI_Direction */
uint32_t DataSize; /*!< Specifies the SPI data size.
This parameter can be a value of @ref SPI_Data_Size */
uint32_t CLKPolarity; /*!< Specifies the serial clock steady state.
This parameter can be a value of @ref SPI_Clock_Polarity */
uint32_t CLKPhase; /*!< Specifies the clock active edge for the bit capture.
This parameter can be a value of @ref SPI_Clock_Phase */
uint32_t NSS; /*!< Specifies whether the NSS signal is managed by
hardware (NSS pin) or by software using the SSI bit.
This parameter can be a value of @ref SPI_Slave_Select_management */
uint32_t BaudRatePrescaler; /*!< Specifies the Baud Rate prescaler value which will be
used to configure the transmit and receive SCK clock.
This parameter can be a value of @ref SPI_BaudRate_Prescaler
@note The communication clock is derived from the master
clock. The slave clock does not need to be set. */
uint32_t FirstBit; /*!< Specifies whether data transfers start from MSB or LSB bit.
This parameter can be a value of @ref SPI_MSB_LSB_transmission */
uint32_t TIMode; /*!< Specifies if the TI mode is enabled or not.
This parameter can be a value of @ref SPI_TI_mode */
uint32_t CRCCalculation; /*!< Specifies if the CRC calculation is enabled or not.
This parameter can be a value of @ref SPI_CRC_Calculation */
uint32_t CRCPolynomial; /*!< Specifies the polynomial used for the CRC calculation.
This parameter must be an odd number between Min_Data = 1 and Max_Data = 65535 */
uint32_t CRCLength; /*!< Specifies the CRC Length used for the CRC calculation.
CRC Length is only used with Data8 and Data16, not other data size
This parameter can be a value of @ref SPI_CRC_length */
uint32_t NSSPMode; /*!< Specifies whether the NSSP signal is enabled or not .
This parameter can be a value of @ref SPI_NSSP_Mode
This mode is activated by the NSSP bit in the SPIx_CR2 register and
it takes effect only if the SPI interface is configured as Motorola SPI
master (FRF=0) with capture on the first edge (SPIx_CR1 CPHA = 0,
CPOL setting is ignored).. */
} SPI_InitTypeDef;
/**
* @brief HAL SPI State structure definition
*/
typedef enum
{
HAL_SPI_STATE_RESET = 0x00U, /*!< Peripheral not Initialized */
HAL_SPI_STATE_READY = 0x01U, /*!< Peripheral Initialized and ready for use */
HAL_SPI_STATE_BUSY = 0x02U, /*!< an internal process is ongoing */
HAL_SPI_STATE_BUSY_TX = 0x03U, /*!< Data Transmission process is ongoing */
HAL_SPI_STATE_BUSY_RX = 0x04U, /*!< Data Reception process is ongoing */
HAL_SPI_STATE_BUSY_TX_RX = 0x05U, /*!< Data Transmission and Reception process is ongoing */
HAL_SPI_STATE_ERROR = 0x06U, /*!< SPI error state */
HAL_SPI_STATE_ABORT = 0x07U /*!< SPI abort is ongoing */
} HAL_SPI_StateTypeDef;
/**
* @brief SPI handle Structure definition
*/
typedef struct __SPI_HandleTypeDef
{
SPI_TypeDef *Instance; /*!< SPI registers base address */
SPI_InitTypeDef Init; /*!< SPI communication parameters */
const uint8_t *pTxBuffPtr; /*!< Pointer to SPI Tx transfer Buffer */
uint16_t TxXferSize; /*!< SPI Tx Transfer size */
__IO uint16_t TxXferCount; /*!< SPI Tx Transfer Counter */
uint8_t *pRxBuffPtr; /*!< Pointer to SPI Rx transfer Buffer */
uint16_t RxXferSize; /*!< SPI Rx Transfer size */
__IO uint16_t RxXferCount; /*!< SPI Rx Transfer Counter */
uint32_t CRCSize; /*!< SPI CRC size used for the transfer */
void (*RxISR)(struct __SPI_HandleTypeDef *hspi); /*!< function pointer on Rx ISR */
void (*TxISR)(struct __SPI_HandleTypeDef *hspi); /*!< function pointer on Tx ISR */
DMA_HandleTypeDef *hdmatx; /*!< SPI Tx DMA Handle parameters */
DMA_HandleTypeDef *hdmarx; /*!< SPI Rx DMA Handle parameters */
HAL_LockTypeDef Lock; /*!< Locking object */
__IO HAL_SPI_StateTypeDef State; /*!< SPI communication state */
__IO uint32_t ErrorCode; /*!< SPI Error code */
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
void (* TxCpltCallback)(struct __SPI_HandleTypeDef *hspi); /*!< SPI Tx Completed callback */
void (* RxCpltCallback)(struct __SPI_HandleTypeDef *hspi); /*!< SPI Rx Completed callback */
void (* TxRxCpltCallback)(struct __SPI_HandleTypeDef *hspi); /*!< SPI TxRx Completed callback */
void (* TxHalfCpltCallback)(struct __SPI_HandleTypeDef *hspi); /*!< SPI Tx Half Completed callback */
void (* RxHalfCpltCallback)(struct __SPI_HandleTypeDef *hspi); /*!< SPI Rx Half Completed callback */
void (* TxRxHalfCpltCallback)(struct __SPI_HandleTypeDef *hspi); /*!< SPI TxRx Half Completed callback */
void (* ErrorCallback)(struct __SPI_HandleTypeDef *hspi); /*!< SPI Error callback */
void (* AbortCpltCallback)(struct __SPI_HandleTypeDef *hspi); /*!< SPI Abort callback */
void (* MspInitCallback)(struct __SPI_HandleTypeDef *hspi); /*!< SPI Msp Init callback */
void (* MspDeInitCallback)(struct __SPI_HandleTypeDef *hspi); /*!< SPI Msp DeInit callback */
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
} SPI_HandleTypeDef;
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
/**
* @brief HAL SPI Callback ID enumeration definition
*/
typedef enum
{
HAL_SPI_TX_COMPLETE_CB_ID = 0x00U, /*!< SPI Tx Completed callback ID */
HAL_SPI_RX_COMPLETE_CB_ID = 0x01U, /*!< SPI Rx Completed callback ID */
HAL_SPI_TX_RX_COMPLETE_CB_ID = 0x02U, /*!< SPI TxRx Completed callback ID */
HAL_SPI_TX_HALF_COMPLETE_CB_ID = 0x03U, /*!< SPI Tx Half Completed callback ID */
HAL_SPI_RX_HALF_COMPLETE_CB_ID = 0x04U, /*!< SPI Rx Half Completed callback ID */
HAL_SPI_TX_RX_HALF_COMPLETE_CB_ID = 0x05U, /*!< SPI TxRx Half Completed callback ID */
HAL_SPI_ERROR_CB_ID = 0x06U, /*!< SPI Error callback ID */
HAL_SPI_ABORT_CB_ID = 0x07U, /*!< SPI Abort callback ID */
HAL_SPI_MSPINIT_CB_ID = 0x08U, /*!< SPI Msp Init callback ID */
HAL_SPI_MSPDEINIT_CB_ID = 0x09U /*!< SPI Msp DeInit callback ID */
} HAL_SPI_CallbackIDTypeDef;
/**
* @brief HAL SPI Callback pointer definition
*/
typedef void (*pSPI_CallbackTypeDef)(SPI_HandleTypeDef *hspi); /*!< pointer to an SPI callback function */
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
/**
* @}
*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup SPI_Exported_Constants SPI Exported Constants
* @{
*/
/** @defgroup SPI_Error_Code SPI Error Code
* @{
*/
#define HAL_SPI_ERROR_NONE (0x00000000U) /*!< No error */
#define HAL_SPI_ERROR_MODF (0x00000001U) /*!< MODF error */
#define HAL_SPI_ERROR_CRC (0x00000002U) /*!< CRC error */
#define HAL_SPI_ERROR_OVR (0x00000004U) /*!< OVR error */
#define HAL_SPI_ERROR_FRE (0x00000008U) /*!< FRE error */
#define HAL_SPI_ERROR_DMA (0x00000010U) /*!< DMA transfer error */
#define HAL_SPI_ERROR_FLAG (0x00000020U) /*!< Error on RXNE/TXE/BSY/FTLVL/FRLVL Flag */
#define HAL_SPI_ERROR_ABORT (0x00000040U) /*!< Error during SPI Abort procedure */
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
#define HAL_SPI_ERROR_INVALID_CALLBACK (0x00000080U) /*!< Invalid Callback error */
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
/**
* @}
*/
/** @defgroup SPI_Mode SPI Mode
* @{
*/
#define SPI_MODE_SLAVE (0x00000000U)
#define SPI_MODE_MASTER (SPI_CR1_MSTR | SPI_CR1_SSI)
/**
* @}
*/
/** @defgroup SPI_Direction SPI Direction Mode
* @{
*/
#define SPI_DIRECTION_2LINES (0x00000000U)
#define SPI_DIRECTION_2LINES_RXONLY SPI_CR1_RXONLY
#define SPI_DIRECTION_1LINE SPI_CR1_BIDIMODE
/**
* @}
*/
/** @defgroup SPI_Data_Size SPI Data Size
* @{
*/
#define SPI_DATASIZE_4BIT (0x00000300U)
#define SPI_DATASIZE_5BIT (0x00000400U)
#define SPI_DATASIZE_6BIT (0x00000500U)
#define SPI_DATASIZE_7BIT (0x00000600U)
#define SPI_DATASIZE_8BIT (0x00000700U)
#define SPI_DATASIZE_9BIT (0x00000800U)
#define SPI_DATASIZE_10BIT (0x00000900U)
#define SPI_DATASIZE_11BIT (0x00000A00U)
#define SPI_DATASIZE_12BIT (0x00000B00U)
#define SPI_DATASIZE_13BIT (0x00000C00U)
#define SPI_DATASIZE_14BIT (0x00000D00U)
#define SPI_DATASIZE_15BIT (0x00000E00U)
#define SPI_DATASIZE_16BIT (0x00000F00U)
/**
* @}
*/
/** @defgroup SPI_Clock_Polarity SPI Clock Polarity
* @{
*/
#define SPI_POLARITY_LOW (0x00000000U)
#define SPI_POLARITY_HIGH SPI_CR1_CPOL
/**
* @}
*/
/** @defgroup SPI_Clock_Phase SPI Clock Phase
* @{
*/
#define SPI_PHASE_1EDGE (0x00000000U)
#define SPI_PHASE_2EDGE SPI_CR1_CPHA
/**
* @}
*/
/** @defgroup SPI_Slave_Select_management SPI Slave Select Management
* @{
*/
#define SPI_NSS_SOFT SPI_CR1_SSM
#define SPI_NSS_HARD_INPUT (0x00000000U)
#define SPI_NSS_HARD_OUTPUT (SPI_CR2_SSOE << 16U)
/**
* @}
*/
/** @defgroup SPI_NSSP_Mode SPI NSS Pulse Mode
* @{
*/
#define SPI_NSS_PULSE_ENABLE SPI_CR2_NSSP
#define SPI_NSS_PULSE_DISABLE (0x00000000U)
/**
* @}
*/
/** @defgroup SPI_BaudRate_Prescaler SPI BaudRate Prescaler
* @{
*/
#define SPI_BAUDRATEPRESCALER_2 (0x00000000U)
#define SPI_BAUDRATEPRESCALER_4 (SPI_CR1_BR_0)
#define SPI_BAUDRATEPRESCALER_8 (SPI_CR1_BR_1)
#define SPI_BAUDRATEPRESCALER_16 (SPI_CR1_BR_1 | SPI_CR1_BR_0)
#define SPI_BAUDRATEPRESCALER_32 (SPI_CR1_BR_2)
#define SPI_BAUDRATEPRESCALER_64 (SPI_CR1_BR_2 | SPI_CR1_BR_0)
#define SPI_BAUDRATEPRESCALER_128 (SPI_CR1_BR_2 | SPI_CR1_BR_1)
#define SPI_BAUDRATEPRESCALER_256 (SPI_CR1_BR_2 | SPI_CR1_BR_1 | SPI_CR1_BR_0)
/**
* @}
*/
/** @defgroup SPI_MSB_LSB_transmission SPI MSB LSB Transmission
* @{
*/
#define SPI_FIRSTBIT_MSB (0x00000000U)
#define SPI_FIRSTBIT_LSB SPI_CR1_LSBFIRST
/**
* @}
*/
/** @defgroup SPI_TI_mode SPI TI Mode
* @{
*/
#define SPI_TIMODE_DISABLE (0x00000000U)
#define SPI_TIMODE_ENABLE SPI_CR2_FRF
/**
* @}
*/
/** @defgroup SPI_CRC_Calculation SPI CRC Calculation
* @{
*/
#define SPI_CRCCALCULATION_DISABLE (0x00000000U)
#define SPI_CRCCALCULATION_ENABLE SPI_CR1_CRCEN
/**
* @}
*/
/** @defgroup SPI_CRC_length SPI CRC Length
* @{
* This parameter can be one of the following values:
* SPI_CRC_LENGTH_DATASIZE: aligned with the data size
* SPI_CRC_LENGTH_8BIT : CRC 8bit
* SPI_CRC_LENGTH_16BIT : CRC 16bit
*/
#define SPI_CRC_LENGTH_DATASIZE (0x00000000U)
#define SPI_CRC_LENGTH_8BIT (0x00000001U)
#define SPI_CRC_LENGTH_16BIT (0x00000002U)
/**
* @}
*/
/** @defgroup SPI_FIFO_reception_threshold SPI FIFO Reception Threshold
* @{
* This parameter can be one of the following values:
* SPI_RXFIFO_THRESHOLD or SPI_RXFIFO_THRESHOLD_QF :
* RXNE event is generated if the FIFO
* level is greater or equal to 1/4(8-bits).
* SPI_RXFIFO_THRESHOLD_HF: RXNE event is generated if the FIFO
* level is greater or equal to 1/2(16 bits). */
#define SPI_RXFIFO_THRESHOLD SPI_CR2_FRXTH
#define SPI_RXFIFO_THRESHOLD_QF SPI_CR2_FRXTH
#define SPI_RXFIFO_THRESHOLD_HF (0x00000000U)
/**
* @}
*/
/** @defgroup SPI_Interrupt_definition SPI Interrupt Definition
* @{
*/
#define SPI_IT_TXE SPI_CR2_TXEIE
#define SPI_IT_RXNE SPI_CR2_RXNEIE
#define SPI_IT_ERR SPI_CR2_ERRIE
/**
* @}
*/
/** @defgroup SPI_Flags_definition SPI Flags Definition
* @{
*/
#define SPI_FLAG_RXNE SPI_SR_RXNE /* SPI status flag: Rx buffer not empty flag */
#define SPI_FLAG_TXE SPI_SR_TXE /* SPI status flag: Tx buffer empty flag */
#define SPI_FLAG_BSY SPI_SR_BSY /* SPI status flag: Busy flag */
#define SPI_FLAG_CRCERR SPI_SR_CRCERR /* SPI Error flag: CRC error flag */
#define SPI_FLAG_MODF SPI_SR_MODF /* SPI Error flag: Mode fault flag */
#define SPI_FLAG_OVR SPI_SR_OVR /* SPI Error flag: Overrun flag */
#define SPI_FLAG_FRE SPI_SR_FRE /* SPI Error flag: TI mode frame format error flag */
#define SPI_FLAG_FTLVL SPI_SR_FTLVL /* SPI fifo transmission level */
#define SPI_FLAG_FRLVL SPI_SR_FRLVL /* SPI fifo reception level */
#define SPI_FLAG_MASK (SPI_SR_RXNE | SPI_SR_TXE | SPI_SR_BSY | SPI_SR_CRCERR\
| SPI_SR_MODF | SPI_SR_OVR | SPI_SR_FRE | SPI_SR_FTLVL | SPI_SR_FRLVL)
/**
* @}
*/
/** @defgroup SPI_transmission_fifo_status_level SPI Transmission FIFO Status Level
* @{
*/
#define SPI_FTLVL_EMPTY (0x00000000U)
#define SPI_FTLVL_QUARTER_FULL (0x00000800U)
#define SPI_FTLVL_HALF_FULL (0x00001000U)
#define SPI_FTLVL_FULL (0x00001800U)
/**
* @}
*/
/** @defgroup SPI_reception_fifo_status_level SPI Reception FIFO Status Level
* @{
*/
#define SPI_FRLVL_EMPTY (0x00000000U)
#define SPI_FRLVL_QUARTER_FULL (0x00000200U)
#define SPI_FRLVL_HALF_FULL (0x00000400U)
#define SPI_FRLVL_FULL (0x00000600U)
/**
* @}
*/
/**
* @}
*/
/* Exported macros -----------------------------------------------------------*/
/** @defgroup SPI_Exported_Macros SPI Exported Macros
* @{
*/
/** @brief Reset SPI handle state.
* @param __HANDLE__ specifies the SPI Handle.
* This parameter can be SPI where x: 1, 2, or 3 to select the SPI peripheral.
* @retval None
*/
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
#define __HAL_SPI_RESET_HANDLE_STATE(__HANDLE__) \
do{ \
(__HANDLE__)->State = HAL_SPI_STATE_RESET; \
(__HANDLE__)->MspInitCallback = NULL; \
(__HANDLE__)->MspDeInitCallback = NULL; \
} while(0)
#else
#define __HAL_SPI_RESET_HANDLE_STATE(__HANDLE__) ((__HANDLE__)->State = HAL_SPI_STATE_RESET)
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
/** @brief Enable the specified SPI interrupts.
* @param __HANDLE__ specifies the SPI Handle.
* This parameter can be SPI where x: 1, 2, or 3 to select the SPI peripheral.
* @param __INTERRUPT__ specifies the interrupt source to enable.
* This parameter can be one of the following values:
* @arg SPI_IT_TXE: Tx buffer empty interrupt enable
* @arg SPI_IT_RXNE: RX buffer not empty interrupt enable
* @arg SPI_IT_ERR: Error interrupt enable
* @retval None
*/
#define __HAL_SPI_ENABLE_IT(__HANDLE__, __INTERRUPT__) SET_BIT((__HANDLE__)->Instance->CR2, (__INTERRUPT__))
/** @brief Disable the specified SPI interrupts.
* @param __HANDLE__ specifies the SPI handle.
* This parameter can be SPIx where x: 1, 2, or 3 to select the SPI peripheral.
* @param __INTERRUPT__ specifies the interrupt source to disable.
* This parameter can be one of the following values:
* @arg SPI_IT_TXE: Tx buffer empty interrupt enable
* @arg SPI_IT_RXNE: RX buffer not empty interrupt enable
* @arg SPI_IT_ERR: Error interrupt enable
* @retval None
*/
#define __HAL_SPI_DISABLE_IT(__HANDLE__, __INTERRUPT__) CLEAR_BIT((__HANDLE__)->Instance->CR2, (__INTERRUPT__))
/** @brief Check whether the specified SPI interrupt source is enabled or not.
* @param __HANDLE__ specifies the SPI Handle.
* This parameter can be SPI where x: 1, 2, or 3 to select the SPI peripheral.
* @param __INTERRUPT__ specifies the SPI interrupt source to check.
* This parameter can be one of the following values:
* @arg SPI_IT_TXE: Tx buffer empty interrupt enable
* @arg SPI_IT_RXNE: RX buffer not empty interrupt enable
* @arg SPI_IT_ERR: Error interrupt enable
* @retval The new state of __IT__ (TRUE or FALSE).
*/
#define __HAL_SPI_GET_IT_SOURCE(__HANDLE__, __INTERRUPT__) ((((__HANDLE__)->Instance->CR2\
& (__INTERRUPT__)) == (__INTERRUPT__)) ? SET : RESET)
/** @brief Check whether the specified SPI flag is set or not.
* @param __HANDLE__ specifies the SPI Handle.
* This parameter can be SPI where x: 1, 2, or 3 to select the SPI peripheral.
* @param __FLAG__ specifies the flag to check.
* This parameter can be one of the following values:
* @arg SPI_FLAG_RXNE: Receive buffer not empty flag
* @arg SPI_FLAG_TXE: Transmit buffer empty flag
* @arg SPI_FLAG_CRCERR: CRC error flag
* @arg SPI_FLAG_MODF: Mode fault flag
* @arg SPI_FLAG_OVR: Overrun flag
* @arg SPI_FLAG_BSY: Busy flag
* @arg SPI_FLAG_FRE: Frame format error flag
* @arg SPI_FLAG_FTLVL: SPI fifo transmission level
* @arg SPI_FLAG_FRLVL: SPI fifo reception level
* @retval The new state of __FLAG__ (TRUE or FALSE).
*/
#define __HAL_SPI_GET_FLAG(__HANDLE__, __FLAG__) ((((__HANDLE__)->Instance->SR) & (__FLAG__)) == (__FLAG__))
/** @brief Clear the SPI CRCERR pending flag.
* @param __HANDLE__ specifies the SPI Handle.
* This parameter can be SPI where x: 1, 2, or 3 to select the SPI peripheral.
* @retval None
*/
#define __HAL_SPI_CLEAR_CRCERRFLAG(__HANDLE__) ((__HANDLE__)->Instance->SR = (uint16_t)(~SPI_FLAG_CRCERR))
/** @brief Clear the SPI MODF pending flag.
* @param __HANDLE__ specifies the SPI Handle.
* This parameter can be SPI where x: 1, 2, or 3 to select the SPI peripheral.
* @retval None
*/
#define __HAL_SPI_CLEAR_MODFFLAG(__HANDLE__) \
do{ \
__IO uint32_t tmpreg_modf = 0x00U; \
tmpreg_modf = (__HANDLE__)->Instance->SR; \
CLEAR_BIT((__HANDLE__)->Instance->CR1, SPI_CR1_SPE); \
UNUSED(tmpreg_modf); \
} while(0U)
/** @brief Clear the SPI OVR pending flag.
* @param __HANDLE__ specifies the SPI Handle.
* This parameter can be SPI where x: 1, 2, or 3 to select the SPI peripheral.
* @retval None
*/
#define __HAL_SPI_CLEAR_OVRFLAG(__HANDLE__) \
do{ \
__IO uint32_t tmpreg_ovr = 0x00U; \
tmpreg_ovr = (__HANDLE__)->Instance->DR; \
tmpreg_ovr = (__HANDLE__)->Instance->SR; \
UNUSED(tmpreg_ovr); \
} while(0U)
/** @brief Clear the SPI FRE pending flag.
* @param __HANDLE__ specifies the SPI Handle.
* This parameter can be SPI where x: 1, 2, or 3 to select the SPI peripheral.
* @retval None
*/
#define __HAL_SPI_CLEAR_FREFLAG(__HANDLE__) \
do{ \
__IO uint32_t tmpreg_fre = 0x00U; \
tmpreg_fre = (__HANDLE__)->Instance->SR; \
UNUSED(tmpreg_fre); \
} while(0U)
/** @brief Enable the SPI peripheral.
* @param __HANDLE__ specifies the SPI Handle.
* This parameter can be SPI where x: 1, 2, or 3 to select the SPI peripheral.
* @retval None
*/
#define __HAL_SPI_ENABLE(__HANDLE__) SET_BIT((__HANDLE__)->Instance->CR1, SPI_CR1_SPE)
/** @brief Disable the SPI peripheral.
* @param __HANDLE__ specifies the SPI Handle.
* This parameter can be SPI where x: 1, 2, or 3 to select the SPI peripheral.
* @retval None
*/
#define __HAL_SPI_DISABLE(__HANDLE__) CLEAR_BIT((__HANDLE__)->Instance->CR1, SPI_CR1_SPE)
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/** @defgroup SPI_Private_Macros SPI Private Macros
* @{
*/
/** @brief Set the SPI transmit-only mode.
* @param __HANDLE__ specifies the SPI Handle.
* This parameter can be SPI where x: 1, 2, or 3 to select the SPI peripheral.
* @retval None
*/
#define SPI_1LINE_TX(__HANDLE__) SET_BIT((__HANDLE__)->Instance->CR1, SPI_CR1_BIDIOE)
/** @brief Set the SPI receive-only mode.
* @param __HANDLE__ specifies the SPI Handle.
* This parameter can be SPI where x: 1, 2, or 3 to select the SPI peripheral.
* @retval None
*/
#define SPI_1LINE_RX(__HANDLE__) CLEAR_BIT((__HANDLE__)->Instance->CR1, SPI_CR1_BIDIOE)
/** @brief Reset the CRC calculation of the SPI.
* @param __HANDLE__ specifies the SPI Handle.
* This parameter can be SPI where x: 1, 2, or 3 to select the SPI peripheral.
* @retval None
*/
#define SPI_RESET_CRC(__HANDLE__) \
do{ \
CLEAR_BIT((__HANDLE__)->Instance->CR1, SPI_CR1_CRCEN); \
SET_BIT((__HANDLE__)->Instance->CR1, SPI_CR1_CRCEN); \
} while(0U)
/** @brief Check whether the specified SPI flag is set or not.
* @param __SR__ copy of SPI SR register.
* @param __FLAG__ specifies the flag to check.
* This parameter can be one of the following values:
* @arg SPI_FLAG_RXNE: Receive buffer not empty flag
* @arg SPI_FLAG_TXE: Transmit buffer empty flag
* @arg SPI_FLAG_CRCERR: CRC error flag
* @arg SPI_FLAG_MODF: Mode fault flag
* @arg SPI_FLAG_OVR: Overrun flag
* @arg SPI_FLAG_BSY: Busy flag
* @arg SPI_FLAG_FRE: Frame format error flag
* @arg SPI_FLAG_FTLVL: SPI fifo transmission level
* @arg SPI_FLAG_FRLVL: SPI fifo reception level
* @retval SET or RESET.
*/
#define SPI_CHECK_FLAG(__SR__, __FLAG__) ((((__SR__) & ((__FLAG__) & SPI_FLAG_MASK)) == \
((__FLAG__) & SPI_FLAG_MASK)) ? SET : RESET)
/** @brief Check whether the specified SPI Interrupt is set or not.
* @param __CR2__ copy of SPI CR2 register.
* @param __INTERRUPT__ specifies the SPI interrupt source to check.
* This parameter can be one of the following values:
* @arg SPI_IT_TXE: Tx buffer empty interrupt enable
* @arg SPI_IT_RXNE: RX buffer not empty interrupt enable
* @arg SPI_IT_ERR: Error interrupt enable
* @retval SET or RESET.
*/
#define SPI_CHECK_IT_SOURCE(__CR2__, __INTERRUPT__) ((((__CR2__) & (__INTERRUPT__)) == \
(__INTERRUPT__)) ? SET : RESET)
/** @brief Checks if SPI Mode parameter is in allowed range.
* @param __MODE__ specifies the SPI Mode.
* This parameter can be a value of @ref SPI_Mode
* @retval None
*/
#define IS_SPI_MODE(__MODE__) (((__MODE__) == SPI_MODE_SLAVE) || \
((__MODE__) == SPI_MODE_MASTER))
/** @brief Checks if SPI Direction Mode parameter is in allowed range.
* @param __MODE__ specifies the SPI Direction Mode.
* This parameter can be a value of @ref SPI_Direction
* @retval None
*/
#define IS_SPI_DIRECTION(__MODE__) (((__MODE__) == SPI_DIRECTION_2LINES) || \
((__MODE__) == SPI_DIRECTION_2LINES_RXONLY) || \
((__MODE__) == SPI_DIRECTION_1LINE))
/** @brief Checks if SPI Direction Mode parameter is 2 lines.
* @param __MODE__ specifies the SPI Direction Mode.
* @retval None
*/
#define IS_SPI_DIRECTION_2LINES(__MODE__) ((__MODE__) == SPI_DIRECTION_2LINES)
/** @brief Checks if SPI Direction Mode parameter is 1 or 2 lines.
* @param __MODE__ specifies the SPI Direction Mode.
* @retval None
*/
#define IS_SPI_DIRECTION_2LINES_OR_1LINE(__MODE__) (((__MODE__) == SPI_DIRECTION_2LINES) || \
((__MODE__) == SPI_DIRECTION_1LINE))
/** @brief Checks if SPI Data Size parameter is in allowed range.
* @param __DATASIZE__ specifies the SPI Data Size.
* This parameter can be a value of @ref SPI_Data_Size
* @retval None
*/
#define IS_SPI_DATASIZE(__DATASIZE__) (((__DATASIZE__) == SPI_DATASIZE_16BIT) || \
((__DATASIZE__) == SPI_DATASIZE_15BIT) || \
((__DATASIZE__) == SPI_DATASIZE_14BIT) || \
((__DATASIZE__) == SPI_DATASIZE_13BIT) || \
((__DATASIZE__) == SPI_DATASIZE_12BIT) || \
((__DATASIZE__) == SPI_DATASIZE_11BIT) || \
((__DATASIZE__) == SPI_DATASIZE_10BIT) || \
((__DATASIZE__) == SPI_DATASIZE_9BIT) || \
((__DATASIZE__) == SPI_DATASIZE_8BIT) || \
((__DATASIZE__) == SPI_DATASIZE_7BIT) || \
((__DATASIZE__) == SPI_DATASIZE_6BIT) || \
((__DATASIZE__) == SPI_DATASIZE_5BIT) || \
((__DATASIZE__) == SPI_DATASIZE_4BIT))
/** @brief Checks if SPI Serial clock steady state parameter is in allowed range.
* @param __CPOL__ specifies the SPI serial clock steady state.
* This parameter can be a value of @ref SPI_Clock_Polarity
* @retval None
*/
#define IS_SPI_CPOL(__CPOL__) (((__CPOL__) == SPI_POLARITY_LOW) || \
((__CPOL__) == SPI_POLARITY_HIGH))
/** @brief Checks if SPI Clock Phase parameter is in allowed range.
* @param __CPHA__ specifies the SPI Clock Phase.
* This parameter can be a value of @ref SPI_Clock_Phase
* @retval None
*/
#define IS_SPI_CPHA(__CPHA__) (((__CPHA__) == SPI_PHASE_1EDGE) || \
((__CPHA__) == SPI_PHASE_2EDGE))
/** @brief Checks if SPI Slave Select parameter is in allowed range.
* @param __NSS__ specifies the SPI Slave Select management parameter.
* This parameter can be a value of @ref SPI_Slave_Select_management
* @retval None
*/
#define IS_SPI_NSS(__NSS__) (((__NSS__) == SPI_NSS_SOFT) || \
((__NSS__) == SPI_NSS_HARD_INPUT) || \
((__NSS__) == SPI_NSS_HARD_OUTPUT))
/** @brief Checks if SPI NSS Pulse parameter is in allowed range.
* @param __NSSP__ specifies the SPI NSS Pulse Mode parameter.
* This parameter can be a value of @ref SPI_NSSP_Mode
* @retval None
*/
#define IS_SPI_NSSP(__NSSP__) (((__NSSP__) == SPI_NSS_PULSE_ENABLE) || \
((__NSSP__) == SPI_NSS_PULSE_DISABLE))
/** @brief Checks if SPI Baudrate prescaler parameter is in allowed range.
* @param __PRESCALER__ specifies the SPI Baudrate prescaler.
* This parameter can be a value of @ref SPI_BaudRate_Prescaler
* @retval None
*/
#define IS_SPI_BAUDRATE_PRESCALER(__PRESCALER__) (((__PRESCALER__) == SPI_BAUDRATEPRESCALER_2) || \
((__PRESCALER__) == SPI_BAUDRATEPRESCALER_4) || \
((__PRESCALER__) == SPI_BAUDRATEPRESCALER_8) || \
((__PRESCALER__) == SPI_BAUDRATEPRESCALER_16) || \
((__PRESCALER__) == SPI_BAUDRATEPRESCALER_32) || \
((__PRESCALER__) == SPI_BAUDRATEPRESCALER_64) || \
((__PRESCALER__) == SPI_BAUDRATEPRESCALER_128) || \
((__PRESCALER__) == SPI_BAUDRATEPRESCALER_256))
/** @brief Checks if SPI MSB LSB transmission parameter is in allowed range.
* @param __BIT__ specifies the SPI MSB LSB transmission (whether data transfer starts from MSB or LSB bit).
* This parameter can be a value of @ref SPI_MSB_LSB_transmission
* @retval None
*/
#define IS_SPI_FIRST_BIT(__BIT__) (((__BIT__) == SPI_FIRSTBIT_MSB) || \
((__BIT__) == SPI_FIRSTBIT_LSB))
/** @brief Checks if SPI TI mode parameter is in allowed range.
* @param __MODE__ specifies the SPI TI mode.
* This parameter can be a value of @ref SPI_TI_mode
* @retval None
*/
#define IS_SPI_TIMODE(__MODE__) (((__MODE__) == SPI_TIMODE_DISABLE) || \
((__MODE__) == SPI_TIMODE_ENABLE))
/** @brief Checks if SPI CRC calculation enabled state is in allowed range.
* @param __CALCULATION__ specifies the SPI CRC calculation enable state.
* This parameter can be a value of @ref SPI_CRC_Calculation
* @retval None
*/
#define IS_SPI_CRC_CALCULATION(__CALCULATION__) (((__CALCULATION__) == SPI_CRCCALCULATION_DISABLE) || \
((__CALCULATION__) == SPI_CRCCALCULATION_ENABLE))
/** @brief Checks if SPI CRC length is in allowed range.
* @param __LENGTH__ specifies the SPI CRC length.
* This parameter can be a value of @ref SPI_CRC_length
* @retval None
*/
#define IS_SPI_CRC_LENGTH(__LENGTH__) (((__LENGTH__) == SPI_CRC_LENGTH_DATASIZE) || \
((__LENGTH__) == SPI_CRC_LENGTH_8BIT) || \
((__LENGTH__) == SPI_CRC_LENGTH_16BIT))
/** @brief Checks if SPI polynomial value to be used for the CRC calculation, is in allowed range.
* @param __POLYNOMIAL__ specifies the SPI polynomial value to be used for the CRC calculation.
* This parameter must be a number between Min_Data = 0 and Max_Data = 65535
* @retval None
*/
#define IS_SPI_CRC_POLYNOMIAL(__POLYNOMIAL__) (((__POLYNOMIAL__) >= 0x1U) && \
((__POLYNOMIAL__) <= 0xFFFFU) && \
(((__POLYNOMIAL__)&0x1U) != 0U))
/** @brief Checks if DMA handle is valid.
* @param __HANDLE__ specifies a DMA Handle.
* @retval None
*/
#define IS_SPI_DMA_HANDLE(__HANDLE__) ((__HANDLE__) != NULL)
/**
* @}
*/
/* Include SPI HAL Extended module */
#include "stm32wbxx_hal_spi_ex.h"
/* Exported functions --------------------------------------------------------*/
/** @addtogroup SPI_Exported_Functions
* @{
*/
/** @addtogroup SPI_Exported_Functions_Group1
* @{
*/
/* Initialization/de-initialization functions ********************************/
HAL_StatusTypeDef HAL_SPI_Init(SPI_HandleTypeDef *hspi);
HAL_StatusTypeDef HAL_SPI_DeInit(SPI_HandleTypeDef *hspi);
void HAL_SPI_MspInit(SPI_HandleTypeDef *hspi);
void HAL_SPI_MspDeInit(SPI_HandleTypeDef *hspi);
/* Callbacks Register/UnRegister functions ***********************************/
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
HAL_StatusTypeDef HAL_SPI_RegisterCallback(SPI_HandleTypeDef *hspi, HAL_SPI_CallbackIDTypeDef CallbackID,
pSPI_CallbackTypeDef pCallback);
HAL_StatusTypeDef HAL_SPI_UnRegisterCallback(SPI_HandleTypeDef *hspi, HAL_SPI_CallbackIDTypeDef CallbackID);
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
/**
* @}
*/
/** @addtogroup SPI_Exported_Functions_Group2
* @{
*/
/* I/O operation functions ***************************************************/
HAL_StatusTypeDef HAL_SPI_Transmit(SPI_HandleTypeDef *hspi, const uint8_t *pData, uint16_t Size, uint32_t Timeout);
HAL_StatusTypeDef HAL_SPI_Receive(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size, uint32_t Timeout);
HAL_StatusTypeDef HAL_SPI_TransmitReceive(SPI_HandleTypeDef *hspi, const uint8_t *pTxData, uint8_t *pRxData,
uint16_t Size, uint32_t Timeout);
HAL_StatusTypeDef HAL_SPI_Transmit_IT(SPI_HandleTypeDef *hspi, const uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_SPI_Receive_IT(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_SPI_TransmitReceive_IT(SPI_HandleTypeDef *hspi, const uint8_t *pTxData, uint8_t *pRxData,
uint16_t Size);
HAL_StatusTypeDef HAL_SPI_Transmit_DMA(SPI_HandleTypeDef *hspi, const uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_SPI_Receive_DMA(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_SPI_TransmitReceive_DMA(SPI_HandleTypeDef *hspi, const uint8_t *pTxData, uint8_t *pRxData,
uint16_t Size);
HAL_StatusTypeDef HAL_SPI_DMAPause(SPI_HandleTypeDef *hspi);
HAL_StatusTypeDef HAL_SPI_DMAResume(SPI_HandleTypeDef *hspi);
HAL_StatusTypeDef HAL_SPI_DMAStop(SPI_HandleTypeDef *hspi);
/* Transfer Abort functions */
HAL_StatusTypeDef HAL_SPI_Abort(SPI_HandleTypeDef *hspi);
HAL_StatusTypeDef HAL_SPI_Abort_IT(SPI_HandleTypeDef *hspi);
void HAL_SPI_IRQHandler(SPI_HandleTypeDef *hspi);
void HAL_SPI_TxCpltCallback(SPI_HandleTypeDef *hspi);
void HAL_SPI_RxCpltCallback(SPI_HandleTypeDef *hspi);
void HAL_SPI_TxRxCpltCallback(SPI_HandleTypeDef *hspi);
void HAL_SPI_TxHalfCpltCallback(SPI_HandleTypeDef *hspi);
void HAL_SPI_RxHalfCpltCallback(SPI_HandleTypeDef *hspi);
void HAL_SPI_TxRxHalfCpltCallback(SPI_HandleTypeDef *hspi);
void HAL_SPI_ErrorCallback(SPI_HandleTypeDef *hspi);
void HAL_SPI_AbortCpltCallback(SPI_HandleTypeDef *hspi);
/**
* @}
*/
/** @addtogroup SPI_Exported_Functions_Group3
* @{
*/
/* Peripheral State and Error functions ***************************************/
HAL_SPI_StateTypeDef HAL_SPI_GetState(const SPI_HandleTypeDef *hspi);
uint32_t HAL_SPI_GetError(const SPI_HandleTypeDef *hspi);
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* STM32WBxx_HAL_SPI_H */

View File

@@ -0,0 +1,73 @@
/**
******************************************************************************
* @file stm32wbxx_hal_spi_ex.h
* @author MCD Application Team
* @brief Header file of SPI HAL Extended module.
******************************************************************************
* @attention
*
* Copyright (c) 2019 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef STM32WBxx_HAL_SPI_EX_H
#define STM32WBxx_HAL_SPI_EX_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32wbxx_hal_def.h"
/** @addtogroup STM32WBxx_HAL_Driver
* @{
*/
/** @addtogroup SPIEx
* @{
*/
/* Exported types ------------------------------------------------------------*/
/* Exported constants --------------------------------------------------------*/
/* Exported macros -----------------------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup SPIEx_Exported_Functions
* @{
*/
/* Initialization and de-initialization functions ****************************/
/* IO operation functions *****************************************************/
/** @addtogroup SPIEx_Exported_Functions_Group1
* @{
*/
HAL_StatusTypeDef HAL_SPIEx_FlushRxFifo(const SPI_HandleTypeDef *hspi);
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* STM32WBxx_HAL_SPI_EX_H */

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,425 @@
/**
******************************************************************************
* @file stm32wbxx_hal_tim_ex.h
* @author MCD Application Team
* @brief Header file of TIM HAL Extended module.
******************************************************************************
* @attention
*
* Copyright (c) 2019 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef STM32WBxx_HAL_TIM_EX_H
#define STM32WBxx_HAL_TIM_EX_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32wbxx_hal_def.h"
/** @addtogroup STM32WBxx_HAL_Driver
* @{
*/
/** @addtogroup TIMEx
* @{
*/
/* Exported types ------------------------------------------------------------*/
/** @defgroup TIMEx_Exported_Types TIM Extended Exported Types
* @{
*/
/**
* @brief TIM Hall sensor Configuration Structure definition
*/
typedef struct
{
uint32_t IC1Polarity; /*!< Specifies the active edge of the input signal.
This parameter can be a value of @ref TIM_Input_Capture_Polarity */
uint32_t IC1Prescaler; /*!< Specifies the Input Capture Prescaler.
This parameter can be a value of @ref TIM_Input_Capture_Prescaler */
uint32_t IC1Filter; /*!< Specifies the input capture filter.
This parameter can be a number between Min_Data = 0x0 and Max_Data = 0xF */
uint32_t Commutation_Delay; /*!< Specifies the pulse value to be loaded into the Capture Compare Register.
This parameter can be a number between Min_Data = 0x0000 and Max_Data = 0xFFFF */
} TIM_HallSensor_InitTypeDef;
/**
* @brief TIM Break/Break2 input configuration
*/
typedef struct
{
uint32_t Source; /*!< Specifies the source of the timer break input.
This parameter can be a value of @ref TIMEx_Break_Input_Source */
uint32_t Enable; /*!< Specifies whether or not the break input source is enabled.
This parameter can be a value of @ref TIMEx_Break_Input_Source_Enable */
uint32_t Polarity; /*!< Specifies the break input source polarity.
This parameter can be a value of @ref TIMEx_Break_Input_Source_Polarity */
} TIMEx_BreakInputConfigTypeDef;
/**
* @}
*/
/* End of exported types -----------------------------------------------------*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup TIMEx_Exported_Constants TIM Extended Exported Constants
* @{
*/
/** @defgroup TIMEx_Remap TIM Extended Remapping
* @{
*/
#define TIM_TIM1_ETR_GPIO 0x00000000U /*!< TIM1_ETR is not connected to I/O */
#define TIM_TIM1_ETR_ADC1_AWD1 TIM1_OR_ETR_ADC1_RMP_0 /*!< TIM1_ETR is connected to ADC1 AWD1 */
#if defined(ADC_SUPPORT_5_MSPS)
#define TIM_TIM1_ETR_ADC1_AWD2 TIM1_OR_ETR_ADC1_RMP_1 /*!< TIM1_ETR is connected to ADC1 AWD2 */
#define TIM_TIM1_ETR_ADC1_AWD3 (TIM1_OR_ETR_ADC1_RMP_0 | TIM1_OR_ETR_ADC1_RMP_1) /*!< TIM1_ETR is connected to ADC1 AWD3 */
#endif
#if defined(COMP1)
#define TIM_TIM1_ETR_COMP1 TIM1_AF1_ETRSEL_0 /*!< TIM1_ETR is connected to COMP1 output */
#endif /* COMP1 */
#if defined(COMP2)
#define TIM_TIM1_ETR_COMP2 TIM1_AF1_ETRSEL_1 /*!< TIM1_ETR is connected to COMP2 output */
#endif /* COMP2 */
#define TIM_TIM1_TI1_GPIO 0x00000000U /*!< TIM1 Input capture 1 is connected to I/0 */
#define TIM_TIM1_TI1_COMP1 TIM1_OR_TI1_RMP /*!< TIM1 Input capture 1is connected to COMP1 OUT */
#define TIM_TIM2_ITR_NC 0x00000000U /*!< TIM2 Internal trigger ITR is not connected */
#if defined(USB)
#define TIM_TIM2_ITR_USB TIM2_OR_ITR1_RMP /*!< TIM2 Internal trigger ITR is connected to USBFS SOF */
#endif /* USB */
#define TIM_TIM2_ETR_GPIO 0x00000000U /*!< TIM2 External trigger ETR is connected to I/O */
#define TIM_TIM2_ETR_LSE TIM2_OR_ETR_RMP /*!< TIM2 External trigger ETR is connected to LSE */
#if defined(COMP1)
#define TIM_TIM2_ETR_COMP1 TIM2_AF1_ETRSEL_0 /*!< TIM2_ETR is connected to COMP1 output */
#endif /* COMP1 */
#if defined(COMP2)
#define TIM_TIM2_ETR_COMP2 TIM2_AF1_ETRSEL_1 /*!< TIM2_ETR is connected to COMP2 output */
#endif /* COMP2 */
#define TIM_TIM2_TI4_GPIO 0x00000000U /*!< TIM2_TI4 is connected to I/O */
#if defined(COMP1)
#define TIM_TIM2_TI4_COMP1 TIM2_OR_TI4_RMP_0 /*!< TIM2_TI4 is connected to COMP1 OUT */
#endif /* COMP1 */
#if defined(COMP2)
#define TIM_TIM2_TI4_COMP2 TIM2_OR_TI4_RMP_1 /*!< TIM2_TI4 is connected to COMP1 OUT */
#endif /* COMP2 */
#if defined(COMP1) && defined(COMP2)
#define TIM_TIM2_TI4_COMP1_COMP2 (TIM2_OR_TI4_RMP_0 | TIM2_OR_TI4_RMP_1) /*!< TIM2_TI4 is connected to COMP1 and COMP2 OUT */
#endif /* COMP1 && COMP2 */
#if defined(TIM16)
#define TIM_TIM16_TI1_GPIO 0x00000000U /*!< TIM16_TI1 is connected to I/O */
#define TIM_TIM16_TI1_LSI TIM16_OR_TI1_RMP_0 /*!< TIM16_TI1 is connected to LSI Clock */
#define TIM_TIM16_TI1_LSE TIM16_OR_TI1_RMP_1 /*!< TIM16_TI1 is connected to LSE Clock */
#define TIM_TIM16_TI1_RTC (TIM16_OR_TI1_RMP_0 | TIM16_OR_TI1_RMP_1) /*!< TIM16_TI1 is connected to RTC */
#endif /* TIM16 */
#if defined(TIM17)
#define TIM_TIM17_TI1_GPIO 0x00000000U /*!< TIM17_TI1 is connected to I/O */
#define TIM_TIM17_TI1_MSI TIM17_OR_TI1_RMP_0 /*!< TIM17_TI1 is connected to MSI */
#define TIM_TIM17_TI1_HSE TIM17_OR_TI1_RMP_1 /*!< TIM17_TI1 is connected to HSE/32 */
#define TIM_TIM17_TI1_MCO (TIM17_OR_TI1_RMP_0 | TIM17_OR_TI1_RMP_1) /*!< TIM17_TI1 is connected to MCO */
#endif /* TIM17 */
/**
* @}
*/
/** @defgroup TIMEx_Break_Input TIM Extended Break input
* @{
*/
#define TIM_BREAKINPUT_BRK 0x00000001U /*!< Timer break input */
#define TIM_BREAKINPUT_BRK2 0x00000002U /*!< Timer break2 input */
/**
* @}
*/
/** @defgroup TIMEx_Break_Input_Source TIM Extended Break input source
* @{
*/
#define TIM_BREAKINPUTSOURCE_BKIN 0x00000001U /*!< An external source (GPIO) is connected to the BKIN pin */
#if defined(COMP1)
#define TIM_BREAKINPUTSOURCE_COMP1 0x00000002U /*!< The COMP1 output is connected to the break input */
#endif /* COMP1 */
#if defined(COMP2)
#define TIM_BREAKINPUTSOURCE_COMP2 0x00000004U /*!< The COMP2 output is connected to the break input */
#endif /* COMP2 */
/**
* @}
*/
/** @defgroup TIMEx_Break_Input_Source_Enable TIM Extended Break input source enabling
* @{
*/
#define TIM_BREAKINPUTSOURCE_DISABLE 0x00000000U /*!< Break input source is disabled */
#define TIM_BREAKINPUTSOURCE_ENABLE 0x00000001U /*!< Break input source is enabled */
/**
* @}
*/
/** @defgroup TIMEx_Break_Input_Source_Polarity TIM Extended Break input polarity
* @{
*/
#define TIM_BREAKINPUTSOURCE_POLARITY_LOW 0x00000001U /*!< Break input source is active low */
#define TIM_BREAKINPUTSOURCE_POLARITY_HIGH 0x00000000U /*!< Break input source is active_high */
/**
* @}
*/
/**
* @}
*/
/* End of exported constants -------------------------------------------------*/
/* Exported macro ------------------------------------------------------------*/
/** @defgroup TIMEx_Exported_Macros TIM Extended Exported Macros
* @{
*/
/**
* @}
*/
/* End of exported macro -----------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/** @defgroup TIMEx_Private_Macros TIM Extended Private Macros
* @{
*/
#if defined(STM32WB55xx) || defined(STM32WB5Mxx) || defined(STM32WB35xx)
#define IS_TIM_REMAP(__INSTANCE__, __REMAP__) \
((((__INSTANCE__) == TIM1) && ((((__REMAP__) & 0xFFFE3FECU) == 0x00000000U))) \
|| (((__INSTANCE__) == TIM2) && ((((__REMAP__) & 0xFFFE3FF0U) == 0x00000000U))) \
|| (((__INSTANCE__) == TIM16) && ((((__REMAP__) & 0xFFFFFFFCU) == 0x00000000U))) \
|| (((__INSTANCE__) == TIM17) && ((((__REMAP__) & 0xFFFFFFFCU) == 0x00000000U))))
#elif defined(STM32WB10xx)
#define IS_TIM_REMAP(__INSTANCE__, __REMAP__) \
((((__INSTANCE__) == TIM1) && ((((__REMAP__) & 0xFFFFFFFCU) == 0x00000000U))) \
|| (((__INSTANCE__) == TIM2) && ((((__REMAP__) & 0xFFFFFFFDU) == 0x00000000U))))
#elif defined(STM32WB15xx) || defined(STM32WB1Mxx)
#define IS_TIM_REMAP(__INSTANCE__, __REMAP__) \
((((__INSTANCE__) == TIM1) && ((((__REMAP__) & 0xFFFF3FECU) == 0x00000000U))) \
|| (((__INSTANCE__) == TIM2) && ((((__REMAP__) & 0xFFFF3FF0U) == 0x00000000U))))
#else
#define IS_TIM_REMAP(__INSTANCE__, __REMAP__) \
((((__INSTANCE__) == TIM1) && ((((__REMAP__) & 0xFFFFFFFCU) == 0x00000000U))) \
|| (((__INSTANCE__) == TIM2) && ((((__REMAP__) & 0xFFFFFFF0U) == 0x00000000U))) \
|| (((__INSTANCE__) == TIM16) && ((((__REMAP__) & 0xFFFFFFFCU) == 0x00000000U))) \
|| (((__INSTANCE__) == TIM17) && ((((__REMAP__) & 0xFFFFFFFCU) == 0x00000000U))))
#endif
#define IS_TIM_BREAKINPUT(__BREAKINPUT__) \
(((__BREAKINPUT__) == TIM_BREAKINPUT_BRK) || \
((__BREAKINPUT__) == TIM_BREAKINPUT_BRK2))
#if defined(COMP1)
#if defined(COMP2)
#define IS_TIM_BREAKINPUTSOURCE(__SOURCE__) \
(((__SOURCE__) == TIM_BREAKINPUTSOURCE_BKIN) || \
((__SOURCE__) == TIM_BREAKINPUTSOURCE_COMP1) || \
((__SOURCE__) == TIM_BREAKINPUTSOURCE_COMP2))
#else
#define IS_TIM_BREAKINPUTSOURCE(__SOURCE__) \
(((__SOURCE__) == TIM_BREAKINPUTSOURCE_BKIN))
#endif
#else
#define IS_TIM_BREAKINPUTSOURCE(__SOURCE__) \
(((__SOURCE__) == TIM_BREAKINPUTSOURCE_BKIN))
#endif
#define IS_TIM_BREAKINPUTSOURCE_STATE(__STATE__) \
(((__STATE__) == TIM_BREAKINPUTSOURCE_DISABLE) || \
((__STATE__) == TIM_BREAKINPUTSOURCE_ENABLE))
#define IS_TIM_BREAKINPUTSOURCE_POLARITY(__POLARITY__) \
(((__POLARITY__) == TIM_BREAKINPUTSOURCE_POLARITY_LOW) || \
((__POLARITY__) == TIM_BREAKINPUTSOURCE_POLARITY_HIGH))
/**
* @}
*/
/* End of private macro ------------------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup TIMEx_Exported_Functions TIM Extended Exported Functions
* @{
*/
/** @addtogroup TIMEx_Exported_Functions_Group1 Extended Timer Hall Sensor functions
* @brief Timer Hall Sensor functions
* @{
*/
/* Timer Hall Sensor functions **********************************************/
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Init(TIM_HandleTypeDef *htim, const TIM_HallSensor_InitTypeDef *sConfig);
HAL_StatusTypeDef HAL_TIMEx_HallSensor_DeInit(TIM_HandleTypeDef *htim);
void HAL_TIMEx_HallSensor_MspInit(TIM_HandleTypeDef *htim);
void HAL_TIMEx_HallSensor_MspDeInit(TIM_HandleTypeDef *htim);
/* Blocking mode: Polling */
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start(TIM_HandleTypeDef *htim);
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop(TIM_HandleTypeDef *htim);
/* Non-Blocking mode: Interrupt */
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start_IT(TIM_HandleTypeDef *htim);
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop_IT(TIM_HandleTypeDef *htim);
/* Non-Blocking mode: DMA */
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start_DMA(TIM_HandleTypeDef *htim, uint32_t *pData, uint16_t Length);
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop_DMA(TIM_HandleTypeDef *htim);
/**
* @}
*/
/** @addtogroup TIMEx_Exported_Functions_Group2 Extended Timer Complementary Output Compare functions
* @brief Timer Complementary Output Compare functions
* @{
*/
/* Timer Complementary Output Compare functions *****************************/
/* Blocking mode: Polling */
HAL_StatusTypeDef HAL_TIMEx_OCN_Start(TIM_HandleTypeDef *htim, uint32_t Channel);
HAL_StatusTypeDef HAL_TIMEx_OCN_Stop(TIM_HandleTypeDef *htim, uint32_t Channel);
/* Non-Blocking mode: Interrupt */
HAL_StatusTypeDef HAL_TIMEx_OCN_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel);
HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel);
/* Non-Blocking mode: DMA */
HAL_StatusTypeDef HAL_TIMEx_OCN_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, const uint32_t *pData,
uint16_t Length);
HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel);
/**
* @}
*/
/** @addtogroup TIMEx_Exported_Functions_Group3 Extended Timer Complementary PWM functions
* @brief Timer Complementary PWM functions
* @{
*/
/* Timer Complementary PWM functions ****************************************/
/* Blocking mode: Polling */
HAL_StatusTypeDef HAL_TIMEx_PWMN_Start(TIM_HandleTypeDef *htim, uint32_t Channel);
HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop(TIM_HandleTypeDef *htim, uint32_t Channel);
/* Non-Blocking mode: Interrupt */
HAL_StatusTypeDef HAL_TIMEx_PWMN_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel);
HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel);
/* Non-Blocking mode: DMA */
HAL_StatusTypeDef HAL_TIMEx_PWMN_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, const uint32_t *pData,
uint16_t Length);
HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel);
/**
* @}
*/
/** @addtogroup TIMEx_Exported_Functions_Group4 Extended Timer Complementary One Pulse functions
* @brief Timer Complementary One Pulse functions
* @{
*/
/* Timer Complementary One Pulse functions **********************************/
/* Blocking mode: Polling */
HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel);
HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Stop(TIM_HandleTypeDef *htim, uint32_t OutputChannel);
/* Non-Blocking mode: Interrupt */
HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Start_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel);
HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel);
/**
* @}
*/
/** @addtogroup TIMEx_Exported_Functions_Group5 Extended Peripheral Control functions
* @brief Peripheral Control functions
* @{
*/
/* Extended Control functions ************************************************/
HAL_StatusTypeDef HAL_TIMEx_ConfigCommutEvent(TIM_HandleTypeDef *htim, uint32_t InputTrigger,
uint32_t CommutationSource);
HAL_StatusTypeDef HAL_TIMEx_ConfigCommutEvent_IT(TIM_HandleTypeDef *htim, uint32_t InputTrigger,
uint32_t CommutationSource);
HAL_StatusTypeDef HAL_TIMEx_ConfigCommutEvent_DMA(TIM_HandleTypeDef *htim, uint32_t InputTrigger,
uint32_t CommutationSource);
HAL_StatusTypeDef HAL_TIMEx_MasterConfigSynchronization(TIM_HandleTypeDef *htim,
const TIM_MasterConfigTypeDef *sMasterConfig);
HAL_StatusTypeDef HAL_TIMEx_ConfigBreakDeadTime(TIM_HandleTypeDef *htim,
const TIM_BreakDeadTimeConfigTypeDef *sBreakDeadTimeConfig);
HAL_StatusTypeDef HAL_TIMEx_ConfigBreakInput(TIM_HandleTypeDef *htim, uint32_t BreakInput,
const TIMEx_BreakInputConfigTypeDef *sBreakInputConfig);
HAL_StatusTypeDef HAL_TIMEx_GroupChannel5(TIM_HandleTypeDef *htim, uint32_t Channels);
HAL_StatusTypeDef HAL_TIMEx_RemapConfig(TIM_HandleTypeDef *htim, uint32_t Remap);
HAL_StatusTypeDef HAL_TIMEx_DisarmBreakInput(TIM_HandleTypeDef *htim, uint32_t BreakInput);
HAL_StatusTypeDef HAL_TIMEx_ReArmBreakInput(const TIM_HandleTypeDef *htim, uint32_t BreakInput);
/**
* @}
*/
/** @addtogroup TIMEx_Exported_Functions_Group6 Extended Callbacks functions
* @brief Extended Callbacks functions
* @{
*/
/* Extended Callback **********************************************************/
void HAL_TIMEx_CommutCallback(TIM_HandleTypeDef *htim);
void HAL_TIMEx_CommutHalfCpltCallback(TIM_HandleTypeDef *htim);
void HAL_TIMEx_BreakCallback(TIM_HandleTypeDef *htim);
void HAL_TIMEx_Break2Callback(TIM_HandleTypeDef *htim);
/**
* @}
*/
/** @addtogroup TIMEx_Exported_Functions_Group7 Extended Peripheral State functions
* @brief Extended Peripheral State functions
* @{
*/
/* Extended Peripheral State functions ***************************************/
HAL_TIM_StateTypeDef HAL_TIMEx_HallSensor_GetState(const TIM_HandleTypeDef *htim);
HAL_TIM_ChannelStateTypeDef HAL_TIMEx_GetChannelNState(const TIM_HandleTypeDef *htim, uint32_t ChannelN);
/**
* @}
*/
/**
* @}
*/
/* End of exported functions -------------------------------------------------*/
/* Private functions----------------------------------------------------------*/
/** @addtogroup TIMEx_Private_Functions TIM Extended Private Functions
* @{
*/
void TIMEx_DMACommutationCplt(DMA_HandleTypeDef *hdma);
void TIMEx_DMACommutationHalfCplt(DMA_HandleTypeDef *hdma);
/**
* @}
*/
/* End of private functions --------------------------------------------------*/
/**
* @}
*/
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* STM32WBxx_HAL_TIM_EX_H */

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,644 @@
/**
******************************************************************************
* @file stm32wbxx_ll_cortex.h
* @author MCD Application Team
* @brief Header file of CORTEX LL module.
******************************************************************************
* @attention
*
* Copyright (c) 2019 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
==============================================================================
##### How to use this driver #####
==============================================================================
[..]
The LL CORTEX driver contains a set of generic APIs that can be
used by user:
(+) SYSTICK configuration used by LL_mDelay and LL_Init1msTick
functions
(+) Low power mode configuration (SCB register of Cortex-MCU)
(+) MPU API to configure and enable regions
(+) API to access to MCU info (CPUID register)
(+) API to enable fault handler (SHCSR accesses)
@endverbatim
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef STM32WBxx_LL_CORTEX_H
#define STM32WBxx_LL_CORTEX_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32wbxx.h"
/** @addtogroup STM32WBxx_LL_Driver
* @{
*/
/** @defgroup CORTEX_LL CORTEX
* @{
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/* Private macros ------------------------------------------------------------*/
/* Exported types ------------------------------------------------------------*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup CORTEX_LL_Exported_Constants CORTEX Exported Constants
* @{
*/
/** @defgroup CORTEX_LL_EC_CLKSOURCE_HCLK SYSTICK Clock Source
* @{
*/
#define LL_SYSTICK_CLKSOURCE_HCLK_DIV8 0x00000000U /*!< AHB clock divided by 8 selected as SysTick clock source.*/
#define LL_SYSTICK_CLKSOURCE_HCLK SysTick_CTRL_CLKSOURCE_Msk /*!< AHB clock selected as SysTick clock source. */
/**
* @}
*/
/** @defgroup CORTEX_LL_EC_FAULT Handler Fault type
* @{
*/
#define LL_HANDLER_FAULT_USG SCB_SHCSR_USGFAULTENA_Msk /*!< Usage fault */
#define LL_HANDLER_FAULT_BUS SCB_SHCSR_BUSFAULTENA_Msk /*!< Bus fault */
#define LL_HANDLER_FAULT_MEM SCB_SHCSR_MEMFAULTENA_Msk /*!< Memory management fault */
/**
* @}
*/
#if __MPU_PRESENT
/** @defgroup CORTEX_LL_EC_CTRL_HFNMI_PRIVDEF MPU Control
* @{
*/
#define LL_MPU_CTRL_HFNMI_PRIVDEF_NONE 0x00000000U /*!< Disable NMI and privileged SW access */
#define LL_MPU_CTRL_HARDFAULT_NMI MPU_CTRL_HFNMIENA_Msk /*!< Enables the operation of MPU during hard fault, NMI, and FAULTMASK handlers */
#define LL_MPU_CTRL_PRIVILEGED_DEFAULT MPU_CTRL_PRIVDEFENA_Msk /*!< Enable privileged software access to default memory map */
#define LL_MPU_CTRL_HFNMI_PRIVDEF (MPU_CTRL_HFNMIENA_Msk | MPU_CTRL_PRIVDEFENA_Msk) /*!< Enable NMI and privileged SW access */
/**
* @}
*/
/** @defgroup CORTEX_LL_EC_REGION MPU Region Number
* @{
*/
#define LL_MPU_REGION_NUMBER0 0x00U /*!< REGION Number 0 */
#define LL_MPU_REGION_NUMBER1 0x01U /*!< REGION Number 1 */
#define LL_MPU_REGION_NUMBER2 0x02U /*!< REGION Number 2 */
#define LL_MPU_REGION_NUMBER3 0x03U /*!< REGION Number 3 */
#define LL_MPU_REGION_NUMBER4 0x04U /*!< REGION Number 4 */
#define LL_MPU_REGION_NUMBER5 0x05U /*!< REGION Number 5 */
#define LL_MPU_REGION_NUMBER6 0x06U /*!< REGION Number 6 */
#define LL_MPU_REGION_NUMBER7 0x07U /*!< REGION Number 7 */
/**
* @}
*/
/** @defgroup CORTEX_LL_EC_REGION_SIZE MPU Region Size
* @{
*/
#define LL_MPU_REGION_SIZE_32B (0x04U << MPU_RASR_SIZE_Pos) /*!< 32B Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_64B (0x05U << MPU_RASR_SIZE_Pos) /*!< 64B Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_128B (0x06U << MPU_RASR_SIZE_Pos) /*!< 128B Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_256B (0x07U << MPU_RASR_SIZE_Pos) /*!< 256B Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_512B (0x08U << MPU_RASR_SIZE_Pos) /*!< 512B Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_1KB (0x09U << MPU_RASR_SIZE_Pos) /*!< 1KB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_2KB (0x0AU << MPU_RASR_SIZE_Pos) /*!< 2KB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_4KB (0x0BU << MPU_RASR_SIZE_Pos) /*!< 4KB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_8KB (0x0CU << MPU_RASR_SIZE_Pos) /*!< 8KB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_16KB (0x0DU << MPU_RASR_SIZE_Pos) /*!< 16KB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_32KB (0x0EU << MPU_RASR_SIZE_Pos) /*!< 32KB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_64KB (0x0FU << MPU_RASR_SIZE_Pos) /*!< 64KB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_128KB (0x10U << MPU_RASR_SIZE_Pos) /*!< 128KB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_256KB (0x11U << MPU_RASR_SIZE_Pos) /*!< 256KB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_512KB (0x12U << MPU_RASR_SIZE_Pos) /*!< 512KB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_1MB (0x13U << MPU_RASR_SIZE_Pos) /*!< 1MB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_2MB (0x14U << MPU_RASR_SIZE_Pos) /*!< 2MB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_4MB (0x15U << MPU_RASR_SIZE_Pos) /*!< 4MB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_8MB (0x16U << MPU_RASR_SIZE_Pos) /*!< 8MB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_16MB (0x17U << MPU_RASR_SIZE_Pos) /*!< 16MB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_32MB (0x18U << MPU_RASR_SIZE_Pos) /*!< 32MB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_64MB (0x19U << MPU_RASR_SIZE_Pos) /*!< 64MB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_128MB (0x1AU << MPU_RASR_SIZE_Pos) /*!< 128MB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_256MB (0x1BU << MPU_RASR_SIZE_Pos) /*!< 256MB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_512MB (0x1CU << MPU_RASR_SIZE_Pos) /*!< 512MB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_1GB (0x1DU << MPU_RASR_SIZE_Pos) /*!< 1GB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_2GB (0x1EU << MPU_RASR_SIZE_Pos) /*!< 2GB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_4GB (0x1FU << MPU_RASR_SIZE_Pos) /*!< 4GB Size of the MPU protection region */
/**
* @}
*/
/** @defgroup CORTEX_LL_EC_REGION_PRIVILEDGES MPU Region Privileges
* @{
*/
#define LL_MPU_REGION_NO_ACCESS (0x00U << MPU_RASR_AP_Pos) /*!< No access*/
#define LL_MPU_REGION_PRIV_RW (0x01U << MPU_RASR_AP_Pos) /*!< RW privileged (privileged access only)*/
#define LL_MPU_REGION_PRIV_RW_URO (0x02U << MPU_RASR_AP_Pos) /*!< RW privileged - RO user (Write in a user program generates a fault) */
#define LL_MPU_REGION_FULL_ACCESS (0x03U << MPU_RASR_AP_Pos) /*!< RW privileged & user (Full access) */
#define LL_MPU_REGION_PRIV_RO (0x05U << MPU_RASR_AP_Pos) /*!< RO privileged (privileged read only)*/
#define LL_MPU_REGION_PRIV_RO_URO (0x06U << MPU_RASR_AP_Pos) /*!< RO privileged & user (read only) */
/**
* @}
*/
/** @defgroup CORTEX_LL_EC_TEX MPU TEX Level
* @{
*/
#define LL_MPU_TEX_LEVEL0 (0x00U << MPU_RASR_TEX_Pos) /*!< b000 for TEX bits */
#define LL_MPU_TEX_LEVEL1 (0x01U << MPU_RASR_TEX_Pos) /*!< b001 for TEX bits */
#define LL_MPU_TEX_LEVEL2 (0x02U << MPU_RASR_TEX_Pos) /*!< b010 for TEX bits */
#define LL_MPU_TEX_LEVEL4 (0x04U << MPU_RASR_TEX_Pos) /*!< b100 for TEX bits */
/**
* @}
*/
/** @defgroup CORTEX_LL_EC_INSTRUCTION_ACCESS MPU Instruction Access
* @{
*/
#define LL_MPU_INSTRUCTION_ACCESS_ENABLE 0x00U /*!< Instruction fetches enabled */
#define LL_MPU_INSTRUCTION_ACCESS_DISABLE MPU_RASR_XN_Msk /*!< Instruction fetches disabled*/
/**
* @}
*/
/** @defgroup CORTEX_LL_EC_SHAREABLE_ACCESS MPU Shareable Access
* @{
*/
#define LL_MPU_ACCESS_SHAREABLE MPU_RASR_S_Msk /*!< Shareable memory attribute */
#define LL_MPU_ACCESS_NOT_SHAREABLE 0x00U /*!< Not Shareable memory attribute */
/**
* @}
*/
/** @defgroup CORTEX_LL_EC_CACHEABLE_ACCESS MPU Cacheable Access
* @{
*/
#define LL_MPU_ACCESS_CACHEABLE MPU_RASR_C_Msk /*!< Cacheable memory attribute */
#define LL_MPU_ACCESS_NOT_CACHEABLE 0x00U /*!< Not Cacheable memory attribute */
/**
* @}
*/
/** @defgroup CORTEX_LL_EC_BUFFERABLE_ACCESS MPU Bufferable Access
* @{
*/
#define LL_MPU_ACCESS_BUFFERABLE MPU_RASR_B_Msk /*!< Bufferable memory attribute */
#define LL_MPU_ACCESS_NOT_BUFFERABLE 0x00U /*!< Not Bufferable memory attribute */
/**
* @}
*/
#endif /* __MPU_PRESENT */
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup CORTEX_LL_Exported_Functions CORTEX Exported Functions
* @{
*/
/** @defgroup CORTEX_LL_EF_SYSTICK SYSTICK
* @{
*/
/**
* @brief This function checks if the Systick counter flag is active or not.
* @note It can be used in timeout function on application side.
* @rmtoll STK_CTRL COUNTFLAG LL_SYSTICK_IsActiveCounterFlag
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_SYSTICK_IsActiveCounterFlag(void)
{
return (((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) == (SysTick_CTRL_COUNTFLAG_Msk)) ? 1UL : 0UL);
}
/**
* @brief Configures the SysTick clock source
* @rmtoll STK_CTRL CLKSOURCE LL_SYSTICK_SetClkSource
* @param Source This parameter can be one of the following values:
* @arg @ref LL_SYSTICK_CLKSOURCE_HCLK_DIV8
* @arg @ref LL_SYSTICK_CLKSOURCE_HCLK
* @retval None
*/
__STATIC_INLINE void LL_SYSTICK_SetClkSource(uint32_t Source)
{
if (Source == LL_SYSTICK_CLKSOURCE_HCLK)
{
SET_BIT(SysTick->CTRL, LL_SYSTICK_CLKSOURCE_HCLK);
}
else
{
CLEAR_BIT(SysTick->CTRL, LL_SYSTICK_CLKSOURCE_HCLK);
}
}
/**
* @brief Get the SysTick clock source
* @rmtoll STK_CTRL CLKSOURCE LL_SYSTICK_GetClkSource
* @retval Returned value can be one of the following values:
* @arg @ref LL_SYSTICK_CLKSOURCE_HCLK_DIV8
* @arg @ref LL_SYSTICK_CLKSOURCE_HCLK
*/
__STATIC_INLINE uint32_t LL_SYSTICK_GetClkSource(void)
{
return READ_BIT(SysTick->CTRL, LL_SYSTICK_CLKSOURCE_HCLK);
}
/**
* @brief Enable SysTick exception request
* @rmtoll STK_CTRL TICKINT LL_SYSTICK_EnableIT
* @retval None
*/
__STATIC_INLINE void LL_SYSTICK_EnableIT(void)
{
SET_BIT(SysTick->CTRL, SysTick_CTRL_TICKINT_Msk);
}
/**
* @brief Disable SysTick exception request
* @rmtoll STK_CTRL TICKINT LL_SYSTICK_DisableIT
* @retval None
*/
__STATIC_INLINE void LL_SYSTICK_DisableIT(void)
{
CLEAR_BIT(SysTick->CTRL, SysTick_CTRL_TICKINT_Msk);
}
/**
* @brief Checks if the SYSTICK interrupt is enabled or disabled.
* @rmtoll STK_CTRL TICKINT LL_SYSTICK_IsEnabledIT
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_SYSTICK_IsEnabledIT(void)
{
return ((READ_BIT(SysTick->CTRL, SysTick_CTRL_TICKINT_Msk) == (SysTick_CTRL_TICKINT_Msk)) ? 1UL : 0UL);
}
/**
* @}
*/
/** @defgroup CORTEX_LL_EF_LOW_POWER_MODE LOW POWER MODE
* @{
*/
/**
* @brief Processor uses sleep as its low power mode
* @rmtoll SCB_SCR SLEEPDEEP LL_LPM_EnableSleep
* @retval None
*/
__STATIC_INLINE void LL_LPM_EnableSleep(void)
{
/* Clear SLEEPDEEP bit of Cortex System Control Register */
CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
}
/**
* @brief Processor uses deep sleep as its low power mode
* @rmtoll SCB_SCR SLEEPDEEP LL_LPM_EnableDeepSleep
* @retval None
*/
__STATIC_INLINE void LL_LPM_EnableDeepSleep(void)
{
/* Set SLEEPDEEP bit of Cortex System Control Register */
SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
}
/**
* @brief Configures sleep-on-exit when returning from Handler mode to Thread mode.
* @note Setting this bit to 1 enables an interrupt-driven application to avoid returning to an
* empty main application.
* @rmtoll SCB_SCR SLEEPONEXIT LL_LPM_EnableSleepOnExit
* @retval None
*/
__STATIC_INLINE void LL_LPM_EnableSleepOnExit(void)
{
/* Set SLEEPONEXIT bit of Cortex System Control Register */
SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPONEXIT_Msk));
}
/**
* @brief Do not sleep when returning to Thread mode.
* @rmtoll SCB_SCR SLEEPONEXIT LL_LPM_DisableSleepOnExit
* @retval None
*/
__STATIC_INLINE void LL_LPM_DisableSleepOnExit(void)
{
/* Clear SLEEPONEXIT bit of Cortex System Control Register */
CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPONEXIT_Msk));
}
/**
* @brief Enabled events and all interrupts, including disabled interrupts, can wakeup the
* processor.
* @rmtoll SCB_SCR SEVEONPEND LL_LPM_EnableEventOnPend
* @retval None
*/
__STATIC_INLINE void LL_LPM_EnableEventOnPend(void)
{
/* Set SEVEONPEND bit of Cortex System Control Register */
SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SEVONPEND_Msk));
}
/**
* @brief Only enabled interrupts or events can wakeup the processor, disabled interrupts are
* excluded
* @rmtoll SCB_SCR SEVEONPEND LL_LPM_DisableEventOnPend
* @retval None
*/
__STATIC_INLINE void LL_LPM_DisableEventOnPend(void)
{
/* Clear SEVEONPEND bit of Cortex System Control Register */
CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SEVONPEND_Msk));
}
/**
* @}
*/
/** @defgroup CORTEX_LL_EF_HANDLER HANDLER
* @{
*/
/**
* @brief Enable a fault in System handler control register (SHCSR)
* @rmtoll SCB_SHCSR MEMFAULTENA LL_HANDLER_EnableFault
* @param Fault This parameter can be a combination of the following values:
* @arg @ref LL_HANDLER_FAULT_USG
* @arg @ref LL_HANDLER_FAULT_BUS
* @arg @ref LL_HANDLER_FAULT_MEM
* @retval None
*/
__STATIC_INLINE void LL_HANDLER_EnableFault(uint32_t Fault)
{
/* Enable the system handler fault */
SET_BIT(SCB->SHCSR, Fault);
}
/**
* @brief Disable a fault in System handler control register (SHCSR)
* @rmtoll SCB_SHCSR MEMFAULTENA LL_HANDLER_DisableFault
* @param Fault This parameter can be a combination of the following values:
* @arg @ref LL_HANDLER_FAULT_USG
* @arg @ref LL_HANDLER_FAULT_BUS
* @arg @ref LL_HANDLER_FAULT_MEM
* @retval None
*/
__STATIC_INLINE void LL_HANDLER_DisableFault(uint32_t Fault)
{
/* Disable the system handler fault */
CLEAR_BIT(SCB->SHCSR, Fault);
}
/**
* @}
*/
/** @defgroup CORTEX_LL_EF_MCU_INFO MCU INFO
* @{
*/
/**
* @brief Get Implementer code
* @rmtoll SCB_CPUID IMPLEMENTER LL_CPUID_GetImplementer
* @retval Value should be equal to 0x41 for ARM
*/
__STATIC_INLINE uint32_t LL_CPUID_GetImplementer(void)
{
return (uint32_t)(READ_BIT(SCB->CPUID, SCB_CPUID_IMPLEMENTER_Msk) >> SCB_CPUID_IMPLEMENTER_Pos);
}
/**
* @brief Get Variant number (The r value in the rnpn product revision identifier)
* @rmtoll SCB_CPUID VARIANT LL_CPUID_GetVariant
* @retval Value between 0 and 255 (0x0: revision 0)
*/
__STATIC_INLINE uint32_t LL_CPUID_GetVariant(void)
{
return (uint32_t)(READ_BIT(SCB->CPUID, SCB_CPUID_VARIANT_Msk) >> SCB_CPUID_VARIANT_Pos);
}
/**
* @brief Get Constant number
* @rmtoll SCB_CPUID ARCHITECTURE LL_CPUID_GetConstant
* @retval Value should be equal to 0xF for Cortex-M4 devices
*/
__STATIC_INLINE uint32_t LL_CPUID_GetConstant(void)
{
return (uint32_t)(READ_BIT(SCB->CPUID, SCB_CPUID_ARCHITECTURE_Msk) >> SCB_CPUID_ARCHITECTURE_Pos);
}
/**
* @brief Get Part number
* @rmtoll SCB_CPUID PARTNO LL_CPUID_GetParNo
* @retval Value should be equal to 0xC24 for Cortex-M4
*/
__STATIC_INLINE uint32_t LL_CPUID_GetParNo(void)
{
return (uint32_t)(READ_BIT(SCB->CPUID, SCB_CPUID_PARTNO_Msk) >> SCB_CPUID_PARTNO_Pos);
}
/**
* @brief Get Revision number (The p value in the rnpn product revision identifier, indicates patch release)
* @rmtoll SCB_CPUID REVISION LL_CPUID_GetRevision
* @retval Value between 0 and 255 (0x1: patch 1)
*/
__STATIC_INLINE uint32_t LL_CPUID_GetRevision(void)
{
return (uint32_t)(READ_BIT(SCB->CPUID, SCB_CPUID_REVISION_Msk) >> SCB_CPUID_REVISION_Pos);
}
/**
* @}
*/
#if __MPU_PRESENT
/** @defgroup CORTEX_LL_EF_MPU MPU
* @{
*/
/**
* @brief Enable MPU with input options
* @rmtoll MPU_CTRL ENABLE LL_MPU_Enable
* @param Options This parameter can be one of the following values:
* @arg @ref LL_MPU_CTRL_HFNMI_PRIVDEF_NONE
* @arg @ref LL_MPU_CTRL_HARDFAULT_NMI
* @arg @ref LL_MPU_CTRL_PRIVILEGED_DEFAULT
* @arg @ref LL_MPU_CTRL_HFNMI_PRIVDEF
* @retval None
*/
__STATIC_INLINE void LL_MPU_Enable(uint32_t Options)
{
/* Enable the MPU*/
WRITE_REG(MPU->CTRL, (MPU_CTRL_ENABLE_Msk | Options));
/* Ensure MPU settings take effects */
__DSB();
/* Sequence instruction fetches using update settings */
__ISB();
}
/**
* @brief Disable MPU
* @rmtoll MPU_CTRL ENABLE LL_MPU_Disable
* @retval None
*/
__STATIC_INLINE void LL_MPU_Disable(void)
{
/* Make sure outstanding transfers are done */
__DMB();
/* Disable MPU*/
WRITE_REG(MPU->CTRL, 0U);
}
/**
* @brief Check if MPU is enabled or not
* @rmtoll MPU_CTRL ENABLE LL_MPU_IsEnabled
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_MPU_IsEnabled(void)
{
return ((READ_BIT(MPU->CTRL, MPU_CTRL_ENABLE_Msk) == (MPU_CTRL_ENABLE_Msk)) ? 1UL : 0UL);
}
/**
* @brief Enable a MPU region
* @rmtoll MPU_RASR ENABLE LL_MPU_EnableRegion
* @param Region This parameter can be one of the following values:
* @arg @ref LL_MPU_REGION_NUMBER0
* @arg @ref LL_MPU_REGION_NUMBER1
* @arg @ref LL_MPU_REGION_NUMBER2
* @arg @ref LL_MPU_REGION_NUMBER3
* @arg @ref LL_MPU_REGION_NUMBER4
* @arg @ref LL_MPU_REGION_NUMBER5
* @arg @ref LL_MPU_REGION_NUMBER6
* @arg @ref LL_MPU_REGION_NUMBER7
* @retval None
*/
__STATIC_INLINE void LL_MPU_EnableRegion(uint32_t Region)
{
/* Set Region number */
WRITE_REG(MPU->RNR, Region);
/* Enable the MPU region */
SET_BIT(MPU->RASR, MPU_RASR_ENABLE_Msk);
}
/**
* @brief Configure and enable a region
* @rmtoll MPU_RNR REGION LL_MPU_ConfigRegion\n
* MPU_RBAR REGION LL_MPU_ConfigRegion\n
* MPU_RBAR ADDR LL_MPU_ConfigRegion\n
* MPU_RASR XN LL_MPU_ConfigRegion\n
* MPU_RASR AP LL_MPU_ConfigRegion\n
* MPU_RASR S LL_MPU_ConfigRegion\n
* MPU_RASR C LL_MPU_ConfigRegion\n
* MPU_RASR B LL_MPU_ConfigRegion\n
* MPU_RASR SIZE LL_MPU_ConfigRegion
* @param Region This parameter can be one of the following values:
* @arg @ref LL_MPU_REGION_NUMBER0
* @arg @ref LL_MPU_REGION_NUMBER1
* @arg @ref LL_MPU_REGION_NUMBER2
* @arg @ref LL_MPU_REGION_NUMBER3
* @arg @ref LL_MPU_REGION_NUMBER4
* @arg @ref LL_MPU_REGION_NUMBER5
* @arg @ref LL_MPU_REGION_NUMBER6
* @arg @ref LL_MPU_REGION_NUMBER7
* @param Address Value of region base address
* @param SubRegionDisable Sub-region disable value between Min_Data = 0x00 and Max_Data = 0xFF
* @param Attributes This parameter can be a combination of the following values:
* @arg @ref LL_MPU_REGION_SIZE_32B (*) or @ref LL_MPU_REGION_SIZE_64B (*) or @ref LL_MPU_REGION_SIZE_128B (*)
* or @ref LL_MPU_REGION_SIZE_256B or @ref LL_MPU_REGION_SIZE_512B or @ref LL_MPU_REGION_SIZE_1KB
* or @ref LL_MPU_REGION_SIZE_2KB or @ref LL_MPU_REGION_SIZE_4KB or @ref LL_MPU_REGION_SIZE_8KB
* or @ref LL_MPU_REGION_SIZE_16KB or @ref LL_MPU_REGION_SIZE_32KB or @ref LL_MPU_REGION_SIZE_64KB
* or @ref LL_MPU_REGION_SIZE_128KB or @ref LL_MPU_REGION_SIZE_256KB or @ref LL_MPU_REGION_SIZE_512KB
* or @ref LL_MPU_REGION_SIZE_1MB or @ref LL_MPU_REGION_SIZE_2MB or @ref LL_MPU_REGION_SIZE_4MB
* or @ref LL_MPU_REGION_SIZE_8MB or @ref LL_MPU_REGION_SIZE_16MB or @ref LL_MPU_REGION_SIZE_32MB
* or @ref LL_MPU_REGION_SIZE_64MB or @ref LL_MPU_REGION_SIZE_128MB or @ref LL_MPU_REGION_SIZE_256MB
* or @ref LL_MPU_REGION_SIZE_512MB or @ref LL_MPU_REGION_SIZE_1GB or @ref LL_MPU_REGION_SIZE_2GB
* or @ref LL_MPU_REGION_SIZE_4GB
* @arg @ref LL_MPU_REGION_NO_ACCESS or @ref LL_MPU_REGION_PRIV_RW or @ref LL_MPU_REGION_PRIV_RW_URO
* or @ref LL_MPU_REGION_FULL_ACCESS or @ref LL_MPU_REGION_PRIV_RO or @ref LL_MPU_REGION_PRIV_RO_URO
* @arg @ref LL_MPU_TEX_LEVEL0 or @ref LL_MPU_TEX_LEVEL1 or @ref LL_MPU_TEX_LEVEL2 or @ref LL_MPU_TEX_LEVEL4
* @arg @ref LL_MPU_INSTRUCTION_ACCESS_ENABLE or @ref LL_MPU_INSTRUCTION_ACCESS_DISABLE
* @arg @ref LL_MPU_ACCESS_SHAREABLE or @ref LL_MPU_ACCESS_NOT_SHAREABLE
* @arg @ref LL_MPU_ACCESS_CACHEABLE or @ref LL_MPU_ACCESS_NOT_CACHEABLE
* @arg @ref LL_MPU_ACCESS_BUFFERABLE or @ref LL_MPU_ACCESS_NOT_BUFFERABLE
* (*) value not defined for CM0+ core.
* @retval None
*/
__STATIC_INLINE void LL_MPU_ConfigRegion(uint32_t Region, uint32_t SubRegionDisable, uint32_t Address,
uint32_t Attributes)
{
/* Set Region number */
WRITE_REG(MPU->RNR, Region);
/* Set base address */
WRITE_REG(MPU->RBAR, (Address & 0xFFFFFFE0U));
/* Configure MPU */
WRITE_REG(MPU->RASR, (MPU_RASR_ENABLE_Msk | Attributes | (SubRegionDisable << MPU_RASR_SRD_Pos)));
}
/**
* @brief Disable a region
* @rmtoll MPU_RNR REGION LL_MPU_DisableRegion\n
* MPU_RASR ENABLE LL_MPU_DisableRegion
* @param Region This parameter can be one of the following values:
* @arg @ref LL_MPU_REGION_NUMBER0
* @arg @ref LL_MPU_REGION_NUMBER1
* @arg @ref LL_MPU_REGION_NUMBER2
* @arg @ref LL_MPU_REGION_NUMBER3
* @arg @ref LL_MPU_REGION_NUMBER4
* @arg @ref LL_MPU_REGION_NUMBER5
* @arg @ref LL_MPU_REGION_NUMBER6
* @arg @ref LL_MPU_REGION_NUMBER7
* @retval None
*/
__STATIC_INLINE void LL_MPU_DisableRegion(uint32_t Region)
{
/* Set Region number */
WRITE_REG(MPU->RNR, Region);
/* Disable the MPU region */
CLEAR_BIT(MPU->RASR, MPU_RASR_ENABLE_Msk);
}
/**
* @}
*/
#endif /* __MPU_PRESENT */
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* STM32WBxx_LL_CORTEX_H */

View File

@@ -0,0 +1,795 @@
/**
******************************************************************************
* @file stm32wbxx_ll_crs.h
* @author MCD Application Team
* @brief Header file of CRS LL module.
******************************************************************************
* @attention
*
* Copyright (c) 2019 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef STM32WBxx_LL_CRS_H
#define STM32WBxx_LL_CRS_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32wbxx.h"
/** @addtogroup STM32WBxx_LL_Driver
* @{
*/
#if defined(CRS)
/** @defgroup CRS_LL CRS
* @{
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/** @defgroup CRS_LL_Private_Constants CRS Private Constants
* @{
*/
/* Defines used for the bit position in the register and perform offsets*/
#define CRS_POSITION_TRIM (CRS_CR_TRIM_Pos) /* bit position in CR reg */
#define CRS_POSITION_FECAP (CRS_ISR_FECAP_Pos) /* bit position in ISR reg */
#define CRS_POSITION_FELIM (CRS_CFGR_FELIM_Pos) /* bit position in CFGR reg */
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/* Exported types ------------------------------------------------------------*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup CRS_LL_Exported_Constants CRS Exported Constants
* @{
*/
/** @defgroup CRS_LL_EC_GET_FLAG Get Flags Defines
* @brief Flags defines which can be used with LL_CRS_ReadReg function
* @{
*/
#define LL_CRS_ISR_SYNCOKF CRS_ISR_SYNCOKF
#define LL_CRS_ISR_SYNCWARNF CRS_ISR_SYNCWARNF
#define LL_CRS_ISR_ERRF CRS_ISR_ERRF
#define LL_CRS_ISR_ESYNCF CRS_ISR_ESYNCF
#define LL_CRS_ISR_SYNCERR CRS_ISR_SYNCERR
#define LL_CRS_ISR_SYNCMISS CRS_ISR_SYNCMISS
#define LL_CRS_ISR_TRIMOVF CRS_ISR_TRIMOVF
/**
* @}
*/
/** @defgroup CRS_LL_EC_IT IT Defines
* @brief IT defines which can be used with LL_CRS_ReadReg and LL_CRS_WriteReg functions
* @{
*/
#define LL_CRS_CR_SYNCOKIE CRS_CR_SYNCOKIE
#define LL_CRS_CR_SYNCWARNIE CRS_CR_SYNCWARNIE
#define LL_CRS_CR_ERRIE CRS_CR_ERRIE
#define LL_CRS_CR_ESYNCIE CRS_CR_ESYNCIE
/**
* @}
*/
/** @defgroup CRS_LL_EC_SYNC_DIV Synchronization Signal Divider
* @{
*/
#define LL_CRS_SYNC_DIV_1 0x00000000U /*!< Synchro Signal not divided (default) */
#define LL_CRS_SYNC_DIV_2 CRS_CFGR_SYNCDIV_0 /*!< Synchro Signal divided by 2 */
#define LL_CRS_SYNC_DIV_4 CRS_CFGR_SYNCDIV_1 /*!< Synchro Signal divided by 4 */
#define LL_CRS_SYNC_DIV_8 (CRS_CFGR_SYNCDIV_1 | CRS_CFGR_SYNCDIV_0) /*!< Synchro Signal divided by 8 */
#define LL_CRS_SYNC_DIV_16 CRS_CFGR_SYNCDIV_2 /*!< Synchro Signal divided by 16 */
#define LL_CRS_SYNC_DIV_32 (CRS_CFGR_SYNCDIV_2 | CRS_CFGR_SYNCDIV_0) /*!< Synchro Signal divided by 32 */
#define LL_CRS_SYNC_DIV_64 (CRS_CFGR_SYNCDIV_2 | CRS_CFGR_SYNCDIV_1) /*!< Synchro Signal divided by 64 */
#define LL_CRS_SYNC_DIV_128 CRS_CFGR_SYNCDIV /*!< Synchro Signal divided by 128 */
/**
* @}
*/
/** @defgroup CRS_LL_EC_SYNC_SOURCE Synchronization Signal Source
* @{
*/
#define LL_CRS_SYNC_SOURCE_GPIO 0x00000000U /*!< Synchro Signal source GPIO */
#define LL_CRS_SYNC_SOURCE_LSE CRS_CFGR_SYNCSRC_0 /*!< Synchro Signal source LSE */
#define LL_CRS_SYNC_SOURCE_USB CRS_CFGR_SYNCSRC_1 /*!< Synchro Signal source USB SOF (default)*/
/**
* @}
*/
/** @defgroup CRS_LL_EC_SYNC_POLARITY Synchronization Signal Polarity
* @{
*/
#define LL_CRS_SYNC_POLARITY_RISING 0x00000000U /*!< Synchro Active on rising edge (default) */
#define LL_CRS_SYNC_POLARITY_FALLING CRS_CFGR_SYNCPOL /*!< Synchro Active on falling edge */
/**
* @}
*/
/** @defgroup CRS_LL_EC_FREQERRORDIR Frequency Error Direction
* @{
*/
#define LL_CRS_FREQ_ERROR_DIR_UP 0x00000000U /*!< Upcounting direction, the actual frequency is above the target */
#define LL_CRS_FREQ_ERROR_DIR_DOWN CRS_ISR_FEDIR /*!< Downcounting direction, the actual frequency is below the target */
/**
* @}
*/
/** @defgroup CRS_LL_EC_DEFAULTVALUES Default Values
* @{
*/
/**
* @brief Reset value of the RELOAD field
* @note The reset value of the RELOAD field corresponds to a target frequency of 48 MHz
* and a synchronization signal frequency of 1 kHz (SOF signal from USB)
*/
#define LL_CRS_RELOADVALUE_DEFAULT 0x0000BB7FU
/**
* @brief Reset value of Frequency error limit.
*/
#define LL_CRS_ERRORLIMIT_DEFAULT 0x00000022U
/**
* @brief Reset value of the HSI48 Calibration field
* @note The default value is 32, which corresponds to the middle of the trimming interval.
* The trimming step is around 67 kHz between two consecutive TRIM steps.
* A higher TRIM value corresponds to a higher output frequency
*/
#define LL_CRS_HSI48CALIBRATION_DEFAULT 0x00000020U
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/** @defgroup CRS_LL_Exported_Macros CRS Exported Macros
* @{
*/
/** @defgroup CRS_LL_EM_WRITE_READ Common Write and read registers Macros
* @{
*/
/**
* @brief Write a value in CRS register
* @param __INSTANCE__ CRS Instance
* @param __REG__ Register to be written
* @param __VALUE__ Value to be written in the register
* @retval None
*/
#define LL_CRS_WriteReg(__INSTANCE__, __REG__, __VALUE__) WRITE_REG(__INSTANCE__->__REG__, (__VALUE__))
/**
* @brief Read a value in CRS register
* @param __INSTANCE__ CRS Instance
* @param __REG__ Register to be read
* @retval Register value
*/
#define LL_CRS_ReadReg(__INSTANCE__, __REG__) READ_REG(__INSTANCE__->__REG__)
/**
* @}
*/
/** @defgroup CRS_LL_EM_Exported_Macros_Calculate_Reload Exported_Macros_Calculate_Reload
* @{
*/
/**
* @brief Macro to calculate reload value to be set in CRS register according to target and sync frequencies
* @note The RELOAD value should be selected according to the ratio between
* the target frequency and the frequency of the synchronization source after
* prescaling. It is then decreased by one in order to reach the expected
* synchronization on the zero value. The formula is the following:
* RELOAD = (fTARGET / fSYNC) -1
* @param __FTARGET__ Target frequency (value in Hz)
* @param __FSYNC__ Synchronization signal frequency (value in Hz)
* @retval Reload value (in Hz)
*/
#define __LL_CRS_CALC_CALCULATE_RELOADVALUE(__FTARGET__, __FSYNC__) (((__FTARGET__) / (__FSYNC__)) - 1U)
/**
* @}
*/
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup CRS_LL_Exported_Functions CRS Exported Functions
* @{
*/
/** @defgroup CRS_LL_EF_Configuration Configuration
* @{
*/
/**
* @brief Enable Frequency error counter
* @note When this bit is set, the CRS_CFGR register is write-protected and cannot be modified
* @rmtoll CR CEN LL_CRS_EnableFreqErrorCounter
* @retval None
*/
__STATIC_INLINE void LL_CRS_EnableFreqErrorCounter(void)
{
SET_BIT(CRS->CR, CRS_CR_CEN);
}
/**
* @brief Disable Frequency error counter
* @rmtoll CR CEN LL_CRS_DisableFreqErrorCounter
* @retval None
*/
__STATIC_INLINE void LL_CRS_DisableFreqErrorCounter(void)
{
CLEAR_BIT(CRS->CR, CRS_CR_CEN);
}
/**
* @brief Check if Frequency error counter is enabled or not
* @rmtoll CR CEN LL_CRS_IsEnabledFreqErrorCounter
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_CRS_IsEnabledFreqErrorCounter(void)
{
return ((READ_BIT(CRS->CR, CRS_CR_CEN) == (CRS_CR_CEN)) ? 1UL : 0UL);
}
/**
* @brief Enable Automatic trimming counter
* @rmtoll CR AUTOTRIMEN LL_CRS_EnableAutoTrimming
* @retval None
*/
__STATIC_INLINE void LL_CRS_EnableAutoTrimming(void)
{
SET_BIT(CRS->CR, CRS_CR_AUTOTRIMEN);
}
/**
* @brief Disable Automatic trimming counter
* @rmtoll CR AUTOTRIMEN LL_CRS_DisableAutoTrimming
* @retval None
*/
__STATIC_INLINE void LL_CRS_DisableAutoTrimming(void)
{
CLEAR_BIT(CRS->CR, CRS_CR_AUTOTRIMEN);
}
/**
* @brief Check if Automatic trimming is enabled or not
* @rmtoll CR AUTOTRIMEN LL_CRS_IsEnabledAutoTrimming
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_CRS_IsEnabledAutoTrimming(void)
{
return ((READ_BIT(CRS->CR, CRS_CR_AUTOTRIMEN) == (CRS_CR_AUTOTRIMEN)) ? 1UL : 0UL);
}
/**
* @brief Set HSI48 oscillator smooth trimming
* @note When the AUTOTRIMEN bit is set, this field is controlled by hardware and is read-only
* @rmtoll CR TRIM LL_CRS_SetHSI48SmoothTrimming
* @param Value a number between Min_Data = 0 and Max_Data = 63
* @note Default value can be set thanks to @ref LL_CRS_HSI48CALIBRATION_DEFAULT
* @retval None
*/
__STATIC_INLINE void LL_CRS_SetHSI48SmoothTrimming(uint32_t Value)
{
MODIFY_REG(CRS->CR, CRS_CR_TRIM, Value << CRS_POSITION_TRIM);
}
/**
* @brief Get HSI48 oscillator smooth trimming
* @rmtoll CR TRIM LL_CRS_GetHSI48SmoothTrimming
* @retval a number between Min_Data = 0 and Max_Data = 63
*/
__STATIC_INLINE uint32_t LL_CRS_GetHSI48SmoothTrimming(void)
{
return (uint32_t)(READ_BIT(CRS->CR, CRS_CR_TRIM) >> CRS_POSITION_TRIM);
}
/**
* @brief Set counter reload value
* @rmtoll CFGR RELOAD LL_CRS_SetReloadCounter
* @param Value a number between Min_Data = 0 and Max_Data = 0xFFFF
* @note Default value can be set thanks to @ref LL_CRS_RELOADVALUE_DEFAULT
* Otherwise it can be calculated in using macro @ref __LL_CRS_CALC_CALCULATE_RELOADVALUE (_FTARGET_, _FSYNC_)
* @retval None
*/
__STATIC_INLINE void LL_CRS_SetReloadCounter(uint32_t Value)
{
MODIFY_REG(CRS->CFGR, CRS_CFGR_RELOAD, Value);
}
/**
* @brief Get counter reload value
* @rmtoll CFGR RELOAD LL_CRS_GetReloadCounter
* @retval a number between Min_Data = 0 and Max_Data = 0xFFFF
*/
__STATIC_INLINE uint32_t LL_CRS_GetReloadCounter(void)
{
return (uint32_t)(READ_BIT(CRS->CFGR, CRS_CFGR_RELOAD));
}
/**
* @brief Set frequency error limit
* @rmtoll CFGR FELIM LL_CRS_SetFreqErrorLimit
* @param Value a number between Min_Data = 0 and Max_Data = 255
* @note Default value can be set thanks to @ref LL_CRS_ERRORLIMIT_DEFAULT
* @retval None
*/
__STATIC_INLINE void LL_CRS_SetFreqErrorLimit(uint32_t Value)
{
MODIFY_REG(CRS->CFGR, CRS_CFGR_FELIM, Value << CRS_POSITION_FELIM);
}
/**
* @brief Get frequency error limit
* @rmtoll CFGR FELIM LL_CRS_GetFreqErrorLimit
* @retval A number between Min_Data = 0 and Max_Data = 255
*/
__STATIC_INLINE uint32_t LL_CRS_GetFreqErrorLimit(void)
{
return (uint32_t)(READ_BIT(CRS->CFGR, CRS_CFGR_FELIM) >> CRS_POSITION_FELIM);
}
/**
* @brief Set division factor for SYNC signal
* @rmtoll CFGR SYNCDIV LL_CRS_SetSyncDivider
* @param Divider This parameter can be one of the following values:
* @arg @ref LL_CRS_SYNC_DIV_1
* @arg @ref LL_CRS_SYNC_DIV_2
* @arg @ref LL_CRS_SYNC_DIV_4
* @arg @ref LL_CRS_SYNC_DIV_8
* @arg @ref LL_CRS_SYNC_DIV_16
* @arg @ref LL_CRS_SYNC_DIV_32
* @arg @ref LL_CRS_SYNC_DIV_64
* @arg @ref LL_CRS_SYNC_DIV_128
* @retval None
*/
__STATIC_INLINE void LL_CRS_SetSyncDivider(uint32_t Divider)
{
MODIFY_REG(CRS->CFGR, CRS_CFGR_SYNCDIV, Divider);
}
/**
* @brief Get division factor for SYNC signal
* @rmtoll CFGR SYNCDIV LL_CRS_GetSyncDivider
* @retval Returned value can be one of the following values:
* @arg @ref LL_CRS_SYNC_DIV_1
* @arg @ref LL_CRS_SYNC_DIV_2
* @arg @ref LL_CRS_SYNC_DIV_4
* @arg @ref LL_CRS_SYNC_DIV_8
* @arg @ref LL_CRS_SYNC_DIV_16
* @arg @ref LL_CRS_SYNC_DIV_32
* @arg @ref LL_CRS_SYNC_DIV_64
* @arg @ref LL_CRS_SYNC_DIV_128
*/
__STATIC_INLINE uint32_t LL_CRS_GetSyncDivider(void)
{
return (uint32_t)(READ_BIT(CRS->CFGR, CRS_CFGR_SYNCDIV));
}
/**
* @brief Set SYNC signal source
* @rmtoll CFGR SYNCSRC LL_CRS_SetSyncSignalSource
* @param Source This parameter can be one of the following values:
* @arg @ref LL_CRS_SYNC_SOURCE_GPIO
* @arg @ref LL_CRS_SYNC_SOURCE_LSE
* @arg @ref LL_CRS_SYNC_SOURCE_USB
* @retval None
*/
__STATIC_INLINE void LL_CRS_SetSyncSignalSource(uint32_t Source)
{
MODIFY_REG(CRS->CFGR, CRS_CFGR_SYNCSRC, Source);
}
/**
* @brief Get SYNC signal source
* @rmtoll CFGR SYNCSRC LL_CRS_GetSyncSignalSource
* @retval Returned value can be one of the following values:
* @arg @ref LL_CRS_SYNC_SOURCE_GPIO
* @arg @ref LL_CRS_SYNC_SOURCE_LSE
* @arg @ref LL_CRS_SYNC_SOURCE_USB
*/
__STATIC_INLINE uint32_t LL_CRS_GetSyncSignalSource(void)
{
return (uint32_t)(READ_BIT(CRS->CFGR, CRS_CFGR_SYNCSRC));
}
/**
* @brief Set input polarity for the SYNC signal source
* @rmtoll CFGR SYNCPOL LL_CRS_SetSyncPolarity
* @param Polarity This parameter can be one of the following values:
* @arg @ref LL_CRS_SYNC_POLARITY_RISING
* @arg @ref LL_CRS_SYNC_POLARITY_FALLING
* @retval None
*/
__STATIC_INLINE void LL_CRS_SetSyncPolarity(uint32_t Polarity)
{
MODIFY_REG(CRS->CFGR, CRS_CFGR_SYNCPOL, Polarity);
}
/**
* @brief Get input polarity for the SYNC signal source
* @rmtoll CFGR SYNCPOL LL_CRS_GetSyncPolarity
* @retval Returned value can be one of the following values:
* @arg @ref LL_CRS_SYNC_POLARITY_RISING
* @arg @ref LL_CRS_SYNC_POLARITY_FALLING
*/
__STATIC_INLINE uint32_t LL_CRS_GetSyncPolarity(void)
{
return (uint32_t)(READ_BIT(CRS->CFGR, CRS_CFGR_SYNCPOL));
}
/**
* @brief Configure CRS for the synchronization
* @rmtoll CR TRIM LL_CRS_ConfigSynchronization\n
* CFGR RELOAD LL_CRS_ConfigSynchronization\n
* CFGR FELIM LL_CRS_ConfigSynchronization\n
* CFGR SYNCDIV LL_CRS_ConfigSynchronization\n
* CFGR SYNCSRC LL_CRS_ConfigSynchronization\n
* CFGR SYNCPOL LL_CRS_ConfigSynchronization
* @param HSI48CalibrationValue a number between Min_Data = 0 and Max_Data = 63
* @param ErrorLimitValue a number between Min_Data = 0 and Max_Data = 0xFFFF
* @param ReloadValue a number between Min_Data = 0 and Max_Data = 255
* @param Settings This parameter can be a combination of the following values:
* @arg @ref LL_CRS_SYNC_DIV_1 or @ref LL_CRS_SYNC_DIV_2 or @ref LL_CRS_SYNC_DIV_4 or @ref LL_CRS_SYNC_DIV_8
* or @ref LL_CRS_SYNC_DIV_16 or @ref LL_CRS_SYNC_DIV_32 or @ref LL_CRS_SYNC_DIV_64 or @ref LL_CRS_SYNC_DIV_128
* @arg @ref LL_CRS_SYNC_SOURCE_GPIO or @ref LL_CRS_SYNC_SOURCE_LSE or @ref LL_CRS_SYNC_SOURCE_USB
* @arg @ref LL_CRS_SYNC_POLARITY_RISING or @ref LL_CRS_SYNC_POLARITY_FALLING
* @retval None
*/
__STATIC_INLINE void LL_CRS_ConfigSynchronization(uint32_t HSI48CalibrationValue, uint32_t ErrorLimitValue, uint32_t ReloadValue, uint32_t Settings)
{
MODIFY_REG(CRS->CR, CRS_CR_TRIM, HSI48CalibrationValue);
MODIFY_REG(CRS->CFGR,
CRS_CFGR_RELOAD | CRS_CFGR_FELIM | CRS_CFGR_SYNCDIV | CRS_CFGR_SYNCSRC | CRS_CFGR_SYNCPOL,
ReloadValue | (ErrorLimitValue << CRS_POSITION_FELIM) | Settings);
}
/**
* @}
*/
/** @defgroup CRS_LL_EF_CRS_Management CRS_Management
* @{
*/
/**
* @brief Generate software SYNC event
* @rmtoll CR SWSYNC LL_CRS_GenerateEvent_SWSYNC
* @retval None
*/
__STATIC_INLINE void LL_CRS_GenerateEvent_SWSYNC(void)
{
SET_BIT(CRS->CR, CRS_CR_SWSYNC);
}
/**
* @brief Get the frequency error direction latched in the time of the last
* SYNC event
* @rmtoll ISR FEDIR LL_CRS_GetFreqErrorDirection
* @retval Returned value can be one of the following values:
* @arg @ref LL_CRS_FREQ_ERROR_DIR_UP
* @arg @ref LL_CRS_FREQ_ERROR_DIR_DOWN
*/
__STATIC_INLINE uint32_t LL_CRS_GetFreqErrorDirection(void)
{
return (uint32_t)(READ_BIT(CRS->ISR, CRS_ISR_FEDIR));
}
/**
* @brief Get the frequency error counter value latched in the time of the last SYNC event
* @rmtoll ISR FECAP LL_CRS_GetFreqErrorCapture
* @retval A number between Min_Data = 0x0000 and Max_Data = 0xFFFF
*/
__STATIC_INLINE uint32_t LL_CRS_GetFreqErrorCapture(void)
{
return (uint32_t)(READ_BIT(CRS->ISR, CRS_ISR_FECAP) >> CRS_POSITION_FECAP);
}
/**
* @}
*/
/** @defgroup CRS_LL_EF_FLAG_Management FLAG_Management
* @{
*/
/**
* @brief Check if SYNC event OK signal occurred or not
* @rmtoll ISR SYNCOKF LL_CRS_IsActiveFlag_SYNCOK
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_CRS_IsActiveFlag_SYNCOK(void)
{
return ((READ_BIT(CRS->ISR, CRS_ISR_SYNCOKF) == (CRS_ISR_SYNCOKF)) ? 1UL : 0UL);
}
/**
* @brief Check if SYNC warning signal occurred or not
* @rmtoll ISR SYNCWARNF LL_CRS_IsActiveFlag_SYNCWARN
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_CRS_IsActiveFlag_SYNCWARN(void)
{
return ((READ_BIT(CRS->ISR, CRS_ISR_SYNCWARNF) == (CRS_ISR_SYNCWARNF)) ? 1UL : 0UL);
}
/**
* @brief Check if Synchronization or trimming error signal occurred or not
* @rmtoll ISR ERRF LL_CRS_IsActiveFlag_ERR
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_CRS_IsActiveFlag_ERR(void)
{
return ((READ_BIT(CRS->ISR, CRS_ISR_ERRF) == (CRS_ISR_ERRF)) ? 1UL : 0UL);
}
/**
* @brief Check if Expected SYNC signal occurred or not
* @rmtoll ISR ESYNCF LL_CRS_IsActiveFlag_ESYNC
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_CRS_IsActiveFlag_ESYNC(void)
{
return ((READ_BIT(CRS->ISR, CRS_ISR_ESYNCF) == (CRS_ISR_ESYNCF)) ? 1UL : 0UL);
}
/**
* @brief Check if SYNC error signal occurred or not
* @rmtoll ISR SYNCERR LL_CRS_IsActiveFlag_SYNCERR
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_CRS_IsActiveFlag_SYNCERR(void)
{
return ((READ_BIT(CRS->ISR, CRS_ISR_SYNCERR) == (CRS_ISR_SYNCERR)) ? 1UL : 0UL);
}
/**
* @brief Check if SYNC missed error signal occurred or not
* @rmtoll ISR SYNCMISS LL_CRS_IsActiveFlag_SYNCMISS
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_CRS_IsActiveFlag_SYNCMISS(void)
{
return ((READ_BIT(CRS->ISR, CRS_ISR_SYNCMISS) == (CRS_ISR_SYNCMISS)) ? 1UL : 0UL);
}
/**
* @brief Check if Trimming overflow or underflow occurred or not
* @rmtoll ISR TRIMOVF LL_CRS_IsActiveFlag_TRIMOVF
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_CRS_IsActiveFlag_TRIMOVF(void)
{
return ((READ_BIT(CRS->ISR, CRS_ISR_TRIMOVF) == (CRS_ISR_TRIMOVF)) ? 1UL : 0UL);
}
/**
* @brief Clear the SYNC event OK flag
* @rmtoll ICR SYNCOKC LL_CRS_ClearFlag_SYNCOK
* @retval None
*/
__STATIC_INLINE void LL_CRS_ClearFlag_SYNCOK(void)
{
WRITE_REG(CRS->ICR, CRS_ICR_SYNCOKC);
}
/**
* @brief Clear the SYNC warning flag
* @rmtoll ICR SYNCWARNC LL_CRS_ClearFlag_SYNCWARN
* @retval None
*/
__STATIC_INLINE void LL_CRS_ClearFlag_SYNCWARN(void)
{
WRITE_REG(CRS->ICR, CRS_ICR_SYNCWARNC);
}
/**
* @brief Clear TRIMOVF, SYNCMISS and SYNCERR bits and consequently also
* the ERR flag
* @rmtoll ICR ERRC LL_CRS_ClearFlag_ERR
* @retval None
*/
__STATIC_INLINE void LL_CRS_ClearFlag_ERR(void)
{
WRITE_REG(CRS->ICR, CRS_ICR_ERRC);
}
/**
* @brief Clear Expected SYNC flag
* @rmtoll ICR ESYNCC LL_CRS_ClearFlag_ESYNC
* @retval None
*/
__STATIC_INLINE void LL_CRS_ClearFlag_ESYNC(void)
{
WRITE_REG(CRS->ICR, CRS_ICR_ESYNCC);
}
/**
* @}
*/
/** @defgroup CRS_LL_EF_IT_Management IT_Management
* @{
*/
/**
* @brief Enable SYNC event OK interrupt
* @rmtoll CR SYNCOKIE LL_CRS_EnableIT_SYNCOK
* @retval None
*/
__STATIC_INLINE void LL_CRS_EnableIT_SYNCOK(void)
{
SET_BIT(CRS->CR, CRS_CR_SYNCOKIE);
}
/**
* @brief Disable SYNC event OK interrupt
* @rmtoll CR SYNCOKIE LL_CRS_DisableIT_SYNCOK
* @retval None
*/
__STATIC_INLINE void LL_CRS_DisableIT_SYNCOK(void)
{
CLEAR_BIT(CRS->CR, CRS_CR_SYNCOKIE);
}
/**
* @brief Check if SYNC event OK interrupt is enabled or not
* @rmtoll CR SYNCOKIE LL_CRS_IsEnabledIT_SYNCOK
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_CRS_IsEnabledIT_SYNCOK(void)
{
return ((READ_BIT(CRS->CR, CRS_CR_SYNCOKIE) == (CRS_CR_SYNCOKIE)) ? 1UL : 0UL);
}
/**
* @brief Enable SYNC warning interrupt
* @rmtoll CR SYNCWARNIE LL_CRS_EnableIT_SYNCWARN
* @retval None
*/
__STATIC_INLINE void LL_CRS_EnableIT_SYNCWARN(void)
{
SET_BIT(CRS->CR, CRS_CR_SYNCWARNIE);
}
/**
* @brief Disable SYNC warning interrupt
* @rmtoll CR SYNCWARNIE LL_CRS_DisableIT_SYNCWARN
* @retval None
*/
__STATIC_INLINE void LL_CRS_DisableIT_SYNCWARN(void)
{
CLEAR_BIT(CRS->CR, CRS_CR_SYNCWARNIE);
}
/**
* @brief Check if SYNC warning interrupt is enabled or not
* @rmtoll CR SYNCWARNIE LL_CRS_IsEnabledIT_SYNCWARN
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_CRS_IsEnabledIT_SYNCWARN(void)
{
return ((READ_BIT(CRS->CR, CRS_CR_SYNCWARNIE) == (CRS_CR_SYNCWARNIE)) ? 1UL : 0UL);
}
/**
* @brief Enable Synchronization or trimming error interrupt
* @rmtoll CR ERRIE LL_CRS_EnableIT_ERR
* @retval None
*/
__STATIC_INLINE void LL_CRS_EnableIT_ERR(void)
{
SET_BIT(CRS->CR, CRS_CR_ERRIE);
}
/**
* @brief Disable Synchronization or trimming error interrupt
* @rmtoll CR ERRIE LL_CRS_DisableIT_ERR
* @retval None
*/
__STATIC_INLINE void LL_CRS_DisableIT_ERR(void)
{
CLEAR_BIT(CRS->CR, CRS_CR_ERRIE);
}
/**
* @brief Check if Synchronization or trimming error interrupt is enabled or not
* @rmtoll CR ERRIE LL_CRS_IsEnabledIT_ERR
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_CRS_IsEnabledIT_ERR(void)
{
return ((READ_BIT(CRS->CR, CRS_CR_ERRIE) == (CRS_CR_ERRIE)) ? 1UL : 0UL);
}
/**
* @brief Enable Expected SYNC interrupt
* @rmtoll CR ESYNCIE LL_CRS_EnableIT_ESYNC
* @retval None
*/
__STATIC_INLINE void LL_CRS_EnableIT_ESYNC(void)
{
SET_BIT(CRS->CR, CRS_CR_ESYNCIE);
}
/**
* @brief Disable Expected SYNC interrupt
* @rmtoll CR ESYNCIE LL_CRS_DisableIT_ESYNC
* @retval None
*/
__STATIC_INLINE void LL_CRS_DisableIT_ESYNC(void)
{
CLEAR_BIT(CRS->CR, CRS_CR_ESYNCIE);
}
/**
* @brief Check if Expected SYNC interrupt is enabled or not
* @rmtoll CR ESYNCIE LL_CRS_IsEnabledIT_ESYNC
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_CRS_IsEnabledIT_ESYNC(void)
{
return ((READ_BIT(CRS->CR, CRS_CR_ESYNCIE) == (CRS_CR_ESYNCIE)) ? 1UL : 0UL);
}
/**
* @}
*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup CRS_LL_EF_Init Initialization and de-initialization functions
* @{
*/
ErrorStatus LL_CRS_DeInit(void);
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */
/**
* @}
*/
/**
* @}
*/
#endif /* defined(CRS) */
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* STM32WBxx_LL_CRS_H */

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,989 @@
/**
******************************************************************************
* @file stm32wbxx_ll_gpio.h
* @author MCD Application Team
* @brief Header file of GPIO LL module.
******************************************************************************
* @attention
*
* Copyright (c) 2019 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef STM32WBxx_LL_GPIO_H
#define STM32WBxx_LL_GPIO_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32wbxx.h"
/** @addtogroup STM32WBxx_LL_Driver
* @{
*/
#if defined (GPIOA) || defined (GPIOB) || defined (GPIOC) || defined (GPIOD) || defined (GPIOE) || defined (GPIOH)
/** @defgroup GPIO_LL GPIO
* @{
*/
/** MISRA C:2012 deviation rule has been granted for following rules:
* Rule-18.1_d - Medium: Array pointer `GPIOx' is accessed with index [..,..]
* which may be out of array bounds [..,UNKNOWN] in following APIs:
* LL_GPIO_GetAFPin_0_7
* LL_GPIO_SetAFPin_0_7
* LL_GPIO_SetAFPin_8_15
* LL_GPIO_GetAFPin_8_15
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/* Private macros ------------------------------------------------------------*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup GPIO_LL_Private_Macros GPIO Private Macros
* @{
*/
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */
/* Exported types ------------------------------------------------------------*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup GPIO_LL_ES_INIT GPIO Exported Init structures
* @{
*/
/**
* @brief LL GPIO Init Structure definition
*/
typedef struct
{
uint32_t Pin; /*!< Specifies the GPIO pins to be configured.
This parameter can be any value of @ref GPIO_LL_EC_PIN */
uint32_t Mode; /*!< Specifies the operating mode for the selected pins.
This parameter can be a value of @ref GPIO_LL_EC_MODE.
GPIO HW configuration can be modified afterwards using unitary function @ref LL_GPIO_SetPinMode().*/
uint32_t Speed; /*!< Specifies the speed for the selected pins.
This parameter can be a value of @ref GPIO_LL_EC_SPEED.
GPIO HW configuration can be modified afterwards using unitary function @ref LL_GPIO_SetPinSpeed().*/
uint32_t OutputType; /*!< Specifies the operating output type for the selected pins.
This parameter can be a value of @ref GPIO_LL_EC_OUTPUT.
GPIO HW configuration can be modified afterwards using unitary function @ref LL_GPIO_SetPinOutputType().*/
uint32_t Pull; /*!< Specifies the operating Pull-up/Pull down for the selected pins.
This parameter can be a value of @ref GPIO_LL_EC_PULL.
GPIO HW configuration can be modified afterwards using unitary function @ref LL_GPIO_SetPinPull().*/
uint32_t Alternate; /*!< Specifies the Peripheral to be connected to the selected pins.
This parameter can be a value of @ref GPIO_LL_EC_AF.
GPIO HW configuration can be modified afterwards using unitary function @ref LL_GPIO_SetAFPin_0_7() and LL_GPIO_SetAFPin_8_15().*/
} LL_GPIO_InitTypeDef;
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */
/* Exported constants --------------------------------------------------------*/
/** @defgroup GPIO_LL_Exported_Constants GPIO Exported Constants
* @{
*/
/** @defgroup GPIO_LL_EC_PIN PIN
* @{
*/
#define LL_GPIO_PIN_0 GPIO_BSRR_BS0 /*!< Select pin 0 */
#define LL_GPIO_PIN_1 GPIO_BSRR_BS1 /*!< Select pin 1 */
#define LL_GPIO_PIN_2 GPIO_BSRR_BS2 /*!< Select pin 2 */
#define LL_GPIO_PIN_3 GPIO_BSRR_BS3 /*!< Select pin 3 */
#define LL_GPIO_PIN_4 GPIO_BSRR_BS4 /*!< Select pin 4 */
#define LL_GPIO_PIN_5 GPIO_BSRR_BS5 /*!< Select pin 5 */
#define LL_GPIO_PIN_6 GPIO_BSRR_BS6 /*!< Select pin 6 */
#define LL_GPIO_PIN_7 GPIO_BSRR_BS7 /*!< Select pin 7 */
#define LL_GPIO_PIN_8 GPIO_BSRR_BS8 /*!< Select pin 8 */
#define LL_GPIO_PIN_9 GPIO_BSRR_BS9 /*!< Select pin 9 */
#define LL_GPIO_PIN_10 GPIO_BSRR_BS10 /*!< Select pin 10 */
#define LL_GPIO_PIN_11 GPIO_BSRR_BS11 /*!< Select pin 11 */
#define LL_GPIO_PIN_12 GPIO_BSRR_BS12 /*!< Select pin 12 */
#define LL_GPIO_PIN_13 GPIO_BSRR_BS13 /*!< Select pin 13 */
#define LL_GPIO_PIN_14 GPIO_BSRR_BS14 /*!< Select pin 14 */
#define LL_GPIO_PIN_15 GPIO_BSRR_BS15 /*!< Select pin 15 */
#define LL_GPIO_PIN_ALL (GPIO_BSRR_BS0 | GPIO_BSRR_BS1 | GPIO_BSRR_BS2 | \
GPIO_BSRR_BS3 | GPIO_BSRR_BS4 | GPIO_BSRR_BS5 | \
GPIO_BSRR_BS6 | GPIO_BSRR_BS7 | GPIO_BSRR_BS8 | \
GPIO_BSRR_BS9 | GPIO_BSRR_BS10 | GPIO_BSRR_BS11 | \
GPIO_BSRR_BS12 | GPIO_BSRR_BS13 | GPIO_BSRR_BS14 | \
GPIO_BSRR_BS15) /*!< Select all pins */
/**
* @}
*/
/** @defgroup GPIO_LL_EC_MODE Mode
* @{
*/
#define LL_GPIO_MODE_INPUT (0x00000000U) /*!< Select input mode */
#define LL_GPIO_MODE_OUTPUT GPIO_MODER_MODE0_0 /*!< Select output mode */
#define LL_GPIO_MODE_ALTERNATE GPIO_MODER_MODE0_1 /*!< Select alternate function mode */
#define LL_GPIO_MODE_ANALOG GPIO_MODER_MODE0 /*!< Select analog mode */
/**
* @}
*/
/** @defgroup GPIO_LL_EC_OUTPUT Output Type
* @{
*/
#define LL_GPIO_OUTPUT_PUSHPULL (0x00000000U) /*!< Select push-pull as output type */
#define LL_GPIO_OUTPUT_OPENDRAIN GPIO_OTYPER_OT0 /*!< Select open-drain as output type */
/**
* @}
*/
/** @defgroup GPIO_LL_EC_SPEED Output Speed
* @{
*/
#define LL_GPIO_SPEED_FREQ_LOW (0x00000000U) /*!< Select I/O low output speed */
#define LL_GPIO_SPEED_FREQ_MEDIUM GPIO_OSPEEDR_OSPEED0_0 /*!< Select I/O medium output speed */
#define LL_GPIO_SPEED_FREQ_HIGH GPIO_OSPEEDR_OSPEED0_1 /*!< Select I/O fast output speed */
#define LL_GPIO_SPEED_FREQ_VERY_HIGH GPIO_OSPEEDR_OSPEED0 /*!< Select I/O high output speed */
/**
* @}
*/
/** @defgroup GPIO_LL_EC_PULL Pull Up Pull Down
* @{
*/
#define LL_GPIO_PULL_NO (0x00000000U) /*!< Select I/O no pull */
#define LL_GPIO_PULL_UP GPIO_PUPDR_PUPD0_0 /*!< Select I/O pull up */
#define LL_GPIO_PULL_DOWN GPIO_PUPDR_PUPD0_1 /*!< Select I/O pull down */
/**
* @}
*/
/** @defgroup GPIO_LL_EC_AF Alternate Function
* @{
*/
#define LL_GPIO_AF_0 (0x0000000U) /*!< Select alternate function 0 */
#define LL_GPIO_AF_1 (0x0000001U) /*!< Select alternate function 1 */
#define LL_GPIO_AF_2 (0x0000002U) /*!< Select alternate function 2 */
#define LL_GPIO_AF_3 (0x0000003U) /*!< Select alternate function 3 */
#define LL_GPIO_AF_4 (0x0000004U) /*!< Select alternate function 4 */
#define LL_GPIO_AF_5 (0x0000005U) /*!< Select alternate function 5 */
#define LL_GPIO_AF_6 (0x0000006U) /*!< Select alternate function 6 */
#define LL_GPIO_AF_7 (0x0000007U) /*!< Select alternate function 7 */
#define LL_GPIO_AF_8 (0x0000008U) /*!< Select alternate function 8 */
#define LL_GPIO_AF_9 (0x0000009U) /*!< Select alternate function 9 */
#define LL_GPIO_AF_10 (0x000000AU) /*!< Select alternate function 10 */
#define LL_GPIO_AF_11 (0x000000BU) /*!< Select alternate function 11 */
#define LL_GPIO_AF_12 (0x000000CU) /*!< Select alternate function 12 */
#define LL_GPIO_AF_13 (0x000000DU) /*!< Select alternate function 13 */
#define LL_GPIO_AF_14 (0x000000EU) /*!< Select alternate function 14 */
#define LL_GPIO_AF_15 (0x000000FU) /*!< Select alternate function 15 */
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/** @defgroup GPIO_LL_Exported_Macros GPIO Exported Macros
* @{
*/
/** @defgroup GPIO_LL_EM_WRITE_READ Common Write and read registers Macros
* @{
*/
/**
* @brief Write a value in GPIO register
* @param __INSTANCE__ GPIO Instance
* @param __REG__ Register to be written
* @param __VALUE__ Value to be written in the register
* @retval None
*/
#define LL_GPIO_WriteReg(__INSTANCE__, __REG__, __VALUE__) WRITE_REG(__INSTANCE__->__REG__, (__VALUE__))
/**
* @brief Read a value in GPIO register
* @param __INSTANCE__ GPIO Instance
* @param __REG__ Register to be read
* @retval Register value
*/
#define LL_GPIO_ReadReg(__INSTANCE__, __REG__) READ_REG(__INSTANCE__->__REG__)
/**
* @}
*/
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup GPIO_LL_Exported_Functions GPIO Exported Functions
* @{
*/
/** @defgroup GPIO_LL_EF_Port_Configuration Port Configuration
* @{
*/
/**
* @brief Configure gpio mode for a dedicated pin on dedicated port.
* @note I/O mode can be Input mode, General purpose output, Alternate function mode or Analog.
* @note Warning: only one pin can be passed as parameter.
* @rmtoll MODER MODEy LL_GPIO_SetPinMode
* @param GPIOx GPIO Port
* @param Pin This parameter can be one of the following values:
* @arg @ref LL_GPIO_PIN_0
* @arg @ref LL_GPIO_PIN_1
* @arg @ref LL_GPIO_PIN_2
* @arg @ref LL_GPIO_PIN_3
* @arg @ref LL_GPIO_PIN_4
* @arg @ref LL_GPIO_PIN_5
* @arg @ref LL_GPIO_PIN_6
* @arg @ref LL_GPIO_PIN_7
* @arg @ref LL_GPIO_PIN_8
* @arg @ref LL_GPIO_PIN_9
* @arg @ref LL_GPIO_PIN_10
* @arg @ref LL_GPIO_PIN_11
* @arg @ref LL_GPIO_PIN_12
* @arg @ref LL_GPIO_PIN_13
* @arg @ref LL_GPIO_PIN_14
* @arg @ref LL_GPIO_PIN_15
* @param Mode This parameter can be one of the following values:
* @arg @ref LL_GPIO_MODE_INPUT
* @arg @ref LL_GPIO_MODE_OUTPUT
* @arg @ref LL_GPIO_MODE_ALTERNATE
* @arg @ref LL_GPIO_MODE_ANALOG
* @retval None
*/
__STATIC_INLINE void LL_GPIO_SetPinMode(GPIO_TypeDef *GPIOx, uint32_t Pin, uint32_t Mode)
{
MODIFY_REG(GPIOx->MODER, (GPIO_MODER_MODE0 << (POSITION_VAL(Pin) * 2U)), (Mode << (POSITION_VAL(Pin) * 2U)));
}
/**
* @brief Return gpio mode for a dedicated pin on dedicated port.
* @note I/O mode can be Input mode, General purpose output, Alternate function mode or Analog.
* @note Warning: only one pin can be passed as parameter.
* @rmtoll MODER MODEy LL_GPIO_GetPinMode
* @param GPIOx GPIO Port
* @param Pin This parameter can be one of the following values:
* @arg @ref LL_GPIO_PIN_0
* @arg @ref LL_GPIO_PIN_1
* @arg @ref LL_GPIO_PIN_2
* @arg @ref LL_GPIO_PIN_3
* @arg @ref LL_GPIO_PIN_4
* @arg @ref LL_GPIO_PIN_5
* @arg @ref LL_GPIO_PIN_6
* @arg @ref LL_GPIO_PIN_7
* @arg @ref LL_GPIO_PIN_8
* @arg @ref LL_GPIO_PIN_9
* @arg @ref LL_GPIO_PIN_10
* @arg @ref LL_GPIO_PIN_11
* @arg @ref LL_GPIO_PIN_12
* @arg @ref LL_GPIO_PIN_13
* @arg @ref LL_GPIO_PIN_14
* @arg @ref LL_GPIO_PIN_15
* @retval Returned value can be one of the following values:
* @arg @ref LL_GPIO_MODE_INPUT
* @arg @ref LL_GPIO_MODE_OUTPUT
* @arg @ref LL_GPIO_MODE_ALTERNATE
* @arg @ref LL_GPIO_MODE_ANALOG
*/
__STATIC_INLINE uint32_t LL_GPIO_GetPinMode(GPIO_TypeDef *GPIOx, uint32_t Pin)
{
return (uint32_t)(READ_BIT(GPIOx->MODER,
(GPIO_MODER_MODE0 << (POSITION_VAL(Pin) * 2U))) >> (POSITION_VAL(Pin) * 2U));
}
/**
* @brief Configure gpio output type for several pins on dedicated port.
* @note Output type as to be set when gpio pin is in output or
* alternate modes. Possible type are Push-pull or Open-drain.
* @rmtoll OTYPER OTy LL_GPIO_SetPinOutputType
* @param GPIOx GPIO Port
* @param PinMask This parameter can be a combination of the following values:
* @arg @ref LL_GPIO_PIN_0
* @arg @ref LL_GPIO_PIN_1
* @arg @ref LL_GPIO_PIN_2
* @arg @ref LL_GPIO_PIN_3
* @arg @ref LL_GPIO_PIN_4
* @arg @ref LL_GPIO_PIN_5
* @arg @ref LL_GPIO_PIN_6
* @arg @ref LL_GPIO_PIN_7
* @arg @ref LL_GPIO_PIN_8
* @arg @ref LL_GPIO_PIN_9
* @arg @ref LL_GPIO_PIN_10
* @arg @ref LL_GPIO_PIN_11
* @arg @ref LL_GPIO_PIN_12
* @arg @ref LL_GPIO_PIN_13
* @arg @ref LL_GPIO_PIN_14
* @arg @ref LL_GPIO_PIN_15
* @arg @ref LL_GPIO_PIN_ALL
* @param OutputType This parameter can be one of the following values:
* @arg @ref LL_GPIO_OUTPUT_PUSHPULL
* @arg @ref LL_GPIO_OUTPUT_OPENDRAIN
* @retval None
*/
__STATIC_INLINE void LL_GPIO_SetPinOutputType(GPIO_TypeDef *GPIOx, uint32_t PinMask, uint32_t OutputType)
{
MODIFY_REG(GPIOx->OTYPER, PinMask, (PinMask * OutputType));
}
/**
* @brief Return gpio output type for several pins on dedicated port.
* @note Output type as to be set when gpio pin is in output or
* alternate modes. Possible type are Push-pull or Open-drain.
* @note Warning: only one pin can be passed as parameter.
* @rmtoll OTYPER OTy LL_GPIO_GetPinOutputType
* @param GPIOx GPIO Port
* @param Pin This parameter can be one of the following values:
* @arg @ref LL_GPIO_PIN_0
* @arg @ref LL_GPIO_PIN_1
* @arg @ref LL_GPIO_PIN_2
* @arg @ref LL_GPIO_PIN_3
* @arg @ref LL_GPIO_PIN_4
* @arg @ref LL_GPIO_PIN_5
* @arg @ref LL_GPIO_PIN_6
* @arg @ref LL_GPIO_PIN_7
* @arg @ref LL_GPIO_PIN_8
* @arg @ref LL_GPIO_PIN_9
* @arg @ref LL_GPIO_PIN_10
* @arg @ref LL_GPIO_PIN_11
* @arg @ref LL_GPIO_PIN_12
* @arg @ref LL_GPIO_PIN_13
* @arg @ref LL_GPIO_PIN_14
* @arg @ref LL_GPIO_PIN_15
* @arg @ref LL_GPIO_PIN_ALL
* @retval Returned value can be one of the following values:
* @arg @ref LL_GPIO_OUTPUT_PUSHPULL
* @arg @ref LL_GPIO_OUTPUT_OPENDRAIN
*/
__STATIC_INLINE uint32_t LL_GPIO_GetPinOutputType(GPIO_TypeDef *GPIOx, uint32_t Pin)
{
return (uint32_t)(READ_BIT(GPIOx->OTYPER, Pin) >> POSITION_VAL(Pin));
}
/**
* @brief Configure gpio speed for a dedicated pin on dedicated port.
* @note I/O speed can be Low, Medium, Fast or High speed.
* @note Warning: only one pin can be passed as parameter.
* @note Refer to datasheet for frequency specifications and the power
* supply and load conditions for each speed.
* @rmtoll OSPEEDR OSPEEDy LL_GPIO_SetPinSpeed
* @param GPIOx GPIO Port
* @param Pin This parameter can be one of the following values:
* @arg @ref LL_GPIO_PIN_0
* @arg @ref LL_GPIO_PIN_1
* @arg @ref LL_GPIO_PIN_2
* @arg @ref LL_GPIO_PIN_3
* @arg @ref LL_GPIO_PIN_4
* @arg @ref LL_GPIO_PIN_5
* @arg @ref LL_GPIO_PIN_6
* @arg @ref LL_GPIO_PIN_7
* @arg @ref LL_GPIO_PIN_8
* @arg @ref LL_GPIO_PIN_9
* @arg @ref LL_GPIO_PIN_10
* @arg @ref LL_GPIO_PIN_11
* @arg @ref LL_GPIO_PIN_12
* @arg @ref LL_GPIO_PIN_13
* @arg @ref LL_GPIO_PIN_14
* @arg @ref LL_GPIO_PIN_15
* @param Speed This parameter can be one of the following values:
* @arg @ref LL_GPIO_SPEED_FREQ_LOW
* @arg @ref LL_GPIO_SPEED_FREQ_MEDIUM
* @arg @ref LL_GPIO_SPEED_FREQ_HIGH
* @arg @ref LL_GPIO_SPEED_FREQ_VERY_HIGH
* @retval None
*/
__STATIC_INLINE void LL_GPIO_SetPinSpeed(GPIO_TypeDef *GPIOx, uint32_t Pin, uint32_t Speed)
{
MODIFY_REG(GPIOx->OSPEEDR, (GPIO_OSPEEDR_OSPEED0 << (POSITION_VAL(Pin) * 2U)),
(Speed << (POSITION_VAL(Pin) * 2U)));
}
/**
* @brief Return gpio speed for a dedicated pin on dedicated port.
* @note I/O speed can be Low, Medium, Fast or High speed.
* @note Warning: only one pin can be passed as parameter.
* @note Refer to datasheet for frequency specifications and the power
* supply and load conditions for each speed.
* @rmtoll OSPEEDR OSPEEDy LL_GPIO_GetPinSpeed
* @param GPIOx GPIO Port
* @param Pin This parameter can be one of the following values:
* @arg @ref LL_GPIO_PIN_0
* @arg @ref LL_GPIO_PIN_1
* @arg @ref LL_GPIO_PIN_2
* @arg @ref LL_GPIO_PIN_3
* @arg @ref LL_GPIO_PIN_4
* @arg @ref LL_GPIO_PIN_5
* @arg @ref LL_GPIO_PIN_6
* @arg @ref LL_GPIO_PIN_7
* @arg @ref LL_GPIO_PIN_8
* @arg @ref LL_GPIO_PIN_9
* @arg @ref LL_GPIO_PIN_10
* @arg @ref LL_GPIO_PIN_11
* @arg @ref LL_GPIO_PIN_12
* @arg @ref LL_GPIO_PIN_13
* @arg @ref LL_GPIO_PIN_14
* @arg @ref LL_GPIO_PIN_15
* @retval Returned value can be one of the following values:
* @arg @ref LL_GPIO_SPEED_FREQ_LOW
* @arg @ref LL_GPIO_SPEED_FREQ_MEDIUM
* @arg @ref LL_GPIO_SPEED_FREQ_HIGH
* @arg @ref LL_GPIO_SPEED_FREQ_VERY_HIGH
*/
__STATIC_INLINE uint32_t LL_GPIO_GetPinSpeed(GPIO_TypeDef *GPIOx, uint32_t Pin)
{
return (uint32_t)(READ_BIT(GPIOx->OSPEEDR,
(GPIO_OSPEEDR_OSPEED0 << (POSITION_VAL(Pin) * 2U))) >> (POSITION_VAL(Pin) * 2U));
}
/**
* @brief Configure gpio pull-up or pull-down for a dedicated pin on a dedicated port.
* @note Warning: only one pin can be passed as parameter.
* @rmtoll PUPDR PUPDy LL_GPIO_SetPinPull
* @param GPIOx GPIO Port
* @param Pin This parameter can be one of the following values:
* @arg @ref LL_GPIO_PIN_0
* @arg @ref LL_GPIO_PIN_1
* @arg @ref LL_GPIO_PIN_2
* @arg @ref LL_GPIO_PIN_3
* @arg @ref LL_GPIO_PIN_4
* @arg @ref LL_GPIO_PIN_5
* @arg @ref LL_GPIO_PIN_6
* @arg @ref LL_GPIO_PIN_7
* @arg @ref LL_GPIO_PIN_8
* @arg @ref LL_GPIO_PIN_9
* @arg @ref LL_GPIO_PIN_10
* @arg @ref LL_GPIO_PIN_11
* @arg @ref LL_GPIO_PIN_12
* @arg @ref LL_GPIO_PIN_13
* @arg @ref LL_GPIO_PIN_14
* @arg @ref LL_GPIO_PIN_15
* @param Pull This parameter can be one of the following values:
* @arg @ref LL_GPIO_PULL_NO
* @arg @ref LL_GPIO_PULL_UP
* @arg @ref LL_GPIO_PULL_DOWN
* @retval None
*/
__STATIC_INLINE void LL_GPIO_SetPinPull(GPIO_TypeDef *GPIOx, uint32_t Pin, uint32_t Pull)
{
MODIFY_REG(GPIOx->PUPDR, (GPIO_PUPDR_PUPD0 << (POSITION_VAL(Pin) * 2U)), (Pull << (POSITION_VAL(Pin) * 2U)));
}
/**
* @brief Return gpio pull-up or pull-down for a dedicated pin on a dedicated port
* @note Warning: only one pin can be passed as parameter.
* @rmtoll PUPDR PUPDy LL_GPIO_GetPinPull
* @param GPIOx GPIO Port
* @param Pin This parameter can be one of the following values:
* @arg @ref LL_GPIO_PIN_0
* @arg @ref LL_GPIO_PIN_1
* @arg @ref LL_GPIO_PIN_2
* @arg @ref LL_GPIO_PIN_3
* @arg @ref LL_GPIO_PIN_4
* @arg @ref LL_GPIO_PIN_5
* @arg @ref LL_GPIO_PIN_6
* @arg @ref LL_GPIO_PIN_7
* @arg @ref LL_GPIO_PIN_8
* @arg @ref LL_GPIO_PIN_9
* @arg @ref LL_GPIO_PIN_10
* @arg @ref LL_GPIO_PIN_11
* @arg @ref LL_GPIO_PIN_12
* @arg @ref LL_GPIO_PIN_13
* @arg @ref LL_GPIO_PIN_14
* @arg @ref LL_GPIO_PIN_15
* @retval Returned value can be one of the following values:
* @arg @ref LL_GPIO_PULL_NO
* @arg @ref LL_GPIO_PULL_UP
* @arg @ref LL_GPIO_PULL_DOWN
*/
__STATIC_INLINE uint32_t LL_GPIO_GetPinPull(GPIO_TypeDef *GPIOx, uint32_t Pin)
{
return (uint32_t)(READ_BIT(GPIOx->PUPDR,
(GPIO_PUPDR_PUPD0 << (POSITION_VAL(Pin) * 2U))) >> (POSITION_VAL(Pin) * 2U));
}
/**
* @brief Configure gpio alternate function of a dedicated pin from 0 to 7 for a dedicated port.
* @note Possible values are from AF0 to AF15 depending on target.
* @note Warning: only one pin can be passed as parameter.
* @rmtoll AFRL AFSELy LL_GPIO_SetAFPin_0_7
* @param GPIOx GPIO Port
* @param Pin This parameter can be one of the following values:
* @arg @ref LL_GPIO_PIN_0
* @arg @ref LL_GPIO_PIN_1
* @arg @ref LL_GPIO_PIN_2
* @arg @ref LL_GPIO_PIN_3
* @arg @ref LL_GPIO_PIN_4
* @arg @ref LL_GPIO_PIN_5
* @arg @ref LL_GPIO_PIN_6
* @arg @ref LL_GPIO_PIN_7
* @param Alternate This parameter can be one of the following values:
* @arg @ref LL_GPIO_AF_0
* @arg @ref LL_GPIO_AF_1
* @arg @ref LL_GPIO_AF_2
* @arg @ref LL_GPIO_AF_3
* @arg @ref LL_GPIO_AF_4
* @arg @ref LL_GPIO_AF_5
* @arg @ref LL_GPIO_AF_6
* @arg @ref LL_GPIO_AF_7
* @arg @ref LL_GPIO_AF_8
* @arg @ref LL_GPIO_AF_9
* @arg @ref LL_GPIO_AF_10
* @arg @ref LL_GPIO_AF_11
* @arg @ref LL_GPIO_AF_12
* @arg @ref LL_GPIO_AF_13
* @arg @ref LL_GPIO_AF_14
* @arg @ref LL_GPIO_AF_15
* @retval None
*/
__STATIC_INLINE void LL_GPIO_SetAFPin_0_7(GPIO_TypeDef *GPIOx, uint32_t Pin, uint32_t Alternate)
{
MODIFY_REG(GPIOx->AFR[0], (GPIO_AFRL_AFSEL0 << (POSITION_VAL(Pin) * 4U)),
(Alternate << (POSITION_VAL(Pin) * 4U)));
}
/**
* @brief Return gpio alternate function of a dedicated pin from 0 to 7 for a dedicated port.
* @rmtoll AFRL AFSELy LL_GPIO_GetAFPin_0_7
* @param GPIOx GPIO Port
* @param Pin This parameter can be one of the following values:
* @arg @ref LL_GPIO_PIN_0
* @arg @ref LL_GPIO_PIN_1
* @arg @ref LL_GPIO_PIN_2
* @arg @ref LL_GPIO_PIN_3
* @arg @ref LL_GPIO_PIN_4
* @arg @ref LL_GPIO_PIN_5
* @arg @ref LL_GPIO_PIN_6
* @arg @ref LL_GPIO_PIN_7
* @retval Returned value can be one of the following values:
* @arg @ref LL_GPIO_AF_0
* @arg @ref LL_GPIO_AF_1
* @arg @ref LL_GPIO_AF_2
* @arg @ref LL_GPIO_AF_3
* @arg @ref LL_GPIO_AF_4
* @arg @ref LL_GPIO_AF_5
* @arg @ref LL_GPIO_AF_6
* @arg @ref LL_GPIO_AF_7
* @arg @ref LL_GPIO_AF_8
* @arg @ref LL_GPIO_AF_9
* @arg @ref LL_GPIO_AF_10
* @arg @ref LL_GPIO_AF_11
* @arg @ref LL_GPIO_AF_12
* @arg @ref LL_GPIO_AF_13
* @arg @ref LL_GPIO_AF_14
* @arg @ref LL_GPIO_AF_15
*/
__STATIC_INLINE uint32_t LL_GPIO_GetAFPin_0_7(GPIO_TypeDef *GPIOx, uint32_t Pin)
{
return (uint32_t)(READ_BIT(GPIOx->AFR[0],
(GPIO_AFRL_AFSEL0 << (POSITION_VAL(Pin) * 4U))) >> (POSITION_VAL(Pin) * 4U));
}
/**
* @brief Configure gpio alternate function of a dedicated pin from 8 to 15 for a dedicated port.
* @note Possible values are from AF0 to AF15 depending on target.
* @note Warning: only one pin can be passed as parameter.
* @rmtoll AFRH AFSELy LL_GPIO_SetAFPin_8_15
* @param GPIOx GPIO Port
* @param Pin This parameter can be one of the following values:
* @arg @ref LL_GPIO_PIN_8
* @arg @ref LL_GPIO_PIN_9
* @arg @ref LL_GPIO_PIN_10
* @arg @ref LL_GPIO_PIN_11
* @arg @ref LL_GPIO_PIN_12
* @arg @ref LL_GPIO_PIN_13
* @arg @ref LL_GPIO_PIN_14
* @arg @ref LL_GPIO_PIN_15
* @param Alternate This parameter can be one of the following values:
* @arg @ref LL_GPIO_AF_0
* @arg @ref LL_GPIO_AF_1
* @arg @ref LL_GPIO_AF_2
* @arg @ref LL_GPIO_AF_3
* @arg @ref LL_GPIO_AF_4
* @arg @ref LL_GPIO_AF_5
* @arg @ref LL_GPIO_AF_6
* @arg @ref LL_GPIO_AF_7
* @arg @ref LL_GPIO_AF_8
* @arg @ref LL_GPIO_AF_9
* @arg @ref LL_GPIO_AF_10
* @arg @ref LL_GPIO_AF_11
* @arg @ref LL_GPIO_AF_12
* @arg @ref LL_GPIO_AF_13
* @arg @ref LL_GPIO_AF_14
* @arg @ref LL_GPIO_AF_15
* @retval None
*/
__STATIC_INLINE void LL_GPIO_SetAFPin_8_15(GPIO_TypeDef *GPIOx, uint32_t Pin, uint32_t Alternate)
{
MODIFY_REG(GPIOx->AFR[1], (GPIO_AFRH_AFSEL8 << (POSITION_VAL(Pin >> 8U) * 4U)),
(Alternate << (POSITION_VAL(Pin >> 8U) * 4U)));
}
/**
* @brief Return gpio alternate function of a dedicated pin from 8 to 15 for a dedicated port.
* @note Possible values are from AF0 to AF15 depending on target.
* @rmtoll AFRH AFSELy LL_GPIO_GetAFPin_8_15
* @param GPIOx GPIO Port
* @param Pin This parameter can be one of the following values:
* @arg @ref LL_GPIO_PIN_8
* @arg @ref LL_GPIO_PIN_9
* @arg @ref LL_GPIO_PIN_10
* @arg @ref LL_GPIO_PIN_11
* @arg @ref LL_GPIO_PIN_12
* @arg @ref LL_GPIO_PIN_13
* @arg @ref LL_GPIO_PIN_14
* @arg @ref LL_GPIO_PIN_15
* @retval Returned value can be one of the following values:
* @arg @ref LL_GPIO_AF_0
* @arg @ref LL_GPIO_AF_1
* @arg @ref LL_GPIO_AF_2
* @arg @ref LL_GPIO_AF_3
* @arg @ref LL_GPIO_AF_4
* @arg @ref LL_GPIO_AF_5
* @arg @ref LL_GPIO_AF_6
* @arg @ref LL_GPIO_AF_7
* @arg @ref LL_GPIO_AF_8
* @arg @ref LL_GPIO_AF_9
* @arg @ref LL_GPIO_AF_10
* @arg @ref LL_GPIO_AF_11
* @arg @ref LL_GPIO_AF_12
* @arg @ref LL_GPIO_AF_13
* @arg @ref LL_GPIO_AF_14
* @arg @ref LL_GPIO_AF_15
*/
__STATIC_INLINE uint32_t LL_GPIO_GetAFPin_8_15(GPIO_TypeDef *GPIOx, uint32_t Pin)
{
return (uint32_t)(READ_BIT(GPIOx->AFR[1],
(GPIO_AFRH_AFSEL8 << (POSITION_VAL(Pin >> 8U) * 4U))) >> (POSITION_VAL(Pin >> 8U) * 4U));
}
/**
* @brief Lock configuration of several pins for a dedicated port.
* @note When the lock sequence has been applied on a port bit, the
* value of this port bit can no longer be modified until the
* next reset.
* @note Each lock bit freezes a specific configuration register
* (control and alternate function registers).
* @rmtoll LCKR LCKK LL_GPIO_LockPin
* @param GPIOx GPIO Port
* @param PinMask This parameter can be a combination of the following values:
* @arg @ref LL_GPIO_PIN_0
* @arg @ref LL_GPIO_PIN_1
* @arg @ref LL_GPIO_PIN_2
* @arg @ref LL_GPIO_PIN_3
* @arg @ref LL_GPIO_PIN_4
* @arg @ref LL_GPIO_PIN_5
* @arg @ref LL_GPIO_PIN_6
* @arg @ref LL_GPIO_PIN_7
* @arg @ref LL_GPIO_PIN_8
* @arg @ref LL_GPIO_PIN_9
* @arg @ref LL_GPIO_PIN_10
* @arg @ref LL_GPIO_PIN_11
* @arg @ref LL_GPIO_PIN_12
* @arg @ref LL_GPIO_PIN_13
* @arg @ref LL_GPIO_PIN_14
* @arg @ref LL_GPIO_PIN_15
* @arg @ref LL_GPIO_PIN_ALL
* @retval None
*/
__STATIC_INLINE void LL_GPIO_LockPin(GPIO_TypeDef *GPIOx, uint32_t PinMask)
{
__IO uint32_t temp;
WRITE_REG(GPIOx->LCKR, GPIO_LCKR_LCKK | PinMask);
WRITE_REG(GPIOx->LCKR, PinMask);
WRITE_REG(GPIOx->LCKR, GPIO_LCKR_LCKK | PinMask);
/* Read LCKK register. This read is mandatory to complete key lock sequence */
temp = READ_REG(GPIOx->LCKR);
(void) temp;
}
/**
* @brief Return 1 if all pins passed as parameter, of a dedicated port, are locked. else Return 0.
* @rmtoll LCKR LCKy LL_GPIO_IsPinLocked
* @param GPIOx GPIO Port
* @param PinMask This parameter can be a combination of the following values:
* @arg @ref LL_GPIO_PIN_0
* @arg @ref LL_GPIO_PIN_1
* @arg @ref LL_GPIO_PIN_2
* @arg @ref LL_GPIO_PIN_3
* @arg @ref LL_GPIO_PIN_4
* @arg @ref LL_GPIO_PIN_5
* @arg @ref LL_GPIO_PIN_6
* @arg @ref LL_GPIO_PIN_7
* @arg @ref LL_GPIO_PIN_8
* @arg @ref LL_GPIO_PIN_9
* @arg @ref LL_GPIO_PIN_10
* @arg @ref LL_GPIO_PIN_11
* @arg @ref LL_GPIO_PIN_12
* @arg @ref LL_GPIO_PIN_13
* @arg @ref LL_GPIO_PIN_14
* @arg @ref LL_GPIO_PIN_15
* @arg @ref LL_GPIO_PIN_ALL
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_GPIO_IsPinLocked(GPIO_TypeDef *GPIOx, uint32_t PinMask)
{
return ((READ_BIT(GPIOx->LCKR, PinMask) == (PinMask)) ? 1UL : 0UL);
}
/**
* @brief Return 1 if one of the pin of a dedicated port is locked. else return 0.
* @rmtoll LCKR LCKK LL_GPIO_IsAnyPinLocked
* @param GPIOx GPIO Port
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_GPIO_IsAnyPinLocked(GPIO_TypeDef *GPIOx)
{
return ((READ_BIT(GPIOx->LCKR, GPIO_LCKR_LCKK) == (GPIO_LCKR_LCKK)) ? 1UL : 0UL);
}
/**
* @}
*/
/** @defgroup GPIO_LL_EF_Data_Access Data Access
* @{
*/
/**
* @brief Return full input data register value for a dedicated port.
* @rmtoll IDR IDy LL_GPIO_ReadInputPort
* @param GPIOx GPIO Port
* @retval Input data register value of port
*/
__STATIC_INLINE uint32_t LL_GPIO_ReadInputPort(GPIO_TypeDef *GPIOx)
{
return (uint32_t)(READ_REG(GPIOx->IDR));
}
/**
* @brief Return if input data level for several pins of dedicated port is high or low.
* @rmtoll IDR IDy LL_GPIO_IsInputPinSet
* @param GPIOx GPIO Port
* @param PinMask This parameter can be a combination of the following values:
* @arg @ref LL_GPIO_PIN_0
* @arg @ref LL_GPIO_PIN_1
* @arg @ref LL_GPIO_PIN_2
* @arg @ref LL_GPIO_PIN_3
* @arg @ref LL_GPIO_PIN_4
* @arg @ref LL_GPIO_PIN_5
* @arg @ref LL_GPIO_PIN_6
* @arg @ref LL_GPIO_PIN_7
* @arg @ref LL_GPIO_PIN_8
* @arg @ref LL_GPIO_PIN_9
* @arg @ref LL_GPIO_PIN_10
* @arg @ref LL_GPIO_PIN_11
* @arg @ref LL_GPIO_PIN_12
* @arg @ref LL_GPIO_PIN_13
* @arg @ref LL_GPIO_PIN_14
* @arg @ref LL_GPIO_PIN_15
* @arg @ref LL_GPIO_PIN_ALL
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_GPIO_IsInputPinSet(GPIO_TypeDef *GPIOx, uint32_t PinMask)
{
return ((READ_BIT(GPIOx->IDR, PinMask) == (PinMask)) ? 1UL : 0UL);
}
/**
* @brief Write output data register for the port.
* @rmtoll ODR ODy LL_GPIO_WriteOutputPort
* @param GPIOx GPIO Port
* @param PortValue Level value for each pin of the port
* @retval None
*/
__STATIC_INLINE void LL_GPIO_WriteOutputPort(GPIO_TypeDef *GPIOx, uint32_t PortValue)
{
WRITE_REG(GPIOx->ODR, PortValue);
}
/**
* @brief Return full output data register value for a dedicated port.
* @rmtoll ODR ODy LL_GPIO_ReadOutputPort
* @param GPIOx GPIO Port
* @retval Output data register value of port
*/
__STATIC_INLINE uint32_t LL_GPIO_ReadOutputPort(GPIO_TypeDef *GPIOx)
{
return (uint32_t)(READ_REG(GPIOx->ODR));
}
/**
* @brief Return if input data level for several pins of dedicated port is high or low.
* @rmtoll ODR ODy LL_GPIO_IsOutputPinSet
* @param GPIOx GPIO Port
* @param PinMask This parameter can be a combination of the following values:
* @arg @ref LL_GPIO_PIN_0
* @arg @ref LL_GPIO_PIN_1
* @arg @ref LL_GPIO_PIN_2
* @arg @ref LL_GPIO_PIN_3
* @arg @ref LL_GPIO_PIN_4
* @arg @ref LL_GPIO_PIN_5
* @arg @ref LL_GPIO_PIN_6
* @arg @ref LL_GPIO_PIN_7
* @arg @ref LL_GPIO_PIN_8
* @arg @ref LL_GPIO_PIN_9
* @arg @ref LL_GPIO_PIN_10
* @arg @ref LL_GPIO_PIN_11
* @arg @ref LL_GPIO_PIN_12
* @arg @ref LL_GPIO_PIN_13
* @arg @ref LL_GPIO_PIN_14
* @arg @ref LL_GPIO_PIN_15
* @arg @ref LL_GPIO_PIN_ALL
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_GPIO_IsOutputPinSet(GPIO_TypeDef *GPIOx, uint32_t PinMask)
{
return ((READ_BIT(GPIOx->ODR, PinMask) == (PinMask)) ? 1UL : 0UL);
}
/**
* @brief Set several pins to high level on dedicated gpio port.
* @rmtoll BSRR BSy LL_GPIO_SetOutputPin
* @param GPIOx GPIO Port
* @param PinMask This parameter can be a combination of the following values:
* @arg @ref LL_GPIO_PIN_0
* @arg @ref LL_GPIO_PIN_1
* @arg @ref LL_GPIO_PIN_2
* @arg @ref LL_GPIO_PIN_3
* @arg @ref LL_GPIO_PIN_4
* @arg @ref LL_GPIO_PIN_5
* @arg @ref LL_GPIO_PIN_6
* @arg @ref LL_GPIO_PIN_7
* @arg @ref LL_GPIO_PIN_8
* @arg @ref LL_GPIO_PIN_9
* @arg @ref LL_GPIO_PIN_10
* @arg @ref LL_GPIO_PIN_11
* @arg @ref LL_GPIO_PIN_12
* @arg @ref LL_GPIO_PIN_13
* @arg @ref LL_GPIO_PIN_14
* @arg @ref LL_GPIO_PIN_15
* @arg @ref LL_GPIO_PIN_ALL
* @retval None
*/
__STATIC_INLINE void LL_GPIO_SetOutputPin(GPIO_TypeDef *GPIOx, uint32_t PinMask)
{
WRITE_REG(GPIOx->BSRR, PinMask);
}
/**
* @brief Set several pins to low level on dedicated gpio port.
* @rmtoll BRR BRy LL_GPIO_ResetOutputPin
* @param GPIOx GPIO Port
* @param PinMask This parameter can be a combination of the following values:
* @arg @ref LL_GPIO_PIN_0
* @arg @ref LL_GPIO_PIN_1
* @arg @ref LL_GPIO_PIN_2
* @arg @ref LL_GPIO_PIN_3
* @arg @ref LL_GPIO_PIN_4
* @arg @ref LL_GPIO_PIN_5
* @arg @ref LL_GPIO_PIN_6
* @arg @ref LL_GPIO_PIN_7
* @arg @ref LL_GPIO_PIN_8
* @arg @ref LL_GPIO_PIN_9
* @arg @ref LL_GPIO_PIN_10
* @arg @ref LL_GPIO_PIN_11
* @arg @ref LL_GPIO_PIN_12
* @arg @ref LL_GPIO_PIN_13
* @arg @ref LL_GPIO_PIN_14
* @arg @ref LL_GPIO_PIN_15
* @arg @ref LL_GPIO_PIN_ALL
* @retval None
*/
__STATIC_INLINE void LL_GPIO_ResetOutputPin(GPIO_TypeDef *GPIOx, uint32_t PinMask)
{
WRITE_REG(GPIOx->BRR, PinMask);
}
/**
* @brief Toggle data value for several pin of dedicated port.
* @rmtoll ODR ODy LL_GPIO_TogglePin
* @param GPIOx GPIO Port
* @param PinMask This parameter can be a combination of the following values:
* @arg @ref LL_GPIO_PIN_0
* @arg @ref LL_GPIO_PIN_1
* @arg @ref LL_GPIO_PIN_2
* @arg @ref LL_GPIO_PIN_3
* @arg @ref LL_GPIO_PIN_4
* @arg @ref LL_GPIO_PIN_5
* @arg @ref LL_GPIO_PIN_6
* @arg @ref LL_GPIO_PIN_7
* @arg @ref LL_GPIO_PIN_8
* @arg @ref LL_GPIO_PIN_9
* @arg @ref LL_GPIO_PIN_10
* @arg @ref LL_GPIO_PIN_11
* @arg @ref LL_GPIO_PIN_12
* @arg @ref LL_GPIO_PIN_13
* @arg @ref LL_GPIO_PIN_14
* @arg @ref LL_GPIO_PIN_15
* @arg @ref LL_GPIO_PIN_ALL
* @retval None
*/
__STATIC_INLINE void LL_GPIO_TogglePin(GPIO_TypeDef *GPIOx, uint32_t PinMask)
{
uint32_t odr = READ_REG(GPIOx->ODR);
WRITE_REG(GPIOx->BSRR, ((odr & PinMask) << 16u) | (~odr & PinMask));
}
/**
* @}
*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup GPIO_LL_EF_Init Initialization and de-initialization functions
* @{
*/
ErrorStatus LL_GPIO_DeInit(GPIO_TypeDef *GPIOx);
ErrorStatus LL_GPIO_Init(GPIO_TypeDef *GPIOx, LL_GPIO_InitTypeDef *GPIO_InitStruct);
void LL_GPIO_StructInit(LL_GPIO_InitTypeDef *GPIO_InitStruct);
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */
/**
* @}
*/
/**
* @}
*/
#endif /* defined (GPIOA) || defined (GPIOB) || defined (GPIOC) || defined (GPIOD) || defined (GPIOE) || defined (GPIOH) */
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* STM32WBxx_LL_GPIO_H */

View File

@@ -0,0 +1,880 @@
/**
******************************************************************************
* @file stm32wbxx_ll_hsem.h
* @author MCD Application Team
* @brief Header file of HSEM LL module.
******************************************************************************
* @attention
*
* Copyright (c) 2019 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef STM32WBxx_LL_HSEM_H
#define STM32WBxx_LL_HSEM_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32wbxx.h"
/** @addtogroup STM32WBxx_LL_Driver
* @{
*/
#if defined(HSEM)
/** @defgroup HSEM_LL HSEM
* @{
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/* Private macros ------------------------------------------------------------*/
/* Exported types ------------------------------------------------------------*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup HSEM_LL_Exported_Constants HSEM Exported Constants
* @{
*/
/** @defgroup HSEM_LL_EC_COREID COREID Defines
* @{
*/
#define LL_HSEM_COREID_NONE 0U
#define LL_HSEM_COREID_CPU1 HSEM_CR_COREID_CPU1
#define LL_HSEM_COREID_CPU2 HSEM_CR_COREID_CPU2
#define LL_HSEM_COREID HSEM_CR_COREID_CURRENT
/**
* @}
*/
/** @defgroup HSEM_LL_EC_GET_FLAG Get Flags Defines
* @brief Flags defines which can be used with LL_HSEM_ReadReg function
* @{
*/
#define LL_HSEM_SEMAPHORE_0 HSEM_C1IER_ISE0
#define LL_HSEM_SEMAPHORE_1 HSEM_C1IER_ISE1
#define LL_HSEM_SEMAPHORE_2 HSEM_C1IER_ISE2
#define LL_HSEM_SEMAPHORE_3 HSEM_C1IER_ISE3
#define LL_HSEM_SEMAPHORE_4 HSEM_C1IER_ISE4
#define LL_HSEM_SEMAPHORE_5 HSEM_C1IER_ISE5
#define LL_HSEM_SEMAPHORE_6 HSEM_C1IER_ISE6
#define LL_HSEM_SEMAPHORE_7 HSEM_C1IER_ISE7
#define LL_HSEM_SEMAPHORE_8 HSEM_C1IER_ISE8
#define LL_HSEM_SEMAPHORE_9 HSEM_C1IER_ISE9
#define LL_HSEM_SEMAPHORE_10 HSEM_C1IER_ISE10
#define LL_HSEM_SEMAPHORE_11 HSEM_C1IER_ISE11
#define LL_HSEM_SEMAPHORE_12 HSEM_C1IER_ISE12
#define LL_HSEM_SEMAPHORE_13 HSEM_C1IER_ISE13
#define LL_HSEM_SEMAPHORE_14 HSEM_C1IER_ISE14
#define LL_HSEM_SEMAPHORE_15 HSEM_C1IER_ISE15
#define LL_HSEM_SEMAPHORE_16 HSEM_C1IER_ISE16
#define LL_HSEM_SEMAPHORE_17 HSEM_C1IER_ISE17
#define LL_HSEM_SEMAPHORE_18 HSEM_C1IER_ISE18
#define LL_HSEM_SEMAPHORE_19 HSEM_C1IER_ISE19
#define LL_HSEM_SEMAPHORE_20 HSEM_C1IER_ISE20
#define LL_HSEM_SEMAPHORE_21 HSEM_C1IER_ISE21
#define LL_HSEM_SEMAPHORE_22 HSEM_C1IER_ISE22
#define LL_HSEM_SEMAPHORE_23 HSEM_C1IER_ISE23
#define LL_HSEM_SEMAPHORE_24 HSEM_C1IER_ISE24
#define LL_HSEM_SEMAPHORE_25 HSEM_C1IER_ISE25
#define LL_HSEM_SEMAPHORE_26 HSEM_C1IER_ISE26
#define LL_HSEM_SEMAPHORE_27 HSEM_C1IER_ISE27
#define LL_HSEM_SEMAPHORE_28 HSEM_C1IER_ISE28
#define LL_HSEM_SEMAPHORE_29 HSEM_C1IER_ISE29
#define LL_HSEM_SEMAPHORE_30 HSEM_C1IER_ISE30
#define LL_HSEM_SEMAPHORE_31 HSEM_C1IER_ISE31
#define LL_HSEM_SEMAPHORE_ALL 0xFFFFFFFFU
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/** @defgroup HSEM_LL_Exported_Macros HSEM Exported Macros
* @{
*/
/** @defgroup HSEM_LL_EM_WRITE_READ Common Write and read registers Macros
* @{
*/
/**
* @brief Write a value in HSEM register
* @param __INSTANCE__ HSEM Instance
* @param __REG__ Register to be written
* @param __VALUE__ Value to be written in the register
* @retval None
*/
#define LL_HSEM_WriteReg(__INSTANCE__, __REG__, __VALUE__) WRITE_REG(__INSTANCE__->__REG__, (__VALUE__))
/**
* @brief Read a value in HSEM register
* @param __INSTANCE__ HSEM Instance
* @param __REG__ Register to be read
* @retval Register value
*/
#define LL_HSEM_ReadReg(__INSTANCE__, __REG__) READ_REG(__INSTANCE__->__REG__)
/**
* @}
*/
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup HSEM_LL_Exported_Functions HSEM Exported Functions
* @{
*/
/** @defgroup HSEM_LL_EF_Data_Management Data_Management
* @{
*/
/**
* @brief Return 1 if the semaphore is locked, else return 0.
* @rmtoll R LOCK LL_HSEM_IsSemaphoreLocked
* @param HSEMx HSEM Instance.
* @param Semaphore Semaphore number. Value between Min_Data=0 and Max_Data=31
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_HSEM_IsSemaphoreLocked(const HSEM_TypeDef *HSEMx, uint32_t Semaphore)
{
return ((READ_BIT(HSEMx->R[Semaphore], HSEM_R_LOCK) == (HSEM_R_LOCK_Msk)) ? 1UL : 0UL);
}
/**
* @brief Get core id.
* @rmtoll R COREID LL_HSEM_GetCoreId
* @param HSEMx HSEM Instance.
* @param Semaphore Semaphore number. Value between Min_Data=0 and Max_Data=31
* @retval Returned value can be one of the following values:
* @arg @ref LL_HSEM_COREID_NONE
* @arg @ref LL_HSEM_COREID_CPU1
* @arg @ref LL_HSEM_COREID_CPU2
*/
__STATIC_INLINE uint32_t LL_HSEM_GetCoreId(const HSEM_TypeDef *HSEMx, uint32_t Semaphore)
{
return (uint32_t)(READ_BIT(HSEMx->R[Semaphore], HSEM_R_COREID_Msk));
}
/**
* @brief Get process id.
* @rmtoll R PROCID LL_HSEM_GetProcessId
* @param HSEMx HSEM Instance.
* @param Semaphore Semaphore number. Value between Min_Data=0 and Max_Data=31
* @retval Process number. Value between Min_Data=0 and Max_Data=255
*/
__STATIC_INLINE uint32_t LL_HSEM_GetProcessId(const HSEM_TypeDef *HSEMx, uint32_t Semaphore)
{
return (uint32_t)(READ_BIT(HSEMx->R[Semaphore], HSEM_R_PROCID_Msk));
}
/**
* @brief Get the lock by writing in R register.
* @note The R register has to be read to determined if the lock is taken.
* @rmtoll R LOCK LL_HSEM_SetLock
* @rmtoll R COREID LL_HSEM_SetLock
* @rmtoll R PROCID LL_HSEM_SetLock
* @param HSEMx HSEM Instance.
* @param Semaphore Semaphore number. Value between Min_Data=0 and Max_Data=31
* @param process Process id. Value between Min_Data=0 and Max_Data=255
* @retval None
*/
__STATIC_INLINE void LL_HSEM_SetLock(HSEM_TypeDef *HSEMx, uint32_t Semaphore, uint32_t process)
{
WRITE_REG(HSEMx->R[Semaphore], (HSEM_R_LOCK | LL_HSEM_COREID | process));
}
/**
* @brief Get the lock with 2-step lock.
* @rmtoll R LOCK LL_HSEM_2StepLock
* @rmtoll R COREID LL_HSEM_2StepLock
* @rmtoll R PROCID LL_HSEM_2StepLock
* @param HSEMx HSEM Instance.
* @param Semaphore Semaphore number. Value between Min_Data=0 and Max_Data=31
* @param process Process id. Value between Min_Data=0 and Max_Data=255
* @retval 1 lock fail, 0 lock successful or already locked by same process and core
*/
__STATIC_INLINE uint32_t LL_HSEM_2StepLock(HSEM_TypeDef *HSEMx, uint32_t Semaphore, uint32_t process)
{
WRITE_REG(HSEMx->R[Semaphore], (HSEM_R_LOCK | LL_HSEM_COREID | process));
return ((HSEMx->R[Semaphore] != (HSEM_R_LOCK | LL_HSEM_COREID | process)) ? 1UL : 0UL);
}
/**
* @brief Get the lock with 1-step lock.
* @rmtoll RLR LOCK LL_HSEM_1StepLock
* @rmtoll RLR COREID LL_HSEM_1StepLock
* @rmtoll RLR PROCID LL_HSEM_1StepLock
* @param HSEMx HSEM Instance.
* @param Semaphore Semaphore number. Value between Min_Data=0 and Max_Data=31
* @retval 1 lock fail, 0 lock successful or already locked by same core
*/
__STATIC_INLINE uint32_t LL_HSEM_1StepLock(const HSEM_TypeDef *HSEMx, uint32_t Semaphore)
{
return ((HSEMx->RLR[Semaphore] != (HSEM_RLR_LOCK | LL_HSEM_COREID)) ? 1UL : 0UL);
}
/**
* @brief Release the lock of the semaphore.
* @note In case of LL_HSEM_1StepLock usage to lock a semaphore, the process is 0.
* @rmtoll R LOCK LL_HSEM_ReleaseLock
* @param HSEMx HSEM Instance.
* @param Semaphore Semaphore number. Value between Min_Data=0 and Max_Data=31
* @param process Process number. Value between Min_Data=0 and Max_Data=255
* @retval None
*/
__STATIC_INLINE void LL_HSEM_ReleaseLock(HSEM_TypeDef *HSEMx, uint32_t Semaphore, uint32_t process)
{
WRITE_REG(HSEMx->R[Semaphore], (LL_HSEM_COREID | process));
}
/**
* @brief Get the lock status of the semaphore.
* @rmtoll R LOCK LL_HSEM_GetStatus
* @param HSEMx HSEM Instance.
* @param Semaphore Semaphore number. Value between Min_Data=0 and Max_Data=31
* @retval 0 semaphore is free, 1 semaphore is locked */
__STATIC_INLINE uint32_t LL_HSEM_GetStatus(const HSEM_TypeDef *HSEMx, uint32_t Semaphore)
{
return ((HSEMx->R[Semaphore] != 0U) ? 1UL : 0UL);
}
/**
* @brief Set the key.
* @rmtoll KEYR KEY LL_HSEM_SetKey
* @param HSEMx HSEM Instance.
* @param key Key value.
* @retval None
*/
__STATIC_INLINE void LL_HSEM_SetKey(HSEM_TypeDef *HSEMx, uint32_t key)
{
WRITE_REG(HSEMx->KEYR, key << HSEM_KEYR_KEY_Pos);
}
/**
* @brief Get the key.
* @rmtoll KEYR KEY LL_HSEM_GetKey
* @param HSEMx HSEM Instance.
* @retval key to unlock all semaphore from the same core
*/
__STATIC_INLINE uint32_t LL_HSEM_GetKey(const HSEM_TypeDef *HSEMx)
{
return (uint32_t)(READ_BIT(HSEMx->KEYR, HSEM_KEYR_KEY) >> HSEM_KEYR_KEY_Pos);
}
/**
* @brief Release all semaphore with the same core id.
* @rmtoll CR KEY LL_HSEM_ResetAllLock
* @rmtoll CR SEC LL_HSEM_ResetAllLock
* @rmtoll CR PRIV LL_HSEM_ResetAllLock
* @param HSEMx HSEM Instance.
* @param key Key value.
* @param core This parameter can be one of the following values:
* @arg @ref LL_HSEM_COREID_CPU1
* @arg @ref LL_HSEM_COREID_CPU2
* @retval None
*/
__STATIC_INLINE void LL_HSEM_ResetAllLock(HSEM_TypeDef *HSEMx, uint32_t key, uint32_t core)
{
WRITE_REG(HSEMx->CR, (key << HSEM_CR_KEY_Pos) | core);
}
/**
* @}
*/
/** @defgroup HSEM_LL_EF_IT_Management IT_Management
* @{
*/
/**
* @brief Enable interrupt.
* @rmtoll C1IER ISEM LL_HSEM_EnableIT_C1IER
* @param HSEMx HSEM Instance.
* @param SemaphoreMask This parameter can be a combination of the following values:
* @arg @ref LL_HSEM_SEMAPHORE_0
* @arg @ref LL_HSEM_SEMAPHORE_1
* @arg @ref LL_HSEM_SEMAPHORE_2
* @arg @ref LL_HSEM_SEMAPHORE_3
* @arg @ref LL_HSEM_SEMAPHORE_4
* @arg @ref LL_HSEM_SEMAPHORE_5
* @arg @ref LL_HSEM_SEMAPHORE_6
* @arg @ref LL_HSEM_SEMAPHORE_7
* @arg @ref LL_HSEM_SEMAPHORE_8
* @arg @ref LL_HSEM_SEMAPHORE_9
* @arg @ref LL_HSEM_SEMAPHORE_10
* @arg @ref LL_HSEM_SEMAPHORE_11
* @arg @ref LL_HSEM_SEMAPHORE_12
* @arg @ref LL_HSEM_SEMAPHORE_13
* @arg @ref LL_HSEM_SEMAPHORE_14
* @arg @ref LL_HSEM_SEMAPHORE_15
* @arg @ref LL_HSEM_SEMAPHORE_16
* @arg @ref LL_HSEM_SEMAPHORE_17
* @arg @ref LL_HSEM_SEMAPHORE_18
* @arg @ref LL_HSEM_SEMAPHORE_19
* @arg @ref LL_HSEM_SEMAPHORE_20
* @arg @ref LL_HSEM_SEMAPHORE_21
* @arg @ref LL_HSEM_SEMAPHORE_22
* @arg @ref LL_HSEM_SEMAPHORE_23
* @arg @ref LL_HSEM_SEMAPHORE_24
* @arg @ref LL_HSEM_SEMAPHORE_25
* @arg @ref LL_HSEM_SEMAPHORE_26
* @arg @ref LL_HSEM_SEMAPHORE_27
* @arg @ref LL_HSEM_SEMAPHORE_28
* @arg @ref LL_HSEM_SEMAPHORE_29
* @arg @ref LL_HSEM_SEMAPHORE_30
* @arg @ref LL_HSEM_SEMAPHORE_31
* @arg @ref LL_HSEM_SEMAPHORE_ALL
* @retval None
*/
__STATIC_INLINE void LL_HSEM_EnableIT_C1IER(HSEM_TypeDef *HSEMx, uint32_t SemaphoreMask)
{
SET_BIT(HSEMx->C1IER, SemaphoreMask);
}
/**
* @brief Disable interrupt.
* @rmtoll C1IER ISEM LL_HSEM_DisableIT_C1IER
* @param HSEMx HSEM Instance.
* @param SemaphoreMask This parameter can be a combination of the following values:
* @arg @ref LL_HSEM_SEMAPHORE_0
* @arg @ref LL_HSEM_SEMAPHORE_1
* @arg @ref LL_HSEM_SEMAPHORE_2
* @arg @ref LL_HSEM_SEMAPHORE_3
* @arg @ref LL_HSEM_SEMAPHORE_4
* @arg @ref LL_HSEM_SEMAPHORE_5
* @arg @ref LL_HSEM_SEMAPHORE_6
* @arg @ref LL_HSEM_SEMAPHORE_7
* @arg @ref LL_HSEM_SEMAPHORE_8
* @arg @ref LL_HSEM_SEMAPHORE_9
* @arg @ref LL_HSEM_SEMAPHORE_10
* @arg @ref LL_HSEM_SEMAPHORE_11
* @arg @ref LL_HSEM_SEMAPHORE_12
* @arg @ref LL_HSEM_SEMAPHORE_13
* @arg @ref LL_HSEM_SEMAPHORE_14
* @arg @ref LL_HSEM_SEMAPHORE_15
* @arg @ref LL_HSEM_SEMAPHORE_16
* @arg @ref LL_HSEM_SEMAPHORE_17
* @arg @ref LL_HSEM_SEMAPHORE_18
* @arg @ref LL_HSEM_SEMAPHORE_19
* @arg @ref LL_HSEM_SEMAPHORE_20
* @arg @ref LL_HSEM_SEMAPHORE_21
* @arg @ref LL_HSEM_SEMAPHORE_22
* @arg @ref LL_HSEM_SEMAPHORE_23
* @arg @ref LL_HSEM_SEMAPHORE_24
* @arg @ref LL_HSEM_SEMAPHORE_25
* @arg @ref LL_HSEM_SEMAPHORE_26
* @arg @ref LL_HSEM_SEMAPHORE_27
* @arg @ref LL_HSEM_SEMAPHORE_28
* @arg @ref LL_HSEM_SEMAPHORE_29
* @arg @ref LL_HSEM_SEMAPHORE_30
* @arg @ref LL_HSEM_SEMAPHORE_31
* @arg @ref LL_HSEM_SEMAPHORE_ALL
* @retval None
*/
__STATIC_INLINE void LL_HSEM_DisableIT_C1IER(HSEM_TypeDef *HSEMx, uint32_t SemaphoreMask)
{
CLEAR_BIT(HSEMx->C1IER, SemaphoreMask);
}
/**
* @brief Check if interrupt is enabled.
* @rmtoll C1IER ISEM LL_HSEM_IsEnabledIT_C1IER
* @param HSEMx HSEM Instance.
* @param SemaphoreMask This parameter can be a combination of the following values:
* @arg @ref LL_HSEM_SEMAPHORE_0
* @arg @ref LL_HSEM_SEMAPHORE_1
* @arg @ref LL_HSEM_SEMAPHORE_2
* @arg @ref LL_HSEM_SEMAPHORE_3
* @arg @ref LL_HSEM_SEMAPHORE_4
* @arg @ref LL_HSEM_SEMAPHORE_5
* @arg @ref LL_HSEM_SEMAPHORE_6
* @arg @ref LL_HSEM_SEMAPHORE_7
* @arg @ref LL_HSEM_SEMAPHORE_8
* @arg @ref LL_HSEM_SEMAPHORE_9
* @arg @ref LL_HSEM_SEMAPHORE_10
* @arg @ref LL_HSEM_SEMAPHORE_11
* @arg @ref LL_HSEM_SEMAPHORE_12
* @arg @ref LL_HSEM_SEMAPHORE_13
* @arg @ref LL_HSEM_SEMAPHORE_14
* @arg @ref LL_HSEM_SEMAPHORE_15
* @arg @ref LL_HSEM_SEMAPHORE_16
* @arg @ref LL_HSEM_SEMAPHORE_17
* @arg @ref LL_HSEM_SEMAPHORE_18
* @arg @ref LL_HSEM_SEMAPHORE_19
* @arg @ref LL_HSEM_SEMAPHORE_20
* @arg @ref LL_HSEM_SEMAPHORE_21
* @arg @ref LL_HSEM_SEMAPHORE_22
* @arg @ref LL_HSEM_SEMAPHORE_23
* @arg @ref LL_HSEM_SEMAPHORE_24
* @arg @ref LL_HSEM_SEMAPHORE_25
* @arg @ref LL_HSEM_SEMAPHORE_26
* @arg @ref LL_HSEM_SEMAPHORE_27
* @arg @ref LL_HSEM_SEMAPHORE_28
* @arg @ref LL_HSEM_SEMAPHORE_29
* @arg @ref LL_HSEM_SEMAPHORE_30
* @arg @ref LL_HSEM_SEMAPHORE_31
* @arg @ref LL_HSEM_SEMAPHORE_ALL
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_HSEM_IsEnabledIT_C1IER(const HSEM_TypeDef *HSEMx, uint32_t SemaphoreMask)
{
return ((READ_BIT(HSEMx->C1IER, SemaphoreMask) == (SemaphoreMask)) ? 1UL : 0UL);
}
/**
* @brief Enable interrupt.
* @rmtoll C2IER ISEM LL_HSEM_EnableIT_C2IER
* @param HSEMx HSEM Instance.
* @param SemaphoreMask This parameter can be a combination of the following values:
* @arg @ref LL_HSEM_SEMAPHORE_0
* @arg @ref LL_HSEM_SEMAPHORE_1
* @arg @ref LL_HSEM_SEMAPHORE_2
* @arg @ref LL_HSEM_SEMAPHORE_3
* @arg @ref LL_HSEM_SEMAPHORE_4
* @arg @ref LL_HSEM_SEMAPHORE_5
* @arg @ref LL_HSEM_SEMAPHORE_6
* @arg @ref LL_HSEM_SEMAPHORE_7
* @arg @ref LL_HSEM_SEMAPHORE_8
* @arg @ref LL_HSEM_SEMAPHORE_9
* @arg @ref LL_HSEM_SEMAPHORE_10
* @arg @ref LL_HSEM_SEMAPHORE_11
* @arg @ref LL_HSEM_SEMAPHORE_12
* @arg @ref LL_HSEM_SEMAPHORE_13
* @arg @ref LL_HSEM_SEMAPHORE_14
* @arg @ref LL_HSEM_SEMAPHORE_15
* @arg @ref LL_HSEM_SEMAPHORE_16
* @arg @ref LL_HSEM_SEMAPHORE_17
* @arg @ref LL_HSEM_SEMAPHORE_18
* @arg @ref LL_HSEM_SEMAPHORE_19
* @arg @ref LL_HSEM_SEMAPHORE_20
* @arg @ref LL_HSEM_SEMAPHORE_21
* @arg @ref LL_HSEM_SEMAPHORE_22
* @arg @ref LL_HSEM_SEMAPHORE_23
* @arg @ref LL_HSEM_SEMAPHORE_24
* @arg @ref LL_HSEM_SEMAPHORE_25
* @arg @ref LL_HSEM_SEMAPHORE_26
* @arg @ref LL_HSEM_SEMAPHORE_27
* @arg @ref LL_HSEM_SEMAPHORE_28
* @arg @ref LL_HSEM_SEMAPHORE_29
* @arg @ref LL_HSEM_SEMAPHORE_30
* @arg @ref LL_HSEM_SEMAPHORE_31
* @arg @ref LL_HSEM_SEMAPHORE_ALL
* @retval None
*/
__STATIC_INLINE void LL_HSEM_EnableIT_C2IER(HSEM_TypeDef *HSEMx, uint32_t SemaphoreMask)
{
SET_BIT(HSEMx->C2IER, SemaphoreMask);
}
/**
* @brief Disable interrupt.
* @rmtoll C2IER ISEM LL_HSEM_DisableIT_C2IER
* @param HSEMx HSEM Instance.
* @param SemaphoreMask This parameter can be a combination of the following values:
* @arg @ref LL_HSEM_SEMAPHORE_0
* @arg @ref LL_HSEM_SEMAPHORE_1
* @arg @ref LL_HSEM_SEMAPHORE_2
* @arg @ref LL_HSEM_SEMAPHORE_3
* @arg @ref LL_HSEM_SEMAPHORE_4
* @arg @ref LL_HSEM_SEMAPHORE_5
* @arg @ref LL_HSEM_SEMAPHORE_6
* @arg @ref LL_HSEM_SEMAPHORE_7
* @arg @ref LL_HSEM_SEMAPHORE_8
* @arg @ref LL_HSEM_SEMAPHORE_9
* @arg @ref LL_HSEM_SEMAPHORE_10
* @arg @ref LL_HSEM_SEMAPHORE_11
* @arg @ref LL_HSEM_SEMAPHORE_12
* @arg @ref LL_HSEM_SEMAPHORE_13
* @arg @ref LL_HSEM_SEMAPHORE_14
* @arg @ref LL_HSEM_SEMAPHORE_15
* @arg @ref LL_HSEM_SEMAPHORE_16
* @arg @ref LL_HSEM_SEMAPHORE_17
* @arg @ref LL_HSEM_SEMAPHORE_18
* @arg @ref LL_HSEM_SEMAPHORE_19
* @arg @ref LL_HSEM_SEMAPHORE_20
* @arg @ref LL_HSEM_SEMAPHORE_21
* @arg @ref LL_HSEM_SEMAPHORE_22
* @arg @ref LL_HSEM_SEMAPHORE_23
* @arg @ref LL_HSEM_SEMAPHORE_24
* @arg @ref LL_HSEM_SEMAPHORE_25
* @arg @ref LL_HSEM_SEMAPHORE_26
* @arg @ref LL_HSEM_SEMAPHORE_27
* @arg @ref LL_HSEM_SEMAPHORE_28
* @arg @ref LL_HSEM_SEMAPHORE_29
* @arg @ref LL_HSEM_SEMAPHORE_30
* @arg @ref LL_HSEM_SEMAPHORE_31
* @arg @ref LL_HSEM_SEMAPHORE_ALL
* @retval None
*/
__STATIC_INLINE void LL_HSEM_DisableIT_C2IER(HSEM_TypeDef *HSEMx, uint32_t SemaphoreMask)
{
CLEAR_BIT(HSEMx->C2IER, SemaphoreMask);
}
/**
* @brief Check if interrupt is enabled.
* @rmtoll C2IER ISEM LL_HSEM_IsEnabledIT_C2IER
* @param HSEMx HSEM Instance.
* @param SemaphoreMask This parameter can be a combination of the following values:
* @arg @ref LL_HSEM_SEMAPHORE_0
* @arg @ref LL_HSEM_SEMAPHORE_1
* @arg @ref LL_HSEM_SEMAPHORE_2
* @arg @ref LL_HSEM_SEMAPHORE_3
* @arg @ref LL_HSEM_SEMAPHORE_4
* @arg @ref LL_HSEM_SEMAPHORE_5
* @arg @ref LL_HSEM_SEMAPHORE_6
* @arg @ref LL_HSEM_SEMAPHORE_7
* @arg @ref LL_HSEM_SEMAPHORE_8
* @arg @ref LL_HSEM_SEMAPHORE_9
* @arg @ref LL_HSEM_SEMAPHORE_10
* @arg @ref LL_HSEM_SEMAPHORE_11
* @arg @ref LL_HSEM_SEMAPHORE_12
* @arg @ref LL_HSEM_SEMAPHORE_13
* @arg @ref LL_HSEM_SEMAPHORE_14
* @arg @ref LL_HSEM_SEMAPHORE_15
* @arg @ref LL_HSEM_SEMAPHORE_16
* @arg @ref LL_HSEM_SEMAPHORE_17
* @arg @ref LL_HSEM_SEMAPHORE_18
* @arg @ref LL_HSEM_SEMAPHORE_19
* @arg @ref LL_HSEM_SEMAPHORE_20
* @arg @ref LL_HSEM_SEMAPHORE_21
* @arg @ref LL_HSEM_SEMAPHORE_22
* @arg @ref LL_HSEM_SEMAPHORE_23
* @arg @ref LL_HSEM_SEMAPHORE_24
* @arg @ref LL_HSEM_SEMAPHORE_25
* @arg @ref LL_HSEM_SEMAPHORE_26
* @arg @ref LL_HSEM_SEMAPHORE_27
* @arg @ref LL_HSEM_SEMAPHORE_28
* @arg @ref LL_HSEM_SEMAPHORE_29
* @arg @ref LL_HSEM_SEMAPHORE_30
* @arg @ref LL_HSEM_SEMAPHORE_31
* @arg @ref LL_HSEM_SEMAPHORE_ALL
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_HSEM_IsEnabledIT_C2IER(const HSEM_TypeDef *HSEMx, uint32_t SemaphoreMask)
{
return ((READ_BIT(HSEMx->C2IER, SemaphoreMask) == (SemaphoreMask)) ? 1UL : 0UL);
}
/**
* @}
*/
/** @defgroup HSEM_LL_EF_FLAG_Management FLAG_Management
* @{
*/
/**
* @brief Clear interrupt status.
* @rmtoll C1ICR ISEM LL_HSEM_ClearFlag_C1ICR
* @param HSEMx HSEM Instance.
* @param SemaphoreMask This parameter can be a combination of the following values:
* @arg @ref LL_HSEM_SEMAPHORE_0
* @arg @ref LL_HSEM_SEMAPHORE_1
* @arg @ref LL_HSEM_SEMAPHORE_2
* @arg @ref LL_HSEM_SEMAPHORE_3
* @arg @ref LL_HSEM_SEMAPHORE_4
* @arg @ref LL_HSEM_SEMAPHORE_5
* @arg @ref LL_HSEM_SEMAPHORE_6
* @arg @ref LL_HSEM_SEMAPHORE_7
* @arg @ref LL_HSEM_SEMAPHORE_8
* @arg @ref LL_HSEM_SEMAPHORE_9
* @arg @ref LL_HSEM_SEMAPHORE_10
* @arg @ref LL_HSEM_SEMAPHORE_11
* @arg @ref LL_HSEM_SEMAPHORE_12
* @arg @ref LL_HSEM_SEMAPHORE_13
* @arg @ref LL_HSEM_SEMAPHORE_14
* @arg @ref LL_HSEM_SEMAPHORE_15
* @arg @ref LL_HSEM_SEMAPHORE_16
* @arg @ref LL_HSEM_SEMAPHORE_17
* @arg @ref LL_HSEM_SEMAPHORE_18
* @arg @ref LL_HSEM_SEMAPHORE_19
* @arg @ref LL_HSEM_SEMAPHORE_20
* @arg @ref LL_HSEM_SEMAPHORE_21
* @arg @ref LL_HSEM_SEMAPHORE_22
* @arg @ref LL_HSEM_SEMAPHORE_23
* @arg @ref LL_HSEM_SEMAPHORE_24
* @arg @ref LL_HSEM_SEMAPHORE_25
* @arg @ref LL_HSEM_SEMAPHORE_26
* @arg @ref LL_HSEM_SEMAPHORE_27
* @arg @ref LL_HSEM_SEMAPHORE_28
* @arg @ref LL_HSEM_SEMAPHORE_29
* @arg @ref LL_HSEM_SEMAPHORE_30
* @arg @ref LL_HSEM_SEMAPHORE_31
* @arg @ref LL_HSEM_SEMAPHORE_ALL
* @retval None
*/
__STATIC_INLINE void LL_HSEM_ClearFlag_C1ICR(HSEM_TypeDef *HSEMx, uint32_t SemaphoreMask)
{
WRITE_REG(HSEMx->C1ICR, SemaphoreMask);
}
/**
* @brief Get interrupt status from ISR register.
* @rmtoll C1ISR ISEM LL_HSEM_IsActiveFlag_C1ISR
* @param HSEMx HSEM Instance.
* @param SemaphoreMask This parameter can be a combination of the following values:
* @arg @ref LL_HSEM_SEMAPHORE_0
* @arg @ref LL_HSEM_SEMAPHORE_1
* @arg @ref LL_HSEM_SEMAPHORE_2
* @arg @ref LL_HSEM_SEMAPHORE_3
* @arg @ref LL_HSEM_SEMAPHORE_4
* @arg @ref LL_HSEM_SEMAPHORE_5
* @arg @ref LL_HSEM_SEMAPHORE_6
* @arg @ref LL_HSEM_SEMAPHORE_7
* @arg @ref LL_HSEM_SEMAPHORE_8
* @arg @ref LL_HSEM_SEMAPHORE_9
* @arg @ref LL_HSEM_SEMAPHORE_10
* @arg @ref LL_HSEM_SEMAPHORE_11
* @arg @ref LL_HSEM_SEMAPHORE_12
* @arg @ref LL_HSEM_SEMAPHORE_13
* @arg @ref LL_HSEM_SEMAPHORE_14
* @arg @ref LL_HSEM_SEMAPHORE_15
* @arg @ref LL_HSEM_SEMAPHORE_16
* @arg @ref LL_HSEM_SEMAPHORE_17
* @arg @ref LL_HSEM_SEMAPHORE_18
* @arg @ref LL_HSEM_SEMAPHORE_19
* @arg @ref LL_HSEM_SEMAPHORE_20
* @arg @ref LL_HSEM_SEMAPHORE_21
* @arg @ref LL_HSEM_SEMAPHORE_22
* @arg @ref LL_HSEM_SEMAPHORE_23
* @arg @ref LL_HSEM_SEMAPHORE_24
* @arg @ref LL_HSEM_SEMAPHORE_25
* @arg @ref LL_HSEM_SEMAPHORE_26
* @arg @ref LL_HSEM_SEMAPHORE_27
* @arg @ref LL_HSEM_SEMAPHORE_28
* @arg @ref LL_HSEM_SEMAPHORE_29
* @arg @ref LL_HSEM_SEMAPHORE_30
* @arg @ref LL_HSEM_SEMAPHORE_31
* @arg @ref LL_HSEM_SEMAPHORE_ALL
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_HSEM_IsActiveFlag_C1ISR(const HSEM_TypeDef *HSEMx, uint32_t SemaphoreMask)
{
return ((READ_BIT(HSEMx->C1ISR, SemaphoreMask) == (SemaphoreMask)) ? 1UL : 0UL);
}
/**
* @brief Get interrupt status from MISR register.
* @rmtoll C1MISR ISEM LL_HSEM_IsActiveFlag_C1MISR
* @param HSEMx HSEM Instance.
* @param SemaphoreMask This parameter can be a combination of the following values:
* @arg @ref LL_HSEM_SEMAPHORE_0
* @arg @ref LL_HSEM_SEMAPHORE_1
* @arg @ref LL_HSEM_SEMAPHORE_2
* @arg @ref LL_HSEM_SEMAPHORE_3
* @arg @ref LL_HSEM_SEMAPHORE_4
* @arg @ref LL_HSEM_SEMAPHORE_5
* @arg @ref LL_HSEM_SEMAPHORE_6
* @arg @ref LL_HSEM_SEMAPHORE_7
* @arg @ref LL_HSEM_SEMAPHORE_8
* @arg @ref LL_HSEM_SEMAPHORE_9
* @arg @ref LL_HSEM_SEMAPHORE_10
* @arg @ref LL_HSEM_SEMAPHORE_11
* @arg @ref LL_HSEM_SEMAPHORE_12
* @arg @ref LL_HSEM_SEMAPHORE_13
* @arg @ref LL_HSEM_SEMAPHORE_14
* @arg @ref LL_HSEM_SEMAPHORE_15
* @arg @ref LL_HSEM_SEMAPHORE_16
* @arg @ref LL_HSEM_SEMAPHORE_17
* @arg @ref LL_HSEM_SEMAPHORE_18
* @arg @ref LL_HSEM_SEMAPHORE_19
* @arg @ref LL_HSEM_SEMAPHORE_20
* @arg @ref LL_HSEM_SEMAPHORE_21
* @arg @ref LL_HSEM_SEMAPHORE_22
* @arg @ref LL_HSEM_SEMAPHORE_23
* @arg @ref LL_HSEM_SEMAPHORE_24
* @arg @ref LL_HSEM_SEMAPHORE_25
* @arg @ref LL_HSEM_SEMAPHORE_26
* @arg @ref LL_HSEM_SEMAPHORE_27
* @arg @ref LL_HSEM_SEMAPHORE_28
* @arg @ref LL_HSEM_SEMAPHORE_29
* @arg @ref LL_HSEM_SEMAPHORE_30
* @arg @ref LL_HSEM_SEMAPHORE_31
* @arg @ref LL_HSEM_SEMAPHORE_ALL
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_HSEM_IsActiveFlag_C1MISR(const HSEM_TypeDef *HSEMx, uint32_t SemaphoreMask)
{
return ((READ_BIT(HSEMx->C1MISR, SemaphoreMask) == (SemaphoreMask)) ? 1UL : 0UL);
}
/**
* @brief Clear interrupt status.
* @rmtoll C2ICR ISEM LL_HSEM_ClearFlag_C2ICR
* @param HSEMx HSEM Instance.
* @param SemaphoreMask This parameter can be a combination of the following values:
* @arg @ref LL_HSEM_SEMAPHORE_0
* @arg @ref LL_HSEM_SEMAPHORE_1
* @arg @ref LL_HSEM_SEMAPHORE_2
* @arg @ref LL_HSEM_SEMAPHORE_3
* @arg @ref LL_HSEM_SEMAPHORE_4
* @arg @ref LL_HSEM_SEMAPHORE_5
* @arg @ref LL_HSEM_SEMAPHORE_6
* @arg @ref LL_HSEM_SEMAPHORE_7
* @arg @ref LL_HSEM_SEMAPHORE_8
* @arg @ref LL_HSEM_SEMAPHORE_9
* @arg @ref LL_HSEM_SEMAPHORE_10
* @arg @ref LL_HSEM_SEMAPHORE_11
* @arg @ref LL_HSEM_SEMAPHORE_12
* @arg @ref LL_HSEM_SEMAPHORE_13
* @arg @ref LL_HSEM_SEMAPHORE_14
* @arg @ref LL_HSEM_SEMAPHORE_15
* @arg @ref LL_HSEM_SEMAPHORE_16
* @arg @ref LL_HSEM_SEMAPHORE_17
* @arg @ref LL_HSEM_SEMAPHORE_18
* @arg @ref LL_HSEM_SEMAPHORE_19
* @arg @ref LL_HSEM_SEMAPHORE_20
* @arg @ref LL_HSEM_SEMAPHORE_21
* @arg @ref LL_HSEM_SEMAPHORE_22
* @arg @ref LL_HSEM_SEMAPHORE_23
* @arg @ref LL_HSEM_SEMAPHORE_24
* @arg @ref LL_HSEM_SEMAPHORE_25
* @arg @ref LL_HSEM_SEMAPHORE_26
* @arg @ref LL_HSEM_SEMAPHORE_27
* @arg @ref LL_HSEM_SEMAPHORE_28
* @arg @ref LL_HSEM_SEMAPHORE_29
* @arg @ref LL_HSEM_SEMAPHORE_30
* @arg @ref LL_HSEM_SEMAPHORE_31
* @arg @ref LL_HSEM_SEMAPHORE_ALL
* @retval None
*/
__STATIC_INLINE void LL_HSEM_ClearFlag_C2ICR(HSEM_TypeDef *HSEMx, uint32_t SemaphoreMask)
{
WRITE_REG(HSEMx->C2ICR, SemaphoreMask);
}
/**
* @brief Get interrupt status from ISR register.
* @rmtoll C2ISR ISEM LL_HSEM_IsActiveFlag_C2ISR
* @param HSEMx HSEM Instance.
* @param SemaphoreMask This parameter can be a combination of the following values:
* @arg @ref LL_HSEM_SEMAPHORE_0
* @arg @ref LL_HSEM_SEMAPHORE_1
* @arg @ref LL_HSEM_SEMAPHORE_2
* @arg @ref LL_HSEM_SEMAPHORE_3
* @arg @ref LL_HSEM_SEMAPHORE_4
* @arg @ref LL_HSEM_SEMAPHORE_5
* @arg @ref LL_HSEM_SEMAPHORE_6
* @arg @ref LL_HSEM_SEMAPHORE_7
* @arg @ref LL_HSEM_SEMAPHORE_8
* @arg @ref LL_HSEM_SEMAPHORE_9
* @arg @ref LL_HSEM_SEMAPHORE_10
* @arg @ref LL_HSEM_SEMAPHORE_11
* @arg @ref LL_HSEM_SEMAPHORE_12
* @arg @ref LL_HSEM_SEMAPHORE_13
* @arg @ref LL_HSEM_SEMAPHORE_14
* @arg @ref LL_HSEM_SEMAPHORE_15
* @arg @ref LL_HSEM_SEMAPHORE_16
* @arg @ref LL_HSEM_SEMAPHORE_17
* @arg @ref LL_HSEM_SEMAPHORE_18
* @arg @ref LL_HSEM_SEMAPHORE_19
* @arg @ref LL_HSEM_SEMAPHORE_20
* @arg @ref LL_HSEM_SEMAPHORE_21
* @arg @ref LL_HSEM_SEMAPHORE_22
* @arg @ref LL_HSEM_SEMAPHORE_23
* @arg @ref LL_HSEM_SEMAPHORE_24
* @arg @ref LL_HSEM_SEMAPHORE_25
* @arg @ref LL_HSEM_SEMAPHORE_26
* @arg @ref LL_HSEM_SEMAPHORE_27
* @arg @ref LL_HSEM_SEMAPHORE_28
* @arg @ref LL_HSEM_SEMAPHORE_29
* @arg @ref LL_HSEM_SEMAPHORE_30
* @arg @ref LL_HSEM_SEMAPHORE_31
* @arg @ref LL_HSEM_SEMAPHORE_ALL
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_HSEM_IsActiveFlag_C2ISR(const HSEM_TypeDef *HSEMx, uint32_t SemaphoreMask)
{
return ((READ_BIT(HSEMx->C2ISR, SemaphoreMask) == (SemaphoreMask)) ? 1UL : 0UL);
}
/**
* @brief Get interrupt status from MISR register.
* @rmtoll C2MISR ISEM LL_HSEM_IsActiveFlag_C2MISR
* @param HSEMx HSEM Instance.
* @param SemaphoreMask This parameter can be a combination of the following values:
* @arg @ref LL_HSEM_SEMAPHORE_0
* @arg @ref LL_HSEM_SEMAPHORE_1
* @arg @ref LL_HSEM_SEMAPHORE_2
* @arg @ref LL_HSEM_SEMAPHORE_3
* @arg @ref LL_HSEM_SEMAPHORE_4
* @arg @ref LL_HSEM_SEMAPHORE_5
* @arg @ref LL_HSEM_SEMAPHORE_6
* @arg @ref LL_HSEM_SEMAPHORE_7
* @arg @ref LL_HSEM_SEMAPHORE_8
* @arg @ref LL_HSEM_SEMAPHORE_9
* @arg @ref LL_HSEM_SEMAPHORE_10
* @arg @ref LL_HSEM_SEMAPHORE_11
* @arg @ref LL_HSEM_SEMAPHORE_12
* @arg @ref LL_HSEM_SEMAPHORE_13
* @arg @ref LL_HSEM_SEMAPHORE_14
* @arg @ref LL_HSEM_SEMAPHORE_15
* @arg @ref LL_HSEM_SEMAPHORE_16
* @arg @ref LL_HSEM_SEMAPHORE_17
* @arg @ref LL_HSEM_SEMAPHORE_18
* @arg @ref LL_HSEM_SEMAPHORE_19
* @arg @ref LL_HSEM_SEMAPHORE_20
* @arg @ref LL_HSEM_SEMAPHORE_21
* @arg @ref LL_HSEM_SEMAPHORE_22
* @arg @ref LL_HSEM_SEMAPHORE_23
* @arg @ref LL_HSEM_SEMAPHORE_24
* @arg @ref LL_HSEM_SEMAPHORE_25
* @arg @ref LL_HSEM_SEMAPHORE_26
* @arg @ref LL_HSEM_SEMAPHORE_27
* @arg @ref LL_HSEM_SEMAPHORE_28
* @arg @ref LL_HSEM_SEMAPHORE_29
* @arg @ref LL_HSEM_SEMAPHORE_30
* @arg @ref LL_HSEM_SEMAPHORE_31
* @arg @ref LL_HSEM_SEMAPHORE_ALL
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_HSEM_IsActiveFlag_C2MISR(const HSEM_TypeDef *HSEMx, uint32_t SemaphoreMask)
{
return ((READ_BIT(HSEMx->C2MISR, SemaphoreMask) == (SemaphoreMask)) ? 1UL : 0UL);
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#endif /* defined(HSEM) */
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* __STM32WBxx_LL_HSEM_H */

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,243 @@
/**
******************************************************************************
* @file stm32wbxx_ll_usb.h
* @author MCD Application Team
* @brief Header file of USB Low Layer HAL module.
******************************************************************************
* @attention
*
* Copyright (c) 2019 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef STM32WBxx_LL_USB_H
#define STM32WBxx_LL_USB_H
#ifdef __cplusplus
extern "C" {
#endif /* __cplusplus */
/* Includes ------------------------------------------------------------------*/
#include "stm32wbxx_hal_def.h"
#if defined (USB)
/** @addtogroup STM32WBxx_HAL_Driver
* @{
*/
/** @addtogroup USB_LL
* @{
*/
/* Exported types ------------------------------------------------------------*/
/**
* @brief USB Mode definition
*/
typedef enum
{
USB_DEVICE_MODE = 0
} USB_ModeTypeDef;
/**
* @brief USB Instance Initialization Structure definition
*/
typedef struct
{
uint8_t dev_endpoints; /*!< Device Endpoints number.
This parameter depends on the used USB core.
This parameter must be a number between Min_Data = 1 and Max_Data = 15 */
uint8_t speed; /*!< USB Core speed.
This parameter can be any value of @ref PCD_Speed/HCD_Speed
(HCD_SPEED_xxx, HCD_SPEED_xxx) */
uint8_t ep0_mps; /*!< Set the Endpoint 0 Max Packet size. */
uint8_t phy_itface; /*!< Select the used PHY interface.
This parameter can be any value of @ref PCD_PHY_Module/HCD_PHY_Module */
uint8_t Sof_enable; /*!< Enable or disable the output of the SOF signal. */
uint8_t low_power_enable; /*!< Enable or disable the low Power Mode. */
uint8_t lpm_enable; /*!< Enable or disable Link Power Management. */
uint8_t battery_charging_enable; /*!< Enable or disable Battery charging. */
} USB_CfgTypeDef;
typedef struct
{
uint8_t num; /*!< Endpoint number
This parameter must be a number between Min_Data = 1 and Max_Data = 15 */
uint8_t is_in; /*!< Endpoint direction
This parameter must be a number between Min_Data = 0 and Max_Data = 1 */
uint8_t is_stall; /*!< Endpoint stall condition
This parameter must be a number between Min_Data = 0 and Max_Data = 1 */
uint8_t type; /*!< Endpoint type
This parameter can be any value of @ref USB_LL_EP_Type */
uint8_t data_pid_start; /*!< Initial data PID
This parameter must be a number between Min_Data = 0 and Max_Data = 1 */
uint16_t pmaadress; /*!< PMA Address
This parameter can be any value between Min_addr = 0 and Max_addr = 1K */
uint16_t pmaaddr0; /*!< PMA Address0
This parameter can be any value between Min_addr = 0 and Max_addr = 1K */
uint16_t pmaaddr1; /*!< PMA Address1
This parameter can be any value between Min_addr = 0 and Max_addr = 1K */
uint8_t doublebuffer; /*!< Double buffer enable
This parameter can be 0 or 1 */
uint32_t maxpacket; /*!< Endpoint Max packet size
This parameter must be a number between Min_Data = 0 and Max_Data = 64KB */
uint8_t *xfer_buff; /*!< Pointer to transfer buffer */
uint32_t xfer_len; /*!< Current transfer length */
uint32_t xfer_count; /*!< Partial transfer length in case of multi packet transfer */
uint32_t xfer_len_db; /*!< double buffer transfer length used with bulk double buffer in */
uint8_t xfer_fill_db; /*!< double buffer Need to Fill new buffer used with bulk_in */
} USB_EPTypeDef;
/* Exported constants --------------------------------------------------------*/
/** @defgroup PCD_Exported_Constants PCD Exported Constants
* @{
*/
/** @defgroup USB_LL_EP0_MPS USB Low Layer EP0 MPS
* @{
*/
#define EP_MPS_64 0U
#define EP_MPS_32 1U
#define EP_MPS_16 2U
#define EP_MPS_8 3U
/**
* @}
*/
/** @defgroup USB_LL_EP_Type USB Low Layer EP Type
* @{
*/
#define EP_TYPE_CTRL 0U
#define EP_TYPE_ISOC 1U
#define EP_TYPE_BULK 2U
#define EP_TYPE_INTR 3U
#define EP_TYPE_MSK 3U
/**
* @}
*/
/** @defgroup USB_LL Device Speed
* @{
*/
#define USBD_FS_SPEED 2U
/**
* @}
*/
#define BTABLE_ADDRESS 0x000U
#define PMA_ACCESS 1U
#ifndef USB_EP_RX_STRX
#define USB_EP_RX_STRX (0x3U << 12)
#endif /* USB_EP_RX_STRX */
#define EP_ADDR_MSK 0x7U
#ifndef USE_USB_DOUBLE_BUFFER
#define USE_USB_DOUBLE_BUFFER 1U
#endif /* USE_USB_DOUBLE_BUFFER */
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup USB_LL_Exported_Functions USB Low Layer Exported Functions
* @{
*/
HAL_StatusTypeDef USB_CoreInit(USB_TypeDef *USBx, USB_CfgTypeDef cfg);
HAL_StatusTypeDef USB_DevInit(USB_TypeDef *USBx, USB_CfgTypeDef cfg);
HAL_StatusTypeDef USB_EnableGlobalInt(USB_TypeDef *USBx);
HAL_StatusTypeDef USB_DisableGlobalInt(USB_TypeDef *USBx);
HAL_StatusTypeDef USB_SetCurrentMode(USB_TypeDef *USBx, USB_ModeTypeDef mode);
HAL_StatusTypeDef USB_FlushRxFifo(USB_TypeDef const *USBx);
HAL_StatusTypeDef USB_FlushTxFifo(USB_TypeDef const *USBx, uint32_t num);
#if defined (HAL_PCD_MODULE_ENABLED)
HAL_StatusTypeDef USB_ActivateEndpoint(USB_TypeDef *USBx, USB_EPTypeDef *ep);
HAL_StatusTypeDef USB_DeactivateEndpoint(USB_TypeDef *USBx, USB_EPTypeDef *ep);
HAL_StatusTypeDef USB_EPStartXfer(USB_TypeDef *USBx, USB_EPTypeDef *ep);
HAL_StatusTypeDef USB_EPSetStall(USB_TypeDef *USBx, USB_EPTypeDef *ep);
HAL_StatusTypeDef USB_EPClearStall(USB_TypeDef *USBx, USB_EPTypeDef *ep);
HAL_StatusTypeDef USB_EPStopXfer(USB_TypeDef *USBx, USB_EPTypeDef *ep);
#endif /* defined (HAL_PCD_MODULE_ENABLED) */
HAL_StatusTypeDef USB_SetDevAddress(USB_TypeDef *USBx, uint8_t address);
HAL_StatusTypeDef USB_DevConnect(USB_TypeDef *USBx);
HAL_StatusTypeDef USB_DevDisconnect(USB_TypeDef *USBx);
HAL_StatusTypeDef USB_StopDevice(USB_TypeDef *USBx);
uint32_t USB_ReadInterrupts(USB_TypeDef const *USBx);
HAL_StatusTypeDef USB_ActivateRemoteWakeup(USB_TypeDef *USBx);
HAL_StatusTypeDef USB_DeActivateRemoteWakeup(USB_TypeDef *USBx);
void USB_WritePMA(USB_TypeDef const *USBx, uint8_t *pbUsrBuf,
uint16_t wPMABufAddr, uint16_t wNBytes);
void USB_ReadPMA(USB_TypeDef const *USBx, uint8_t *pbUsrBuf,
uint16_t wPMABufAddr, uint16_t wNBytes);
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#endif /* defined (USB) */
#ifdef __cplusplus
}
#endif /* __cplusplus */
#endif /* STM32WBxx_LL_USB_H */

View File

@@ -0,0 +1,312 @@
/**
******************************************************************************
* @file stm32wbxx_ll_utils.h
* @author MCD Application Team
* @brief Header file of UTILS LL module.
******************************************************************************
* @attention
*
* Copyright (c) 2019 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
==============================================================================
##### How to use this driver #####
==============================================================================
[..]
The LL UTILS driver contains a set of generic APIs that can be
used by user:
(+) Device electronic signature
(+) Timing functions
(+) PLL configuration functions
@endverbatim
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef STM32WBxx_LL_UTILS_H
#define STM32WBxx_LL_UTILS_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32wbxx.h"
/** @addtogroup STM32WBxx_LL_Driver
* @{
*/
/** @defgroup UTILS_LL UTILS
* @{
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/** @defgroup UTILS_LL_Private_Constants UTILS Private Constants
* @{
*/
/* Max delay can be used in LL_mDelay */
#define LL_MAX_DELAY 0xFFFFFFFFU
/**
* @brief Unique device ID register base address
*/
#define UID_BASE_ADDRESS UID_BASE
/**
* @brief Flash size data register base address
*/
#define FLASHSIZE_BASE_ADDRESS FLASHSIZE_BASE
/**
* @brief Package data register base address
*/
#define PACKAGE_BASE_ADDRESS PACKAGE_BASE
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/** @defgroup UTILS_LL_Private_Macros UTILS Private Macros
* @{
*/
/**
* @}
*/
/* Exported types ------------------------------------------------------------*/
/** @defgroup UTILS_LL_ES_INIT UTILS Exported structures
* @{
*/
/**
* @brief UTILS PLL structure definition
*/
typedef struct
{
uint32_t PLLM; /*!< Division factor for PLL VCO input clock.
This parameter can be a value of @ref RCC_LL_EC_PLLM_DIV.
This feature can be modified afterwards using unitary function
@ref LL_RCC_PLL_ConfigDomain_SYS(). */
uint32_t PLLN; /*!< Multiplication factor for PLL VCO output clock.
This parameter must be a number between Min_Data = 6 and Max_Data = 127.
This feature can be modified afterwards using unitary function
@ref LL_RCC_PLL_ConfigDomain_SYS(). */
uint32_t PLLR; /*!< Division for the main system clock.
This parameter can be a value of @ref RCC_LL_EC_PLLR_DIV.
This feature can be modified afterwards using unitary function
@ref LL_RCC_PLL_ConfigDomain_SYS(). */
} LL_UTILS_PLLInitTypeDef;
/**
* @brief UTILS System, AHB and APB buses clock configuration structure definition
*/
typedef struct
{
uint32_t CPU1CLKDivider; /*!< The CPU1 clock (HCLK1) divider. This clock is derived from the system clock (SYSCLK).
This parameter can be a value of @ref RCC_LL_EC_SYSCLK_DIV.
This feature can be modified afterwards using unitary function
@ref LL_RCC_SetAHBPrescaler(). */
uint32_t CPU2CLKDivider; /*!< The CPU2 clock (HCLK2) divider. This clock is derived from the system clock (SYSCLK).
This parameter can be a value of @ref RCC_LL_EC_SYSCLK_DIV.
This feature can be modified afterwards using unitary function
@ref LL_C2_RCC_SetAHBPrescaler(). */
uint32_t AHB4CLKDivider; /*!< The AHBS clock (HCLK4) divider. This clock is derived from the system clock (SYSCLK).
This parameter can be a value of @ref RCC_LL_EC_SYSCLK_DIV.
This feature can be modified afterwards using unitary function
@ref LL_RCC_SetAHB4Prescaler(). */
uint32_t APB1CLKDivider; /*!< The APB1 clock (PCLK1) divider. This clock is derived from the AHB clock (HCLK1).
This parameter can be a value of @ref RCC_LL_EC_APB1_DIV.
This feature can be modified afterwards using unitary function
@ref LL_RCC_SetAPB1Prescaler(). */
uint32_t APB2CLKDivider; /*!< The APB2 clock (PCLK2) divider. This clock is derived from the AHB clock (HCLK1).
This parameter can be a value of @ref RCC_LL_EC_APB2_DIV.
This feature can be modified afterwards using unitary function
@ref LL_RCC_SetAPB2Prescaler(). */
} LL_UTILS_ClkInitTypeDef;
/**
* @}
*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup UTILS_LL_Exported_Constants UTILS Exported Constants
* @{
*/
/** @defgroup UTILS_EC_HSE_BYPASS HSE Bypass activation
* @{
*/
#define LL_UTILS_HSEBYPASS_OFF 0x00000000U /*!< HSE Bypass is not enabled */
#define LL_UTILS_HSEBYPASS_ON 0x00000001U /*!< HSE Bypass is enabled */
/**
* @}
*/
/** @defgroup UTILS_EC_PACKAGETYPE PACKAGE TYPE
* @{
*/
#define LL_UTILS_PACKAGETYPE_CSP100 0x00000011U /*!< CSP100/BGA129 package type */
#define LL_UTILS_PACKAGETYPE_QFN68 0x00000013U /*!< QFN68 package type */
#define LL_UTILS_PACKAGETYPE_QFN48 0x0000000AU /*!< QFN48 package type */
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup UTILS_LL_Exported_Functions UTILS Exported Functions
* @{
*/
/** @defgroup UTILS_EF_DEVICE_ELECTRONIC_SIGNATURE DEVICE ELECTRONIC SIGNATURE
* @{
*/
/**
* @brief Get Word0 of the unique device identifier (UID based on 96 bits)
* @retval UID[31:0]: X and Y coordinates on the wafer expressed in BCD format
*/
__STATIC_INLINE uint32_t LL_GetUID_Word0(void)
{
return (uint32_t)(READ_REG(*((uint32_t *)UID_BASE_ADDRESS)));
}
/**
* @brief Get Word1 of the unique device identifier (UID based on 96 bits)
* @retval UID[63:32]: Wafer number (UID[39:32]) & LOT_NUM[23:0] (UID[63:40])
*/
__STATIC_INLINE uint32_t LL_GetUID_Word1(void)
{
return (uint32_t)(READ_REG(*((uint32_t *)(UID_BASE_ADDRESS + 4U))));
}
/**
* @brief Get Word2 of the unique device identifier (UID based on 96 bits)
* @retval UID[95:64]: Lot number (ASCII encoded) - LOT_NUM[55:24]
*/
__STATIC_INLINE uint32_t LL_GetUID_Word2(void)
{
return (uint32_t)(READ_REG(*((uint32_t *)(UID_BASE_ADDRESS + 8U))));
}
/**
* @brief Get Flash memory size
* @note This bitfield indicates the size of the device Flash memory expressed in
* Kbytes. As an example, 0x040 corresponds to 64 Kbytes.
* @retval FLASH_SIZE[15:0]: Flash memory size
*/
__STATIC_INLINE uint32_t LL_GetFlashSize(void)
{
return (uint32_t)(READ_REG(*((uint32_t *)FLASHSIZE_BASE_ADDRESS)) & 0x0000FFFFUL);
}
/**
* @brief Get Package type
* @retval Returned value can be one of the following values:
* @arg @ref LL_UTILS_PACKAGETYPE_CSP100
* @arg @ref LL_UTILS_PACKAGETYPE_QFN68
* @arg @ref LL_UTILS_PACKAGETYPE_QFN48
*
*/
__STATIC_INLINE uint32_t LL_GetPackageType(void)
{
return (uint32_t)(READ_REG(*((uint32_t *)PACKAGE_BASE_ADDRESS)) & 0x1FU);
}
/**
* @}
*/
/** @defgroup UTILS_LL_EF_DELAY DELAY
* @{
*/
/**
* @brief This function configures the Cortex-M SysTick source of the time base.
* @param HCLKFrequency HCLK frequency in Hz (can be calculated thanks to RCC helper macro or function @ref LL_RCC_GetSystemClocksFreq (HCLK1_Frequency field))
* @note When a RTOS is used, it is recommended to avoid changing the SysTick
* configuration by calling this function, for a delay use rather osDelay RTOS service.
* @param Ticks Frequency of Ticks (Hz)
* @retval None
*/
__STATIC_INLINE void LL_InitTick(uint32_t HCLKFrequency, uint32_t Ticks)
{
/* Configure the SysTick to have interrupt in 1ms time base */
SysTick->LOAD = (uint32_t)((HCLKFrequency / Ticks) - 1UL); /* set reload register */
SysTick->VAL = 0UL; /* Load the SysTick Counter Value */
SysTick->CTRL = SysTick_CTRL_CLKSOURCE_Msk |
SysTick_CTRL_ENABLE_Msk; /* Enable the Systick Timer */
}
void LL_Init1msTick(uint32_t HCLKFrequency);
void LL_mDelay(uint32_t Delay);
/**
* @}
*/
/** @defgroup UTILS_EF_SYSTEM SYSTEM
* @{
*/
void LL_SetSystemCoreClock(uint32_t HCLKFrequency);
ErrorStatus LL_SetFlashLatency(uint32_t HCLK4Frequency);
ErrorStatus LL_PLL_ConfigSystemClock_MSI(LL_UTILS_PLLInitTypeDef *UTILS_PLLInitStruct,
LL_UTILS_ClkInitTypeDef *UTILS_ClkInitStruct);
ErrorStatus LL_PLL_ConfigSystemClock_HSI(LL_UTILS_PLLInitTypeDef *UTILS_PLLInitStruct,
LL_UTILS_ClkInitTypeDef *UTILS_ClkInitStruct);
ErrorStatus LL_PLL_ConfigSystemClock_HSE(uint32_t HSEBypass,
LL_UTILS_PLLInitTypeDef *UTILS_PLLInitStruct, LL_UTILS_ClkInitTypeDef *UTILS_ClkInitStruct);
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* STM32WBxx_LL_UTILS_H */

View File

@@ -0,0 +1,6 @@
This software component is provided to you as part of a software package and
applicable license terms are in the Package_license file. If you received this
software component outside of a package or without applicable license terms,
the terms of the BSD-3-Clause license shall apply.
You may obtain a copy of the BSD-3-Clause at:
https://opensource.org/licenses/BSD-3-Clause

View File

@@ -0,0 +1,852 @@
/**
******************************************************************************
* @file stm32wbxx_hal.c
* @author MCD Application Team
* @brief HAL module driver.
* This is the common part of the HAL initialization
******************************************************************************
* @attention
*
* Copyright (c) 2019 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
==============================================================================
##### How to use this driver #####
==============================================================================
[..]
The common HAL driver contains a set of generic and common APIs that can be
used by the PPP peripheral drivers and the user to start using the HAL.
[..]
The HAL contains two APIs' categories:
(+) Common HAL APIs
(+) Services HAL APIs
@endverbatim
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32wbxx_hal.h"
/** @addtogroup STM32WBxx_HAL_Driver
* @{
*/
/** @addtogroup HAL
* @brief HAL module driver
* @{
*/
#ifdef HAL_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @defgroup HAL_Private_Constants HAL Private Constants
* @{
*/
/**
* @brief STM32WBxx HAL Driver version number
*/
#define __STM32WBxx_HAL_VERSION_MAIN (0x01U) /*!< [31:24] main version */
#define __STM32WBxx_HAL_VERSION_SUB1 (0x0EU) /*!< [23:16] sub1 version */
#define __STM32WBxx_HAL_VERSION_SUB2 (0x06U) /*!< [15:8] sub2 version */
#define __STM32WBxx_HAL_VERSION_RC (0x00U) /*!< [7:0] release candidate */
#define __STM32WBxx_HAL_VERSION ((__STM32WBxx_HAL_VERSION_MAIN << 24U)\
|(__STM32WBxx_HAL_VERSION_SUB1 << 16U)\
|(__STM32WBxx_HAL_VERSION_SUB2 << 8U )\
|(__STM32WBxx_HAL_VERSION_RC))
#if defined(VREFBUF)
#define VREFBUF_TIMEOUT_VALUE 10U /* 10 ms */
#endif /* VREFBUF */
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/* Exported variables ---------------------------------------------------------*/
/** @defgroup HAL_Exported_Variables HAL Exported Variables
* @{
*/
__IO uint32_t uwTick;
uint32_t uwTickPrio = (1UL << __NVIC_PRIO_BITS); /* Invalid PRIO */
HAL_TickFreqTypeDef uwTickFreq = HAL_TICK_FREQ_DEFAULT; /* 1KHz */
/**
* @}
*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup HAL_Exported_Functions
* @{
*/
/** @addtogroup HAL_Exported_Functions_Group1
* @brief HAL Initialization and Configuration functions
*
@verbatim
===============================================================================
##### HAL Initialization and Configuration functions #####
===============================================================================
[..] This section provides functions allowing to:
(+) Initialize the Flash interface the NVIC allocation and initial time base
clock configuration.
(+) De-initialize common part of the HAL.
(+) Configure the time base source to have 1ms time base with a dedicated
Tick interrupt priority.
(++) SysTick timer is used by default as source of time base, but user
can eventually implement his proper time base source (a general purpose
timer for example or other time source), keeping in mind that Time base
duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and
handled in milliseconds basis.
(++) Time base configuration function (HAL_InitTick ()) is called automatically
at the beginning of the program after reset by HAL_Init() or at any time
when clock is configured, by HAL_RCC_ClockConfig().
(++) Source of time base is configured to generate interrupts at regular
time intervals. Care must be taken if HAL_Delay() is called from a
peripheral ISR process, the Tick interrupt line must have higher priority
(numerically lower) than the peripheral interrupt. Otherwise the caller
ISR process will be blocked.
(++) functions affecting time base configurations are declared as __weak
to make override possible in case of other implementations in user file.
@endverbatim
* @{
*/
/**
* @brief This function is used to initialize the HAL Library; it must be the first
* instruction to be executed in the main program (before to call any other
* HAL function), it performs the following:
* Configure the Flash prefetch, instruction and Data caches.
* Configures the SysTick to generate an interrupt each 1 millisecond,
* which is clocked by the MSI (at this stage, the clock is not yet
* configured and thus the system is running from the internal MSI at 4 MHz).
* Set NVIC Group Priority to 4.
* Calls the HAL_MspInit() callback function defined in user file
* "stm32wbxx_hal_msp.c" to do the global low level hardware initialization
*
* @note SysTick is used as time base for the HAL_Delay() function, the application
* need to ensure that the SysTick time base is always set to 1 millisecond
* to have correct HAL operation.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_Init(void)
{
HAL_StatusTypeDef status = HAL_OK;
/* Configure Flash prefetch, Instruction cache, Data cache */
/* Default configuration at reset is: */
/* - Prefetch disabled */
/* - Instruction cache enabled */
/* - Data cache enabled */
#if (INSTRUCTION_CACHE_ENABLE == 0U)
__HAL_FLASH_INSTRUCTION_CACHE_DISABLE();
#endif /* INSTRUCTION_CACHE_ENABLE */
#if (DATA_CACHE_ENABLE == 0U)
__HAL_FLASH_DATA_CACHE_DISABLE();
#endif /* DATA_CACHE_ENABLE */
#if (PREFETCH_ENABLE != 0U)
__HAL_FLASH_PREFETCH_BUFFER_ENABLE();
#endif /* PREFETCH_ENABLE */
/* Set Interrupt Group Priority */
HAL_NVIC_SetPriorityGrouping(NVIC_PRIORITYGROUP_4);
/* Use SysTick as time base source and configure 1ms tick (default clock after Reset is MSI) */
if (HAL_InitTick(TICK_INT_PRIORITY) != HAL_OK)
{
status = HAL_ERROR;
}
else
{
/* Init the low level hardware */
HAL_MspInit();
}
/* Return function status */
return status;
}
/**
* @brief This function de-Initializes common part of the HAL and stops the source of time base.
* @note This function is optional.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DeInit(void)
{
/* Reset of all peripherals */
__HAL_RCC_APB1_FORCE_RESET();
__HAL_RCC_APB1_RELEASE_RESET();
__HAL_RCC_APB2_FORCE_RESET();
__HAL_RCC_APB2_RELEASE_RESET();
__HAL_RCC_APB3_FORCE_RESET();
__HAL_RCC_APB3_RELEASE_RESET();
__HAL_RCC_AHB1_FORCE_RESET();
__HAL_RCC_AHB1_RELEASE_RESET();
__HAL_RCC_AHB2_FORCE_RESET();
__HAL_RCC_AHB2_RELEASE_RESET();
__HAL_RCC_AHB3_FORCE_RESET();
__HAL_RCC_AHB3_RELEASE_RESET();
/* De-Init the low level hardware */
HAL_MspDeInit();
/* Return function status */
return HAL_OK;
}
/**
* @brief Initialize the MSP.
* @retval None
*/
__weak void HAL_MspInit(void)
{
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_MspInit could be implemented in the user file
*/
}
/**
* @brief DeInitializes the MSP.
* @retval None
*/
__weak void HAL_MspDeInit(void)
{
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_MspDeInit could be implemented in the user file
*/
}
/**
* @brief This function configures the source of the time base:
* The time source is configured to have 1ms time base with a dedicated
* Tick interrupt priority.
* @note This function is called automatically at the beginning of program after
* reset by HAL_Init() or at any time when clock is reconfigured by HAL_RCC_ClockConfig().
* @note In the default implementation, SysTick timer is the source of time base.
* It is used to generate interrupts at regular time intervals.
* Care must be taken if HAL_Delay() is called from a peripheral ISR process,
* The SysTick interrupt must have higher priority (numerically lower)
* than the peripheral interrupt. Otherwise the caller ISR process will be blocked.
* The function is declared as __weak to be overwritten in case of other
* implementation in user file.
* @param TickPriority Tick interrupt priority.
* @retval HAL status
*/
__weak HAL_StatusTypeDef HAL_InitTick(uint32_t TickPriority)
{
HAL_StatusTypeDef status = HAL_OK;
if ((uint32_t)uwTickFreq != 0U)
{
/*Configure the SysTick to have interrupt in 1ms time basis*/
if (HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq() / (1000U / (uint32_t)uwTickFreq)) == 0U)
{
/* Configure the SysTick IRQ priority */
if (TickPriority < (1UL << __NVIC_PRIO_BITS))
{
HAL_NVIC_SetPriority(SysTick_IRQn, TickPriority, 0U);
uwTickPrio = TickPriority;
}
else
{
status = HAL_ERROR;
}
}
else
{
status = HAL_ERROR;
}
}
else
{
status = HAL_ERROR;
}
/* Return function status */
return status;
}
/**
* @}
*/
/** @addtogroup HAL_Exported_Functions_Group2
* @brief HAL Control functions
*
@verbatim
===============================================================================
##### HAL Control functions #####
===============================================================================
[..] This section provides functions allowing to:
(+) Provide a tick value in millisecond
(+) Provide a blocking delay in millisecond
(+) Suspend the time base source interrupt
(+) Resume the time base source interrupt
(+) Get the HAL API driver version
(+) Get the device revision identifier
(+) Get the device identifier
(+) Get the unique device identifier
@endverbatim
* @{
*/
/**
* @brief This function is called to increment a global variable "uwTick"
* used as application time base.
* @note In the default implementation, this variable is incremented each 1ms
* in SysTick ISR.
* @note This function is declared as __weak to be overwritten in case of other
* implementations in user file.
* @retval None
*/
__weak void HAL_IncTick(void)
{
uwTick += (uint32_t)uwTickFreq;
}
/**
* @brief Provides a tick value in millisecond.
* @note This function is declared as __weak to be overwritten in case of other
* implementations in user file.
* @retval tick value
*/
__weak uint32_t HAL_GetTick(void)
{
return uwTick;
}
/**
* @brief This function returns a tick priority.
* @retval tick priority
*/
uint32_t HAL_GetTickPrio(void)
{
return uwTickPrio;
}
/**
* @brief Set new tick Freq.
* @retval Status
*/
HAL_StatusTypeDef HAL_SetTickFreq(HAL_TickFreqTypeDef Freq)
{
HAL_StatusTypeDef status = HAL_OK;
HAL_TickFreqTypeDef prevTickFreq;
assert_param(IS_TICKFREQ(Freq));
if (uwTickFreq != Freq)
{
/* Back up uwTickFreq frequency */
prevTickFreq = uwTickFreq;
/* Update uwTickFreq global variable used by HAL_InitTick() */
uwTickFreq = Freq;
/* Apply the new tick Freq */
status = HAL_InitTick(uwTickPrio);
if (status != HAL_OK)
{
/* Restore previous tick frequency */
uwTickFreq = prevTickFreq;
}
}
return status;
}
/**
* @brief Return tick frequency.
* @retval Tick frequency.
* Value of @ref HAL_TickFreqTypeDef.
*/
HAL_TickFreqTypeDef HAL_GetTickFreq(void)
{
return uwTickFreq;
}
/**
* @brief This function provides minimum delay (in milliseconds) based
* on variable incremented.
* @note In the default implementation , SysTick timer is the source of time base.
* It is used to generate interrupts at regular time intervals where uwTick
* is incremented.
* @note This function is declared as __weak to be overwritten in case of other
* implementations in user file.
* @param Delay specifies the delay time length, in milliseconds.
* @retval None
*/
__weak void HAL_Delay(uint32_t Delay)
{
uint32_t tickstart = HAL_GetTick();
uint32_t wait = Delay;
/* Add a freq to guarantee minimum wait */
if (wait < HAL_MAX_DELAY)
{
wait += (uint32_t)(uwTickFreq);
}
while ((HAL_GetTick() - tickstart) < wait)
{
}
}
/**
* @brief Suspend Tick increment.
* @note In the default implementation , SysTick timer is the source of time base. It is
* used to generate interrupts at regular time intervals. Once HAL_SuspendTick()
* is called, the SysTick interrupt will be disabled and so Tick increment
* is suspended.
* @note This function is declared as __weak to be overwritten in case of other
* implementations in user file.
* @retval None
*/
__weak void HAL_SuspendTick(void)
{
/* Disable SysTick Interrupt */
CLEAR_BIT(SysTick->CTRL, SysTick_CTRL_TICKINT_Msk);
}
/**
* @brief Resume Tick increment.
* @note In the default implementation , SysTick timer is the source of time base. It is
* used to generate interrupts at regular time intervals. Once HAL_ResumeTick()
* is called, the SysTick interrupt will be enabled and so Tick increment
* is resumed.
* @note This function is declared as __weak to be overwritten in case of other
* implementations in user file.
* @retval None
*/
__weak void HAL_ResumeTick(void)
{
/* Enable SysTick Interrupt */
SET_BIT(SysTick->CTRL, SysTick_CTRL_TICKINT_Msk);
}
/**
* @brief Returns the HAL revision
* @retval version : 0xXYZR (8bits for each decimal, R for RC)
*/
uint32_t HAL_GetHalVersion(void)
{
return __STM32WBxx_HAL_VERSION;
}
/**
* @brief Returns the device revision identifier.
* @retval Device revision identifier
*/
uint32_t HAL_GetREVID(void)
{
return (LL_DBGMCU_GetRevisionID());
}
/**
* @brief Returns the device identifier.
* @retval Device identifier
*/
uint32_t HAL_GetDEVID(void)
{
return (LL_DBGMCU_GetDeviceID());
}
/**
* @brief Return the first word of the unique device identifier (UID based on 96 bits)
* @retval Device identifier
*/
uint32_t HAL_GetUIDw0(void)
{
return (READ_REG(*((uint32_t *)UID_BASE)));
}
/**
* @brief Return the second word of the unique device identifier (UID based on 96 bits)
* @retval Device identifier
*/
uint32_t HAL_GetUIDw1(void)
{
return (READ_REG(*((uint32_t *)(UID_BASE + 4U))));
}
/**
* @brief Return the third word of the unique device identifier (UID based on 96 bits)
* @retval Device identifier
*/
uint32_t HAL_GetUIDw2(void)
{
return (READ_REG(*((uint32_t *)(UID_BASE + 8U))));
}
/**
* @}
*/
/** @addtogroup HAL_Exported_Functions_Group3
* @brief HAL Debug functions
*
@verbatim
===============================================================================
##### HAL Debug functions #####
===============================================================================
[..] This section provides functions allowing to:
(+) Enable/Disable Debug module during SLEEP mode
(+) Enable/Disable Debug module during STOP mode
(+) Enable/Disable Debug module during STANDBY mode
@endverbatim
* @{
*/
/**
* @brief Enable the Debug Module during SLEEP mode
* @retval None
*/
void HAL_DBGMCU_EnableDBGSleepMode(void)
{
LL_DBGMCU_EnableDBGSleepMode();
}
/**
* @brief Disable the Debug Module during SLEEP mode
* @retval None
*/
void HAL_DBGMCU_DisableDBGSleepMode(void)
{
LL_DBGMCU_DisableDBGSleepMode();
}
/**
* @brief Enable the Debug Module during STOP mode
* @retval None
*/
void HAL_DBGMCU_EnableDBGStopMode(void)
{
LL_DBGMCU_EnableDBGStopMode();
}
/**
* @brief Disable the Debug Module during STOP mode
* @retval None
*/
void HAL_DBGMCU_DisableDBGStopMode(void)
{
LL_DBGMCU_DisableDBGStopMode();
}
/**
* @brief Enable the Debug Module during STANDBY mode
* @retval None
*/
void HAL_DBGMCU_EnableDBGStandbyMode(void)
{
LL_DBGMCU_EnableDBGStandbyMode();
}
/**
* @brief Disable the Debug Module during STANDBY mode
* @retval None
*/
void HAL_DBGMCU_DisableDBGStandbyMode(void)
{
LL_DBGMCU_DisableDBGStandbyMode();
}
/**
* @}
*/
/** @defgroup HAL_Exported_Functions_Group4 HAL System Configuration functions
* @brief HAL System Configuration functions
*
@verbatim
===============================================================================
##### HAL system configuration functions #####
===============================================================================
[..] This section provides functions allowing to:
(+) Start a hardware SRAM2 erase operation
(+) Disable CPU2 SRAM fetch (execution)
(+) Configure the Voltage reference buffer
(+) Enable/Disable the Voltage reference buffer
(+) Enable/Disable the I/O analog switch voltage booster
(+) Enable/Disable the access for security IP (AES1, AES2, PKA, RNG)
(+) Enable/Disable the access for security IP (AES2, PKA, RNG)
@endverbatim
* @{
*/
/**
* @brief Start a hardware SRAM2 erase operation.
* @note As long as SRAM2 is not erased the SRAM2ER bit will be set.
* This bit is automatically reset at the end of the SRAM2 erase operation.
* @retval None
*/
void HAL_SYSCFG_SRAM2Erase(void)
{
/* unlock the write protection of the SRAM2ER bit */
__HAL_SYSCFG_SRAM2_WRP_UNLOCK();
/* Starts a hardware SRAM2 erase operation*/
__HAL_SYSCFG_SRAM2_ERASE();
}
/**
* @brief Disable CPU2 SRAM fetch (execution) (This bit can be set by Firmware
* and will only be reset by a Hardware reset, including a reset after Standby.)
* @note Firmware writing 0 has no effect.
* @retval None
*/
void HAL_SYSCFG_DisableSRAMFetch(void)
{
LL_SYSCFG_DisableSRAMFetch();
}
/**
* @brief Check if CPU2 SRAM fetch is enabled
* @retval State of bit (1 or 0).
*/
uint32_t HAL_SYSCFG_IsEnabledSRAMFetch(void)
{
return (LL_SYSCFG_IsEnabledSRAMFetch());
}
#if defined(VREFBUF)
/**
* @brief Configure the internal voltage reference buffer voltage scale.
* @param VoltageScaling specifies the output voltage to achieve
* This parameter can be one of the following values:
* @arg @ref SYSCFG_VREFBUF_VOLTAGE_SCALE0 : VREF_OUT1 around 2.048 V.
* This requires VDDA equal to or higher than 2.4 V.
* @arg @ref SYSCFG_VREFBUF_VOLTAGE_SCALE1 : VREF_OUT1 around 2.5 V.
* This requires VDDA equal to or higher than 2.8 V.
* @note Retrieve the TrimmingValue from factory located at
* VREFBUF_SC0_CAL_ADDR or VREFBUF_SC1_CAL_ADDR addresses.
* @retval None
*/
void HAL_SYSCFG_VREFBUF_VoltageScalingConfig(uint32_t VoltageScaling)
{
uint32_t TrimmingValue;
/* Check the parameters */
assert_param(IS_SYSCFG_VREFBUF_VOLTAGE_SCALE(VoltageScaling));
LL_VREFBUF_SetVoltageScaling(VoltageScaling);
/* Restrieve Calibration data and store them into trimming field */
if (VoltageScaling == SYSCFG_VREFBUF_VOLTAGE_SCALE0)
{
TrimmingValue = ((uint32_t) * VREFBUF_SC0_CAL_ADDR) & 0x3FU;
}
else
{
TrimmingValue = ((uint32_t) * VREFBUF_SC1_CAL_ADDR) & 0x3FU;
}
assert_param(IS_SYSCFG_VREFBUF_TRIMMING(TrimmingValue));
HAL_SYSCFG_VREFBUF_TrimmingConfig(TrimmingValue);
}
/**
* @brief Configure the internal voltage reference buffer high impedance mode.
* @param Mode specifies the high impedance mode
* This parameter can be one of the following values:
* @arg @ref SYSCFG_VREFBUF_HIGH_IMPEDANCE_DISABLE : VREF+ pin is internally connect to VREFINT output.
* @arg @ref SYSCFG_VREFBUF_HIGH_IMPEDANCE_ENABLE : VREF+ pin is high impedance.
* @retval HAL_OK/HAL_TIMEOUT
*/
void HAL_SYSCFG_VREFBUF_HighImpedanceConfig(uint32_t Mode)
{
/* Check the parameters */
assert_param(IS_SYSCFG_VREFBUF_HIGH_IMPEDANCE(Mode));
MODIFY_REG(VREFBUF->CSR, VREFBUF_CSR_HIZ, Mode);
}
/**
* @brief Tune the Internal Voltage Reference buffer (VREFBUF).
* @note Each VrefBuf voltage scale is calibrated in production for each device,
* data stored in flash memory.
* Function @ref HAL_SYSCFG_VREFBUF_VoltageScalingConfig retrieves and
* applies this calibration data as trimming value at each scale change.
* Therefore, optionally, function @ref HAL_SYSCFG_VREFBUF_TrimmingConfig
* can be used in a second time to fine tune the trimming.
* @param TrimmingValue specifies trimming code for VREFBUF calibration
* This parameter can be a number between Min_Data = 0x00 and Max_Data = 0x3F
* @retval None
*/
void HAL_SYSCFG_VREFBUF_TrimmingConfig(uint32_t TrimmingValue)
{
/* Check the parameters */
assert_param(IS_SYSCFG_VREFBUF_TRIMMING(TrimmingValue));
LL_VREFBUF_SetTrimming(TrimmingValue);
}
/**
* @brief Enable the Internal Voltage Reference buffer (VREFBUF).
* @retval HAL_OK/HAL_TIMEOUT
*/
HAL_StatusTypeDef HAL_SYSCFG_EnableVREFBUF(void)
{
uint32_t tickstart;
LL_VREFBUF_Enable();
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait for VRR bit */
while (READ_BIT(VREFBUF->CSR, VREFBUF_CSR_VRR) == 0U)
{
if ((HAL_GetTick() - tickstart) > VREFBUF_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
return HAL_OK;
}
/**
* @brief Disable the Internal Voltage Reference buffer (VREFBUF).
*
* @retval None
*/
void HAL_SYSCFG_DisableVREFBUF(void)
{
LL_VREFBUF_Disable();
}
#endif /* VREFBUF */
/**
* @brief Enable the I/O analog switch voltage booster
*
* @retval None
*/
void HAL_SYSCFG_EnableIOBooster(void)
{
LL_SYSCFG_EnableAnalogBooster();
}
/**
* @brief Disable the I/O analog switch voltage booster
*
* @retval None
*/
void HAL_SYSCFG_DisableIOBooster(void)
{
LL_SYSCFG_DisableAnalogBooster();
}
#if defined(SYSCFG_CFGR1_ANASWVDD)
/**
* @brief Enable the I/O analog switch supplied by VDD
* @note To be used when I/O analog switch voltage booster is not enabled
* @retval None
*/
void HAL_SYSCFG_EnableIOVdd(void)
{
LL_SYSCFG_EnableAnalogGpioSwitch();
}
/**
* @brief Disable the I/O analog switch supplied by VDD
*
* @retval None
*/
void HAL_SYSCFG_DisableIOVdd(void)
{
LL_SYSCFG_DisableAnalogGpioSwitch();
}
#endif /* SYSCFG_CFGR1_ANASWVDD */
/**
* @brief Enable the access for security IP
* @note When the system is secure (ESE = 1), this register provides write access security and can
* only be written by the CPU2. A write access from the CPU1 will be ignored and a bus error
* is generated.
* @param SecurityAccess This parameter can be a combination of the following values:
* @arg @ref HAL_SYSCFG_SECURE_ACCESS_AES1
* @arg @ref HAL_SYSCFG_SECURE_ACCESS_AES2
* @arg @ref HAL_SYSCFG_SECURE_ACCESS_PKA
* @arg @ref HAL_SYSCFG_SECURE_ACCESS_RNG
* @retval None
*/
void HAL_SYSCFG_EnableSecurityAccess(uint32_t SecurityAccess)
{
/* Check the parameters */
assert_param(IS_SYSCFG_SECURITY_ACCESS(SecurityAccess));
LL_SYSCFG_EnableSecurityAccess(SecurityAccess);
}
/**
* @brief Disable the access for security IP
* @note When the system is secure (ESE = 1), this register provides write access security and can
* only be written by the CPU2. A write access from the CPU1 will be ignored and a bus error
* is generated.
* @param SecurityAccess This parameter can be a combination of the following values:
* @arg @ref HAL_SYSCFG_SECURE_ACCESS_AES1
* @arg @ref HAL_SYSCFG_SECURE_ACCESS_AES2
* @arg @ref HAL_SYSCFG_SECURE_ACCESS_PKA
* @arg @ref HAL_SYSCFG_SECURE_ACCESS_RNG
* @retval None
*/
void HAL_SYSCFG_DisableSecurityAccess(uint32_t SecurityAccess)
{
/* Check the parameters */
assert_param(IS_SYSCFG_SECURITY_ACCESS(SecurityAccess));
LL_SYSCFG_DisableSecurityAccess(SecurityAccess);
}
/**
* @brief Indicate if access for security IP is enabled
* @param SecurityAccess This parameter can be one of the following values:
* @arg @ref HAL_SYSCFG_SECURE_ACCESS_AES1
* @arg @ref HAL_SYSCFG_SECURE_ACCESS_AES2
* @arg @ref HAL_SYSCFG_SECURE_ACCESS_PKA
* @arg @ref HAL_SYSCFG_SECURE_ACCESS_RNG
* @retval State of bit (1 or 0).
*/
uint32_t HAL_SYSCFG_IsEnabledSecurityAccess(uint32_t SecurityAccess)
{
return (LL_SYSCFG_IsEnabledSecurityAccess(SecurityAccess));
}
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/

View File

@@ -0,0 +1,505 @@
/**
******************************************************************************
* @file stm32wbxx_hal_cortex.c
* @author MCD Application Team
* @brief CORTEX HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the CORTEX:
* + Initialization and Configuration functions
* + Peripheral Control functions
******************************************************************************
* @attention
*
* Copyright (c) 2019 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
==============================================================================
##### How to use this driver #####
==============================================================================
[..]
*** How to configure Interrupts using CORTEX HAL driver ***
===========================================================
[..]
This section provides functions allowing to configure the NVIC interrupts (IRQ).
The Cortex M0+ exceptions are managed by CMSIS functions.
(#) Enable and Configure the priority of the selected IRQ Channels.
The priority can be 0..3.
-@- Lower priority values gives higher priority.
-@- Priority Order:
(#@) Lowest priority.
(#@) Lowest hardware priority (IRQn position).
(#) Configure the priority of the selected IRQ Channels using HAL_NVIC_SetPriority()
(#) Enable the selected IRQ Channels using HAL_NVIC_EnableIRQ()
-@- Negative value of IRQn_Type are not allowed.
*** How to configure Systick using CORTEX HAL driver ***
========================================================
[..]
Setup SysTick Timer for time base.
(+) The HAL_SYSTICK_Config() function calls the SysTick_Config() function which
is a CMSIS function that:
(++) Configures the SysTick Reload register with value passed as function parameter.
(++) Configures the SysTick IRQ priority to the lowest value (0x03).
(++) Resets the SysTick Counter register.
(++) Configures the SysTick Counter clock source to be Core Clock Source (HCLK).
(++) Enables the SysTick Interrupt.
(++) Starts the SysTick Counter.
(+) You can change the SysTick Clock source to be HCLK_Div8 by calling the macro
__HAL_CORTEX_SYSTICKCLK_CONFIG(SYSTICK_CLKSOURCE_HCLK_DIV8) just after the
HAL_SYSTICK_Config() function call. The __HAL_CORTEX_SYSTICKCLK_CONFIG() macro is defined
inside the stm32wbxx_hal_cortex.h file.
(+) You can change the SysTick IRQ priority by calling the
HAL_NVIC_SetPriority(SysTick_IRQn,...) function just after the HAL_SYSTICK_Config() function
call. The HAL_NVIC_SetPriority() call the NVIC_SetPriority() function which is a CMSIS function.
(+) To adjust the SysTick time base, use the following formula:
Reload Value = SysTick Counter Clock (Hz) x Desired Time base (s)
(++) Reload Value is the parameter to be passed for HAL_SYSTICK_Config() function
(++) Reload Value should not exceed 0xFFFFFF
@endverbatim
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32wbxx_hal.h"
/** @addtogroup STM32WBxx_HAL_Driver
* @{
*/
/** @addtogroup CORTEX
* @{
*/
#ifdef HAL_CORTEX_MODULE_ENABLED
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/* Private macros ------------------------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup CORTEX_Exported_Functions
* @{
*/
/** @addtogroup CORTEX_Exported_Functions_Group1
* @brief Initialization and Configuration functions
*
@verbatim
==============================================================================
##### Initialization and Configuration functions #####
==============================================================================
[..]
This section provides the CORTEX HAL driver functions allowing to configure Interrupts
SysTick functionalities
@endverbatim
* @{
*/
/**
* @brief Set the priority grouping field (pre-emption priority and subpriority)
* using the required unlock sequence.
* @param PriorityGroup The priority grouping bits length.
* This parameter can be one of the following values:
* @arg NVIC_PRIORITYGROUP_0: 0 bit for pre-emption priority,
* 4 bits for subpriority
* @arg NVIC_PRIORITYGROUP_1: 1 bit for pre-emption priority,
* 3 bits for subpriority
* @arg NVIC_PRIORITYGROUP_2: 2 bits for pre-emption priority,
* 2 bits for subpriority
* @arg NVIC_PRIORITYGROUP_3: 3 bits for pre-emption priority,
* 1 bit for subpriority
* @arg NVIC_PRIORITYGROUP_4: 4 bits for pre-emption priority,
* 0 bit for subpriority
* @note When the NVIC_PriorityGroup_0 is selected, IRQ pre-emption is no more possible.
* The pending IRQ priority will be managed only by the subpriority.
* @retval None
*/
void HAL_NVIC_SetPriorityGrouping(uint32_t PriorityGroup)
{
/* Check the parameters */
assert_param(IS_NVIC_PRIORITY_GROUP(PriorityGroup));
/* Set the PRIGROUP[10:8] bits according to the PriorityGroup parameter value */
NVIC_SetPriorityGrouping(PriorityGroup);
}
/**
* @brief Set the priority of an interrupt.
* @param IRQn External interrupt number.
* This parameter can be an enumerator of IRQn_Type enumeration
* (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32wbxxxx.h))
* @param PreemptPriority The pre-emption priority for the IRQn channel.
* This parameter can be a value between 0 and 15
* A lower priority value indicates a higher priority
* @param SubPriority the subpriority level for the IRQ channel.
* This parameter can be a value between 0 and 15
* A lower priority value indicates a higher priority.
* @retval None
*/
void HAL_NVIC_SetPriority(IRQn_Type IRQn, uint32_t PreemptPriority, uint32_t SubPriority)
{
uint32_t prioritygroup;
/* Check the parameters */
assert_param(IS_NVIC_SUB_PRIORITY(SubPriority));
assert_param(IS_NVIC_PREEMPTION_PRIORITY(PreemptPriority));
prioritygroup = NVIC_GetPriorityGrouping();
NVIC_SetPriority(IRQn, NVIC_EncodePriority(prioritygroup, PreemptPriority, SubPriority));
}
/**
* @brief Enable a device specific interrupt in the NVIC interrupt controller.
* @param IRQn External interrupt number.
* This parameter can be an enumerator of IRQn_Type enumeration
* (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32wbxxxx.h))
* @retval None
*/
void HAL_NVIC_EnableIRQ(IRQn_Type IRQn)
{
/* Check the parameters */
assert_param(IS_NVIC_DEVICE_IRQ(IRQn));
/* Enable interrupt */
NVIC_EnableIRQ(IRQn);
}
/**
* @brief Disable a device specific interrupt in the NVIC interrupt controller.
* @param IRQn External interrupt number.
* This parameter can be an enumerator of IRQn_Type enumeration
* (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32wbxxxx.h))
* @retval None
*/
void HAL_NVIC_DisableIRQ(IRQn_Type IRQn)
{
/* Check the parameters */
assert_param(IS_NVIC_DEVICE_IRQ(IRQn));
/* Disable interrupt */
NVIC_DisableIRQ(IRQn);
}
/**
* @brief Initiate a system reset request to reset the MCU.
* @retval None
*/
void HAL_NVIC_SystemReset(void)
{
/* System Reset */
NVIC_SystemReset();
}
/**
* @brief Initialize the System Timer with interrupt enabled and start the System Tick Timer (SysTick):
* Counter is in free running mode to generate periodic interrupts.
* @param TicksNumb Specifies the ticks Number of ticks between two interrupts.
* @retval status: - 0 Function succeeded.
* - 1 Function failed.
*/
uint32_t HAL_SYSTICK_Config(uint32_t TicksNumb)
{
return SysTick_Config(TicksNumb);
}
/**
* @}
*/
/** @addtogroup CORTEX_Exported_Functions_Group2
* @brief Cortex control functions
*
@verbatim
==============================================================================
##### Peripheral Control functions #####
==============================================================================
[..]
This subsection provides a set of functions allowing to control the CORTEX
(NVIC, SYSTICK, MPU) functionalities.
@endverbatim
* @{
*/
/**
* @brief Get the priority grouping field from the NVIC Interrupt Controller.
* @retval Priority grouping field (SCB->AIRCR [10:8] PRIGROUP field)
*/
uint32_t HAL_NVIC_GetPriorityGrouping(void)
{
/* Get the PRIGROUP[10:8] field value */
return NVIC_GetPriorityGrouping();
}
/**
* @brief Get the priority of an interrupt.
* @param IRQn External interrupt number.
* This parameter can be an enumerator of IRQn_Type enumeration
* (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32wbxxxx.h))
* @param PriorityGroup the priority grouping bits length.
* This parameter can be one of the following values:
* @arg NVIC_PRIORITYGROUP_0: 0 bit for pre-emption priority,
* 4 bits for subpriority
* @arg NVIC_PRIORITYGROUP_1: 1 bit for pre-emption priority,
* 3 bits for subpriority
* @arg NVIC_PRIORITYGROUP_2: 2 bits for pre-emption priority,
* 2 bits for subpriority
* @arg NVIC_PRIORITYGROUP_3: 3 bits for pre-emption priority,
* 1 bit for subpriority
* @arg NVIC_PRIORITYGROUP_4: 4 bits for pre-emption priority,
* 0 bit for subpriority
* @param pPreemptPriority Pointer on the Preemptive priority value (starting from 0).
* @param pSubPriority Pointer on the Subpriority value (starting from 0).
* @retval None
*/
void HAL_NVIC_GetPriority(IRQn_Type IRQn, uint32_t PriorityGroup, uint32_t *pPreemptPriority, uint32_t *pSubPriority)
{
/* Check the parameters */
assert_param(IS_NVIC_PRIORITY_GROUP(PriorityGroup));
/* Get priority for Cortex-M system or device specific interrupts */
NVIC_DecodePriority(NVIC_GetPriority(IRQn), PriorityGroup, pPreemptPriority, pSubPriority);
}
/**
* @brief Set Pending bit of an external interrupt.
* @param IRQn External interrupt number
* This parameter can be an enumerator of IRQn_Type enumeration
* (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32wbxxxx.h))
* @retval None
*/
void HAL_NVIC_SetPendingIRQ(IRQn_Type IRQn)
{
/* Check the parameters */
assert_param(IS_NVIC_DEVICE_IRQ(IRQn));
/* Set interrupt pending */
NVIC_SetPendingIRQ(IRQn);
}
/**
* @brief Get Pending Interrupt (read the pending register in the NVIC
* and return the pending bit for the specified interrupt).
* @param IRQn External interrupt number.
* This parameter can be an enumerator of IRQn_Type enumeration
* (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32wbxxxx.h))
* @retval status: - 0 Interrupt status is not pending.
* - 1 Interrupt status is pending.
*/
uint32_t HAL_NVIC_GetPendingIRQ(IRQn_Type IRQn)
{
/* Check the parameters */
assert_param(IS_NVIC_DEVICE_IRQ(IRQn));
/* Return 1 if pending else 0 */
return NVIC_GetPendingIRQ(IRQn);
}
/**
* @brief Clear the pending bit of an external interrupt.
* @param IRQn External interrupt number.
* This parameter can be an enumerator of IRQn_Type enumeration
* (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32wbxxxx.h))
* @retval None
*/
void HAL_NVIC_ClearPendingIRQ(IRQn_Type IRQn)
{
/* Check the parameters */
assert_param(IS_NVIC_DEVICE_IRQ(IRQn));
/* Clear pending interrupt */
NVIC_ClearPendingIRQ(IRQn);
}
/**
* @brief Configure the SysTick clock source.
* @param CLKSource specifies the SysTick clock source.
* This parameter can be one of the following values:
* @arg SYSTICK_CLKSOURCE_HCLK_DIV8: AHB clock divided by 8 selected as SysTick clock source.
* @arg SYSTICK_CLKSOURCE_HCLK: AHB clock selected as SysTick clock source.
* @retval None
*/
void HAL_SYSTICK_CLKSourceConfig(uint32_t CLKSource)
{
/* Check the parameters */
assert_param(IS_SYSTICK_CLK_SOURCE(CLKSource));
if (CLKSource == SYSTICK_CLKSOURCE_HCLK)
{
SysTick->CTRL |= SYSTICK_CLKSOURCE_HCLK;
}
else
{
SysTick->CTRL &= ~SYSTICK_CLKSOURCE_HCLK;
}
}
/**
* @brief Handle SYSTICK interrupt request.
* @retval None
*/
void HAL_SYSTICK_IRQHandler(void)
{
HAL_SYSTICK_Callback();
}
/**
* @brief SYSTICK callback.
* @retval None
*/
__weak void HAL_SYSTICK_Callback(void)
{
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_SYSTICK_Callback could be implemented in the user file
*/
}
#if (__MPU_PRESENT == 1U)
/**
* @brief Disables the MPU
* @retval None
*/
void HAL_MPU_Disable(void)
{
/* Make sure outstanding transfers are done */
__DMB();
/* Disable fault exceptions */
SCB->SHCSR &= ~SCB_SHCSR_MEMFAULTENA_Msk;
/* Disable the MPU and clear the control register*/
MPU->CTRL = 0U;
}
/**
* @brief Enable the MPU.
* @param MPU_Control: Specifies the control mode of the MPU during hard fault,
* NMI, FAULTMASK and privileged access to the default memory
* This parameter can be one of the following values:
* @arg MPU_HFNMI_PRIVDEF_NONE
* @arg MPU_HARDFAULT_NMI
* @arg MPU_PRIVILEGED_DEFAULT
* @arg MPU_HFNMI_PRIVDEF
* @retval None
*/
void HAL_MPU_Enable(uint32_t MPU_Control)
{
/* Enable the MPU */
MPU->CTRL = (MPU_Control | MPU_CTRL_ENABLE_Msk);
/* Enable fault exceptions */
SCB->SHCSR |= SCB_SHCSR_MEMFAULTENA_Msk;
/* Ensure MPU setting take effects */
__DSB();
__ISB();
}
/**
* @brief Enable the MPU Region.
* @retval None
*/
void HAL_MPU_EnableRegion(uint32_t RegionNumber)
{
/* Check the parameters */
assert_param(IS_MPU_REGION_NUMBER(RegionNumber));
/* Set the Region number */
MPU->RNR = RegionNumber;
/* Enable the Region */
SET_BIT(MPU->RASR, MPU_RASR_ENABLE_Msk);
}
/**
* @brief Disable the MPU Region.
* @retval None
*/
void HAL_MPU_DisableRegion(uint32_t RegionNumber)
{
/* Check the parameters */
assert_param(IS_MPU_REGION_NUMBER(RegionNumber));
/* Set the Region number */
MPU->RNR = RegionNumber;
/* Disable the Region */
CLEAR_BIT(MPU->RASR, MPU_RASR_ENABLE_Msk);
}
/**
* @brief Initialize and configure the Region and the memory to be protected.
* @param MPU_Init Pointer to a MPU_Region_InitTypeDef structure that contains
* the initialization and configuration information.
* @retval None
*/
void HAL_MPU_ConfigRegion(MPU_Region_InitTypeDef *MPU_Init)
{
/* Check the parameters */
assert_param(IS_MPU_REGION_NUMBER(MPU_Init->Number));
assert_param(IS_MPU_REGION_ENABLE(MPU_Init->Enable));
assert_param(IS_MPU_INSTRUCTION_ACCESS(MPU_Init->DisableExec));
assert_param(IS_MPU_REGION_PERMISSION_ATTRIBUTE(MPU_Init->AccessPermission));
assert_param(IS_MPU_TEX_LEVEL(MPU_Init->TypeExtField));
assert_param(IS_MPU_ACCESS_SHAREABLE(MPU_Init->IsShareable));
assert_param(IS_MPU_ACCESS_CACHEABLE(MPU_Init->IsCacheable));
assert_param(IS_MPU_ACCESS_BUFFERABLE(MPU_Init->IsBufferable));
assert_param(IS_MPU_SUB_REGION_DISABLE(MPU_Init->SubRegionDisable));
assert_param(IS_MPU_REGION_SIZE(MPU_Init->Size));
/* Set the Region number */
MPU->RNR = MPU_Init->Number;
/* Disable the Region */
CLEAR_BIT(MPU->RASR, MPU_RASR_ENABLE_Msk);
/* Apply configuration */
MPU->RBAR = MPU_Init->BaseAddress;
MPU->RASR = ((uint32_t)MPU_Init->DisableExec << MPU_RASR_XN_Pos) |
((uint32_t)MPU_Init->AccessPermission << MPU_RASR_AP_Pos) |
((uint32_t)MPU_Init->TypeExtField << MPU_RASR_TEX_Pos) |
((uint32_t)MPU_Init->IsShareable << MPU_RASR_S_Pos) |
((uint32_t)MPU_Init->IsCacheable << MPU_RASR_C_Pos) |
((uint32_t)MPU_Init->IsBufferable << MPU_RASR_B_Pos) |
((uint32_t)MPU_Init->SubRegionDisable << MPU_RASR_SRD_Pos) |
((uint32_t)MPU_Init->Size << MPU_RASR_SIZE_Pos) |
((uint32_t)MPU_Init->Enable << MPU_RASR_ENABLE_Pos);
}
#endif /* __MPU_PRESENT */
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_CORTEX_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,295 @@
/**
******************************************************************************
* @file stm32wbxx_hal_dma_ex.c
* @author MCD Application Team
* @brief DMA Extension HAL module driver
* This file provides firmware functions to manage the following
* functionalities of the DMA Extension peripheral:
* + Extended features functions
*
******************************************************************************
* @attention
*
* Copyright (c) 2019 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
==============================================================================
##### How to use this driver #####
==============================================================================
[..]
The DMA Extension HAL driver can be used as follows:
(+) Configure the DMA_MUX Synchronization Block using HAL_DMAEx_ConfigMuxSync function.
(+) Configure the DMA_MUX Request Generator Block using HAL_DMAEx_ConfigMuxRequestGenerator function.
Functions HAL_DMAEx_EnableMuxRequestGenerator and HAL_DMAEx_DisableMuxRequestGenerator can then be used
to respectively enable/disable the request generator.
(+) To handle the DMAMUX Interrupts, the function HAL_DMAEx_MUX_IRQHandler should be called from
the DMAMUX IRQ handler i.e DMAMUX1_OVR_IRQHandler.
As only one interrupt line is available for all DMAMUX channels and request generators , HAL_DMAEx_MUX_IRQHandler should be
called with, as parameter, the appropriate DMA handle as many as used DMAs in the user project
(exception done if a given DMA is not using the DMAMUX SYNC block neither a request generator)
@endverbatim
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32wbxx_hal.h"
/** @addtogroup STM32WBxx_HAL_Driver
* @{
*/
/** @defgroup DMAEx DMAEx
* @brief DMA Extended HAL module driver
* @{
*/
#ifdef HAL_DMA_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private Constants ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup DMAEx_Exported_Functions DMAEx Exported Functions
* @{
*/
/** @defgroup DMAEx_Exported_Functions_Group1 DMAEx Extended features functions
* @brief Extended features functions
*
@verbatim
===============================================================================
##### Extended features functions #####
===============================================================================
[..] This section provides functions allowing to:
(+) Configure the DMAMUX Synchronization Block using HAL_DMAEx_ConfigMuxSync function.
(+) Configure the DMAMUX Request Generator Block using HAL_DMAEx_ConfigMuxRequestGenerator function.
Functions HAL_DMAEx_EnableMuxRequestGenerator and HAL_DMAEx_DisableMuxRequestGenerator can then be used
to respectively enable/disable the request generator.
@endverbatim
* @{
*/
/**
* @brief Configure the DMAMUX synchronization parameters for a given DMA channel (instance).
* @param hdma Pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA channel.
* @param pSyncConfig Pointer to HAL_DMA_MuxSyncConfigTypeDef : contains the DMAMUX synchronization parameters
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DMAEx_ConfigMuxSync(DMA_HandleTypeDef *hdma, HAL_DMA_MuxSyncConfigTypeDef *pSyncConfig)
{
/* Check the parameters */
assert_param(IS_DMA_ALL_INSTANCE(hdma->Instance));
assert_param(IS_DMAMUX_SYNC_SIGNAL_ID(pSyncConfig->SyncSignalID));
assert_param(IS_DMAMUX_SYNC_POLARITY(pSyncConfig-> SyncPolarity));
assert_param(IS_DMAMUX_SYNC_STATE(pSyncConfig->SyncEnable));
assert_param(IS_DMAMUX_SYNC_EVENT(pSyncConfig->EventEnable));
assert_param(IS_DMAMUX_SYNC_REQUEST_NUMBER(pSyncConfig->RequestNumber));
/*Check if the DMA state is ready */
if (hdma->State == HAL_DMA_STATE_READY)
{
/* Process Locked */
__HAL_LOCK(hdma);
/* Set the new synchronization parameters (and keep the request ID filled during the Init)*/
MODIFY_REG(hdma->DMAmuxChannel->CCR, \
(DMAMUX_CxCR_SYNC_ID | DMAMUX_CxCR_NBREQ | DMAMUX_CxCR_SPOL | DMAMUX_CxCR_SE | DMAMUX_CxCR_EGE), \
(pSyncConfig->SyncSignalID | \
((pSyncConfig->RequestNumber - 1U) << DMAMUX_CxCR_NBREQ_Pos) | \
pSyncConfig->SyncPolarity | \
((uint32_t)pSyncConfig->SyncEnable << DMAMUX_CxCR_SE_Pos) | \
((uint32_t)pSyncConfig->EventEnable << DMAMUX_CxCR_EGE_Pos)));
/* Process UnLocked */
__HAL_UNLOCK(hdma);
return HAL_OK;
}
else
{
/*DMA State not Ready*/
return HAL_ERROR;
}
}
/**
* @brief Configure the DMAMUX request generator block used by the given DMA channel (instance).
* @param hdma Pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA channel.
* @param pRequestGeneratorConfig Pointer to HAL_DMA_MuxRequestGeneratorConfigTypeDef :
* contains the request generator parameters.
*
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DMAEx_ConfigMuxRequestGenerator(DMA_HandleTypeDef *hdma,
HAL_DMA_MuxRequestGeneratorConfigTypeDef *pRequestGeneratorConfig)
{
/* Check the parameters */
assert_param(IS_DMA_ALL_INSTANCE(hdma->Instance));
assert_param(IS_DMAMUX_REQUEST_GEN_SIGNAL_ID(pRequestGeneratorConfig->SignalID));
assert_param(IS_DMAMUX_REQUEST_GEN_POLARITY(pRequestGeneratorConfig->Polarity));
assert_param(IS_DMAMUX_REQUEST_GEN_REQUEST_NUMBER(pRequestGeneratorConfig->RequestNumber));
/* check if the DMA state is ready
and DMA is using a DMAMUX request generator block
*/
if ((hdma->State == HAL_DMA_STATE_READY) && (hdma->DMAmuxRequestGen != 0U))
{
/* Process Locked */
__HAL_LOCK(hdma);
/* Set the request generator new parameters*/
WRITE_REG(hdma->DMAmuxRequestGen->RGCR, (pRequestGeneratorConfig->SignalID | \
pRequestGeneratorConfig->Polarity | \
((pRequestGeneratorConfig->RequestNumber - 1U) << DMAMUX_RGxCR_GNBREQ_Pos)));
/* Process UnLocked */
__HAL_UNLOCK(hdma);
return HAL_OK;
}
else
{
return HAL_ERROR;
}
}
/**
* @brief Enable the DMAMUX request generator block used by the given DMA channel (instance).
* @param hdma Pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA channel.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DMAEx_EnableMuxRequestGenerator(DMA_HandleTypeDef *hdma)
{
/* Check the parameters */
assert_param(IS_DMA_ALL_INSTANCE(hdma->Instance));
/* check if the DMA state is ready
and DMA is using a DMAMUX request generator block
*/
if ((hdma->State != HAL_DMA_STATE_RESET) && (hdma->DMAmuxRequestGen != 0U))
{
/* Enable the request generator*/
SET_BIT(hdma->DMAmuxRequestGen->RGCR, DMAMUX_RGxCR_GE);
return HAL_OK;
}
else
{
return HAL_ERROR;
}
}
/**
* @brief Disable the DMAMUX request generator block used by the given DMA channel (instance).
* @param hdma Pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA channel.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DMAEx_DisableMuxRequestGenerator(DMA_HandleTypeDef *hdma)
{
/* Check the parameters */
assert_param(IS_DMA_ALL_INSTANCE(hdma->Instance));
/* check if the DMA state is ready
and DMA is using a DMAMUX request generator block
*/
if ((hdma->State != HAL_DMA_STATE_RESET) && (hdma->DMAmuxRequestGen != 0))
{
/* Disable the request generator*/
CLEAR_BIT(hdma->DMAmuxRequestGen->RGCR, DMAMUX_RGxCR_GE);
return HAL_OK;
}
else
{
return HAL_ERROR;
}
}
/**
* @brief Handles DMAMUX interrupt request.
* @param hdma Pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA channel.
* @retval None
*/
void HAL_DMAEx_MUX_IRQHandler(DMA_HandleTypeDef *hdma)
{
/* Check for DMAMUX Synchronization overrun */
if ((hdma->DMAmuxChannelStatus->CSR & hdma->DMAmuxChannelStatusMask) != 0U)
{
/* Disable the synchro overrun interrupt */
CLEAR_BIT(hdma->DMAmuxChannel->CCR, DMAMUX_CxCR_SOIE);
/* Clear the DMAMUX synchro overrun flag */
WRITE_REG(hdma->DMAmuxChannelStatus->CFR, hdma->DMAmuxChannelStatusMask);
/* Update error code */
hdma->ErrorCode |= HAL_DMA_ERROR_SYNC;
if (hdma->XferErrorCallback != NULL)
{
/* Transfer error callback */
hdma->XferErrorCallback(hdma);
}
}
if (hdma->DMAmuxRequestGen != 0U)
{
/* if using a DMAMUX request generator block Check for DMAMUX request generator overrun */
if ((hdma->DMAmuxRequestGenStatus->RGSR & hdma->DMAmuxRequestGenStatusMask) != 0U)
{
/* Disable the request gen overrun interrupt */
CLEAR_BIT(hdma->DMAmuxRequestGen->RGCR, DMAMUX_RGxCR_OIE);
/* Clear the DMAMUX request generator overrun flag */
WRITE_REG(hdma->DMAmuxRequestGenStatus->RGCFR, hdma->DMAmuxRequestGenStatusMask);
/* Update error code */
hdma->ErrorCode |= HAL_DMA_ERROR_REQGEN;
if (hdma->XferErrorCallback != NULL)
{
/* Transfer error callback */
hdma->XferErrorCallback(hdma);
}
}
}
}
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_DMA_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/

View File

@@ -0,0 +1,634 @@
/**
******************************************************************************
* @file stm32wbxx_hal_exti.c
* @author MCD Application Team
* @brief EXTI HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the General Purpose Input/Output (EXTI) peripheral:
* + Initialization and de-initialization functions
* + IO operation functions
******************************************************************************
* @attention
*
* Copyright (c) 2019 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
==============================================================================
##### EXTI Peripheral features #####
==============================================================================
[..]
(+) Each Exti line can be configured within this driver.
(+) Exti line can be configured in 3 different modes
(++) Interrupt
(++) Event
(++) Both of them
(+) Configurable Exti lines can be configured with 3 different triggers
(++) Rising
(++) Falling
(++) Both of them
(+) When set in interrupt mode, configurable Exti lines have one
interrupt pending register:
(++) Trigger request occurred
(+) Exti lines 0 to 15 are linked to gpio pin number 0 to 15. Gpio port can
be selected through multiplexer.
##### How to use this driver #####
==============================================================================
[..]
(#) Configure the EXTI line using HAL_EXTI_SetConfigLine().
(++) Choose the interrupt line number by setting "Line" member from
EXTI_ConfigTypeDef structure.
(++) Configure the interrupt and/or event mode using "Mode" member from
EXTI_ConfigTypeDef structure.
(++) For configurable lines, configure rising and/or falling trigger
"Trigger" member from EXTI_ConfigTypeDef structure.
(++) For Exti lines linked to gpio, choose gpio port using "GPIOSel"
member from GPIO_InitTypeDef structure.
(#) Get current Exti configuration of a dedicated line using
HAL_EXTI_GetConfigLine().
(++) Provide exiting handle as parameter.
(++) Provide pointer on EXTI_ConfigTypeDef structure as second parameter.
(#) Clear Exti configuration of a dedicated line using HAL_EXTI_GetConfigLine().
(++) Provide exiting handle as parameter.
(#) Register callback to treat Exti interrupts using HAL_EXTI_RegisterCallback().
(++) Provide exiting handle as first parameter.
(++) Provide which callback will be registered using one value from
EXTI_CallbackIDTypeDef.
(++) Provide callback function pointer.
(#) Get interrupt pending bit using HAL_EXTI_GetPending().
(#) Clear interrupt pending bit using HAL_EXTI_GetPending().
(#) Generate software interrupt using HAL_EXTI_GenerateSWI().
@endverbatim
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32wbxx_hal.h"
/** @addtogroup STM32WBxx_HAL_Driver
* @{
*/
/** @addtogroup EXTI
* @{
*/
/** MISRA C:2012 deviation rule has been granted for following rule:
* Rule-18.1_b - Medium: Array `EXTICR' 1st subscript interval [0,7] may be out
* of bounds [0,3] in following API :
* HAL_EXTI_SetConfigLine
* HAL_EXTI_GetConfigLine
* HAL_EXTI_ClearConfigLine
*/
#ifdef HAL_EXTI_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private defines ------------------------------------------------------------*/
/** @defgroup EXTI_Private_Constants EXTI Private Constants
* @{
*/
#define EXTI_MODE_OFFSET 0x04u /* 0x10: offset between CPU IMR/EMR registers */
#define EXTI_CONFIG_OFFSET 0x08u /* 0x20: offset between CPU Rising/Falling configuration registers */
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup EXTI_Exported_Functions
* @{
*/
/** @addtogroup EXTI_Exported_Functions_Group1
* @brief Configuration functions
*
@verbatim
===============================================================================
##### Configuration functions #####
===============================================================================
@endverbatim
* @{
*/
/**
* @brief Set configuration of a dedicated Exti line.
* @param hexti Exti handle.
* @param pExtiConfig Pointer on EXTI configuration to be set.
* @retval HAL Status.
*/
HAL_StatusTypeDef HAL_EXTI_SetConfigLine(EXTI_HandleTypeDef *hexti, EXTI_ConfigTypeDef *pExtiConfig)
{
__IO uint32_t *regaddr;
uint32_t regval;
uint32_t linepos;
uint32_t maskline;
uint32_t offset;
/* Check null pointer */
if ((hexti == NULL) || (pExtiConfig == NULL))
{
return HAL_ERROR;
}
/* Check parameters */
assert_param(IS_EXTI_LINE(pExtiConfig->Line));
assert_param(IS_EXTI_MODE(pExtiConfig->Mode));
/* Assign line number to handle */
hexti->Line = pExtiConfig->Line;
/* compute line register offset and line mask */
offset = ((pExtiConfig->Line & EXTI_REG_MASK) >> EXTI_REG_SHIFT);
linepos = (pExtiConfig->Line & EXTI_PIN_MASK);
maskline = (1uL << linepos);
/* Configure triggers for configurable lines */
if ((pExtiConfig->Line & EXTI_CONFIG) != 0x00u)
{
assert_param(IS_EXTI_TRIGGER(pExtiConfig->Trigger));
/* Configure rising trigger */
regaddr = (&EXTI->RTSR1 + (EXTI_CONFIG_OFFSET * offset));
regval = *regaddr;
/* Mask or set line */
if ((pExtiConfig->Trigger & EXTI_TRIGGER_RISING) != 0x00u)
{
regval |= maskline;
}
else
{
regval &= ~maskline;
}
/* Store rising trigger mode */
*regaddr = regval;
/* Configure falling trigger */
regaddr = (&EXTI->FTSR1 + (EXTI_CONFIG_OFFSET * offset));
regval = *regaddr;
/* Mask or set line */
if ((pExtiConfig->Trigger & EXTI_TRIGGER_FALLING) != 0x00u)
{
regval |= maskline;
}
else
{
regval &= ~maskline;
}
/* Store falling trigger mode */
*regaddr = regval;
/* Configure gpio port selection in case of gpio exti line */
if ((pExtiConfig->Line & EXTI_GPIO) == EXTI_GPIO)
{
assert_param(IS_EXTI_GPIO_PORT(pExtiConfig->GPIOSel));
assert_param(IS_EXTI_GPIO_PIN(linepos));
regval = SYSCFG->EXTICR[linepos >> 2u];
regval &= ~(SYSCFG_EXTICR1_EXTI0 << (SYSCFG_EXTICR1_EXTI1_Pos * (linepos & 0x03u)));
regval |= (pExtiConfig->GPIOSel << (SYSCFG_EXTICR1_EXTI1_Pos * (linepos & 0x03u)));
SYSCFG->EXTICR[linepos >> 2u] = regval;
}
}
/* Configure interrupt mode : read current mode */
regaddr = (&EXTI->IMR1 + (EXTI_MODE_OFFSET * offset));
regval = *regaddr;
/* Mask or set line */
if ((pExtiConfig->Mode & EXTI_MODE_INTERRUPT) != 0x00u)
{
regval |= maskline;
}
else
{
regval &= ~maskline;
}
/* Store interrupt mode */
*regaddr = regval;
/* The event mode cannot be configured if the line does not support it */
assert_param(((pExtiConfig->Line & EXTI_EVENT) == EXTI_EVENT) || ((pExtiConfig->Mode & EXTI_MODE_EVENT) != EXTI_MODE_EVENT));
/* Configure event mode : read current mode */
regaddr = (&EXTI->EMR1 + (EXTI_MODE_OFFSET * offset));
regval = *regaddr;
/* Mask or set line */
if ((pExtiConfig->Mode & EXTI_MODE_EVENT) != 0x00u)
{
regval |= maskline;
}
else
{
regval &= ~maskline;
}
/* Store event mode */
*regaddr = regval;
return HAL_OK;
}
/**
* @brief Get configuration of a dedicated Exti line.
* @param hexti Exti handle.
* @param pExtiConfig Pointer on structure to store Exti configuration.
* @retval HAL Status.
*/
HAL_StatusTypeDef HAL_EXTI_GetConfigLine(EXTI_HandleTypeDef *hexti, EXTI_ConfigTypeDef *pExtiConfig)
{
__IO uint32_t *regaddr;
uint32_t regval;
uint32_t linepos;
uint32_t maskline;
uint32_t offset;
/* Check null pointer */
if ((hexti == NULL) || (pExtiConfig == NULL))
{
return HAL_ERROR;
}
/* Check the parameter */
assert_param(IS_EXTI_LINE(hexti->Line));
/* Store handle line number to configuration structure */
pExtiConfig->Line = hexti->Line;
/* compute line register offset and line mask */
offset = ((pExtiConfig->Line & EXTI_REG_MASK) >> EXTI_REG_SHIFT);
linepos = (pExtiConfig->Line & EXTI_PIN_MASK);
maskline = (1uL << linepos);
/* 1] Get core mode : interrupt */
regaddr = (&EXTI->IMR1 + (EXTI_MODE_OFFSET * offset));
regval = *regaddr;
/* Check if selected line is enable */
if ((regval & maskline) != 0x00u)
{
pExtiConfig->Mode = EXTI_MODE_INTERRUPT;
}
else
{
pExtiConfig->Mode = EXTI_MODE_NONE;
}
/* Get event mode */
regaddr = (&EXTI->EMR1 + (EXTI_MODE_OFFSET * offset));
regval = *regaddr;
/* Check if selected line is enable */
if ((regval & maskline) != 0x00u)
{
pExtiConfig->Mode |= EXTI_MODE_EVENT;
}
/* Get default Trigger and GPIOSel configuration */
pExtiConfig->Trigger = EXTI_TRIGGER_NONE;
pExtiConfig->GPIOSel = 0x00u;
/* 2] Get trigger for configurable lines : rising */
if ((pExtiConfig->Line & EXTI_CONFIG) != 0x00u)
{
regaddr = (&EXTI->RTSR1 + (EXTI_CONFIG_OFFSET * offset));
regval = *regaddr;
/* Check if configuration of selected line is enable */
if ((regval & maskline) != 0x00u)
{
pExtiConfig->Trigger = EXTI_TRIGGER_RISING;
}
/* Get falling configuration */
regaddr = (&EXTI->FTSR1 + (EXTI_CONFIG_OFFSET * offset));
regval = *regaddr;
/* Check if configuration of selected line is enable */
if ((regval & maskline) != 0x00u)
{
pExtiConfig->Trigger |= EXTI_TRIGGER_FALLING;
}
/* Get Gpio port selection for gpio lines */
if ((pExtiConfig->Line & EXTI_GPIO) == EXTI_GPIO)
{
assert_param(IS_EXTI_GPIO_PIN(linepos));
regval = SYSCFG->EXTICR[linepos >> 2u];
pExtiConfig->GPIOSel = (regval >> (SYSCFG_EXTICR1_EXTI1_Pos * (linepos & 0x03u))) & SYSCFG_EXTICR1_EXTI0;
}
}
return HAL_OK;
}
/**
* @brief Clear whole configuration of a dedicated Exti line.
* @param hexti Exti handle.
* @retval HAL Status.
*/
HAL_StatusTypeDef HAL_EXTI_ClearConfigLine(EXTI_HandleTypeDef *hexti)
{
__IO uint32_t *regaddr;
uint32_t regval;
uint32_t linepos;
uint32_t maskline;
uint32_t offset;
/* Check null pointer */
if (hexti == NULL)
{
return HAL_ERROR;
}
/* Check the parameter */
assert_param(IS_EXTI_LINE(hexti->Line));
/* compute line register offset and line mask */
offset = ((hexti->Line & EXTI_REG_MASK) >> EXTI_REG_SHIFT);
linepos = (hexti->Line & EXTI_PIN_MASK);
maskline = (1uL << linepos);
/* 1] Clear interrupt mode */
regaddr = (&EXTI->IMR1 + (EXTI_MODE_OFFSET * offset));
regval = (*regaddr & ~maskline);
*regaddr = regval;
/* 2] Clear event mode */
regaddr = (&EXTI->EMR1 + (EXTI_MODE_OFFSET * offset));
regval = (*regaddr & ~maskline);
*regaddr = regval;
/* 3] Clear triggers in case of configurable lines */
if ((hexti->Line & EXTI_CONFIG) != 0x00u)
{
regaddr = (&EXTI->RTSR1 + (EXTI_CONFIG_OFFSET * offset));
regval = (*regaddr & ~maskline);
*regaddr = regval;
regaddr = (&EXTI->FTSR1 + (EXTI_CONFIG_OFFSET * offset));
regval = (*regaddr & ~maskline);
*regaddr = regval;
/* Get Gpio port selection for gpio lines */
if ((hexti->Line & EXTI_GPIO) == EXTI_GPIO)
{
assert_param(IS_EXTI_GPIO_PIN(linepos));
regval = SYSCFG->EXTICR[linepos >> 2u];
regval &= ~(SYSCFG_EXTICR1_EXTI0 << (SYSCFG_EXTICR1_EXTI1_Pos * (linepos & 0x03u)));
SYSCFG->EXTICR[linepos >> 2u] = regval;
}
}
return HAL_OK;
}
/**
* @brief Register callback for a dedicaated Exti line.
* @param hexti Exti handle.
* @param CallbackID User callback identifier.
* This parameter can be one of @arg @ref EXTI_CallbackIDTypeDef values.
* @param pPendingCbfn function pointer to be stored as callback.
* @retval HAL Status.
*/
HAL_StatusTypeDef HAL_EXTI_RegisterCallback(EXTI_HandleTypeDef *hexti, EXTI_CallbackIDTypeDef CallbackID,
void (*pPendingCbfn)(void))
{
HAL_StatusTypeDef status = HAL_OK;
switch (CallbackID)
{
case HAL_EXTI_COMMON_CB_ID:
hexti->PendingCallback = pPendingCbfn;
break;
default:
status = HAL_ERROR;
break;
}
return status;
}
/**
* @brief Store line number as handle private field.
* @param hexti Exti handle.
* @param ExtiLine Exti line number.
* This parameter can be from 0 to @ref EXTI_LINE_NB.
* @retval HAL Status.
*/
HAL_StatusTypeDef HAL_EXTI_GetHandle(EXTI_HandleTypeDef *hexti, uint32_t ExtiLine)
{
/* Check the parameters */
assert_param(IS_EXTI_LINE(ExtiLine));
/* Check null pointer */
if (hexti == NULL)
{
return HAL_ERROR;
}
else
{
/* Store line number as handle private field */
hexti->Line = ExtiLine;
return HAL_OK;
}
}
/**
* @}
*/
/** @addtogroup EXTI_Exported_Functions_Group2
* @brief EXTI IO functions.
*
@verbatim
===============================================================================
##### IO operation functions #####
===============================================================================
@endverbatim
* @{
*/
/**
* @brief Handle EXTI interrupt request.
* @param hexti Exti handle.
* @retval none.
*/
void HAL_EXTI_IRQHandler(EXTI_HandleTypeDef *hexti)
{
__IO uint32_t *regaddr;
uint32_t regval;
uint32_t maskline;
uint32_t offset;
/* Compute line register offset and line mask */
offset = ((hexti->Line & EXTI_REG_MASK) >> EXTI_REG_SHIFT);
maskline = (1uL << (hexti->Line & EXTI_PIN_MASK));
/* Get pending bit */
regaddr = (&EXTI->PR1 + (EXTI_CONFIG_OFFSET * offset));
regval = (*regaddr & maskline);
if (regval != 0x00u)
{
/* Clear pending bit */
*regaddr = maskline;
/* Call callback */
if (hexti->PendingCallback != NULL)
{
hexti->PendingCallback();
}
}
}
/**
* @brief Get interrupt pending bit of a dedicated line.
* @param hexti Exti handle.
* @param Edge Specify which pending edge as to be checked.
* This parameter can be one of the following values:
* @arg @ref EXTI_TRIGGER_RISING_FALLING
* This parameter is kept for compatibility with other series.
* @retval 1 if interrupt is pending else 0.
*/
uint32_t HAL_EXTI_GetPending(EXTI_HandleTypeDef *hexti, uint32_t Edge)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(Edge);
__IO uint32_t *regaddr;
uint32_t regval;
uint32_t linepos;
uint32_t maskline;
uint32_t offset;
/* Check parameters */
assert_param(IS_EXTI_LINE(hexti->Line));
assert_param(IS_EXTI_CONFIG_LINE(hexti->Line));
/* compute line register offset and line mask */
offset = ((hexti->Line & EXTI_REG_MASK) >> EXTI_REG_SHIFT);
linepos = (hexti->Line & EXTI_PIN_MASK);
maskline = (1uL << linepos);
/* Get pending bit */
regaddr = (&EXTI->PR1 + (EXTI_CONFIG_OFFSET * offset));
/* return 1 if bit is set else 0 */
regval = ((*regaddr & maskline) >> linepos);
return regval;
}
/**
* @brief Clear interrupt pending bit of a dedicated line.
* @param hexti Exti handle.
* @param Edge Specify which pending edge as to be clear.
* This parameter can be one of the following values:
* @arg @ref EXTI_TRIGGER_RISING_FALLING
* This parameter is kept for compatibility with other series.
* @retval None.
*/
void HAL_EXTI_ClearPending(EXTI_HandleTypeDef *hexti, uint32_t Edge)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(Edge);
__IO uint32_t *regaddr;
uint32_t maskline;
uint32_t offset;
/* Check parameters */
assert_param(IS_EXTI_LINE(hexti->Line));
assert_param(IS_EXTI_CONFIG_LINE(hexti->Line));
/* compute line register offset and line mask */
offset = ((hexti->Line & EXTI_REG_MASK) >> EXTI_REG_SHIFT);
maskline = (1uL << (hexti->Line & EXTI_PIN_MASK));
/* Get pending register address */
regaddr = (&EXTI->PR1 + (EXTI_CONFIG_OFFSET * offset));
/* Clear Pending bit */
*regaddr = maskline;
}
/**
* @brief Generate a software interrupt for a dedicated line.
* @param hexti Exti handle.
* @retval None.
*/
void HAL_EXTI_GenerateSWI(EXTI_HandleTypeDef *hexti)
{
__IO uint32_t *regaddr;
uint32_t maskline;
uint32_t offset;
/* Check parameters */
assert_param(IS_EXTI_LINE(hexti->Line));
assert_param(IS_EXTI_CONFIG_LINE(hexti->Line));
/* compute line register offset and line mask */
offset = ((hexti->Line & EXTI_REG_MASK) >> EXTI_REG_SHIFT);
maskline = (1uL << (hexti->Line & EXTI_PIN_MASK));
regaddr = (&EXTI->SWIER1 + (EXTI_CONFIG_OFFSET * offset));
*regaddr = maskline;
}
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_EXTI_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/

View File

@@ -0,0 +1,743 @@
/**
******************************************************************************
* @file stm32wbxx_hal_flash.c
* @author MCD Application Team
* @brief FLASH HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the internal FLASH memory:
* + Program operations functions
* + Memory Control functions
* + Peripheral Errors functions
******************************************************************************
* @attention
*
* Copyright (c) 2019 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
==============================================================================
##### FLASH peripheral features #####
==============================================================================
[..] The Flash memory interface manages CPU AHB I-Code and D-Code accesses
to the Flash memory. It implements the erase and program Flash memory operations
and the read and write protection mechanisms.
[..] The Flash memory interface accelerates code execution with a system of instruction
prefetch and cache lines.
[..] The FLASH main features are:
(+) Flash memory read operations
(+) Flash memory program/erase operations
(+) Program and Erase suspension
(+) Read / write protections (2 areas per features)
(+) CPU2 Security area
(+) Option bytes programming
(+) Prefetch on CPU1 I-Code and CPU2 S-bus
(+) 32 instruction cache lines of 4*64 bits on I-Code for CPU1
(+) 8 data cache lines of 4*64 bits on D-Code for CPU1
(+) 4 instruction cache lines of 1*64 bits on S-bus for CPU2
(+) 4 data cache lines of 1*64 bits on S-Bus for CPU2
(+) Error code correction (ECC) : Data in flash are 72-bits word
(8 bits added per double word)
##### How to use this driver #####
==============================================================================
[..]
This driver provides functions and macros to configure and program the FLASH
memory of all STM32WBxx devices.
(#) Flash Memory IO Programming functions:
(++) Lock and Unlock the FLASH interface using HAL_FLASH_Unlock() and
HAL_FLASH_Lock() functions
(++) Program functions: double word and fast program (full row programming)
(++) There are two modes of programming:
(+++) Polling mode using HAL_FLASH_Program() function
(+++) Interrupt mode using HAL_FLASH_Program_IT() function
(#) Interrupts and flags management functions:
(++) Handle FLASH interrupts by calling HAL_FLASH_IRQHandler()
(++) Callback functions are called when the flash operations are finished :
HAL_FLASH_EndOfOperationCallback() when everything is ok, otherwise
HAL_FLASH_OperationErrorCallback()
(++) Get error flag status by calling HAL_GetError()
(#) Option bytes management functions :
(++) Lock and Unlock the option bytes using HAL_FLASH_OB_Unlock() and
HAL_FLASH_OB_Lock() functions
(++) Launch the reload of the option bytes using HAL_FLASH_OB_Launch() function.
In this case, a reset is generated
[..]
In addition to these functions, this driver includes a set of macros allowing
to handle the following operations:
(+) Set the latency
(+) Enable/Disable the prefetch buffer
(+) Enable/Disable the suspend program or erase request
(+) Enable/Disable the Instruction cache and the Data cache
(+) Reset the Instruction cache and the Data cache
(+) Enable/Disable the Flash interrupts
(+) Monitor the Flash flags status
@endverbatim
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32wbxx_hal.h"
/** @addtogroup STM32WBxx_HAL_Driver
* @{
*/
/** @defgroup FLASH FLASH
* @brief FLASH HAL module driver
* @{
*/
#ifdef HAL_FLASH_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private defines -----------------------------------------------------------*/
/** @addtogroup FLASH_Private_Constants
* @{
*/
#define FLASH_NB_DOUBLE_WORDS_IN_ROW 64
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/** @defgroup FLASH_Private_Variables FLASH Private Variables
* @{
*/
/**
* @brief Variable used for Program/Erase sectors under interruption
*/
FLASH_ProcessTypeDef pFlash = {.Lock = HAL_UNLOCKED, \
.ErrorCode = HAL_FLASH_ERROR_NONE, \
.ProcedureOnGoing = 0U, \
.Address = 0U, \
.Page = 0U, \
.NbPagesToErase = 0U
};
/**
* @}
*/
/* Private function prototypes -----------------------------------------------*/
/** @defgroup FLASH_Private_Functions FLASH Private Functions
* @{
*/
static void FLASH_Program_DoubleWord(uint32_t Address, uint64_t Data);
static void FLASH_Program_Fast(uint32_t Address, uint32_t DataAddress);
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup FLASH_Exported_Functions FLASH Exported Functions
* @{
*/
/** @defgroup FLASH_Exported_Functions_Group1 Programming operation functions
* @brief Programming operation functions
*
@verbatim
===============================================================================
##### Programming operation functions #####
===============================================================================
[..]
This subsection provides a set of functions allowing to manage the FLASH
program operations.
@endverbatim
* @{
*/
/**
* @brief Program double word or fast program of a row at a specified address.
* @note Before any operation, it is possible to check there is no operation suspended
* by call HAL_FLASHEx_IsOperationSuspended()
* @param TypeProgram Indicate the way to program at a specified address
* This parameter can be a value of @ref FLASH_TYPE_PROGRAM
* @param Address Specifies the address to be programmed.
* @param Data Specifies the data to be programmed
* This parameter is the data for the double word program and the address where
* are stored the data for the row fast program.
*
* @retval HAL_StatusTypeDef HAL Status
*/
HAL_StatusTypeDef HAL_FLASH_Program(uint32_t TypeProgram, uint32_t Address, uint64_t Data)
{
HAL_StatusTypeDef status;
/* Check the parameters */
assert_param(IS_FLASH_TYPEPROGRAM(TypeProgram));
assert_param(IS_ADDR_ALIGNED_64BITS(Address));
assert_param(IS_FLASH_PROGRAM_ADDRESS(Address));
/* Process Locked */
__HAL_LOCK(&pFlash);
/* Reset error code */
pFlash.ErrorCode = HAL_FLASH_ERROR_NONE;
/* Verify that next operation can be proceed */
status = FLASH_WaitForLastOperation(FLASH_TIMEOUT_VALUE);
if (status == HAL_OK)
{
if (TypeProgram == FLASH_TYPEPROGRAM_DOUBLEWORD)
{
/* Check the parameters */
assert_param(IS_FLASH_PROGRAM_ADDRESS(Address));
/* Program double-word (64-bit) at a specified address */
FLASH_Program_DoubleWord(Address, Data);
}
else
{
/* Check the parameters */
assert_param(IS_FLASH_FAST_PROGRAM_ADDRESS(Address));
/* Fast program a 64 row double-word (64-bit) at a specified address */
FLASH_Program_Fast(Address, (uint32_t)Data);
}
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation(FLASH_TIMEOUT_VALUE);
/* If the program operation is completed, disable the PG or FSTPG Bit */
CLEAR_BIT(FLASH->CR, TypeProgram);
}
/* Process Unlocked */
__HAL_UNLOCK(&pFlash);
/* return status */
return status;
}
/**
* @brief Program double word or fast program of a row at a specified address with interrupt enabled.
* @note Before any operation, it is possible to check there is no operation suspended
* by call HAL_FLASHEx_IsOperationSuspended()
* @param TypeProgram Indicate the way to program at a specified address.
* This parameter can be a value of @ref FLASH_TYPE_PROGRAM
* @param Address Specifies the address to be programmed.
* @param Data Specifies the data to be programmed
* This parameter is the data for the double word program and the address where
* are stored the data for the row fast program.
*
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_FLASH_Program_IT(uint32_t TypeProgram, uint32_t Address, uint64_t Data)
{
HAL_StatusTypeDef status;
/* Check the parameters */
assert_param(IS_FLASH_TYPEPROGRAM(TypeProgram));
assert_param(IS_ADDR_ALIGNED_64BITS(Address));
assert_param(IS_FLASH_PROGRAM_ADDRESS(Address));
/* Process Locked */
__HAL_LOCK(&pFlash);
/* Reset error code */
pFlash.ErrorCode = HAL_FLASH_ERROR_NONE;
/* Verify that next operation can be proceed */
status = FLASH_WaitForLastOperation(FLASH_TIMEOUT_VALUE);
if (status != HAL_OK)
{
/* Process Unlocked */
__HAL_UNLOCK(&pFlash);
}
else
{
/* Set internal variables used by the IRQ handler */
pFlash.ProcedureOnGoing = TypeProgram;
pFlash.Address = Address;
/* Enable End of Operation and Error interrupts */
__HAL_FLASH_ENABLE_IT(FLASH_IT_EOP | FLASH_IT_OPERR);
if (TypeProgram == FLASH_TYPEPROGRAM_DOUBLEWORD)
{
/* Check the parameters */
assert_param(IS_FLASH_PROGRAM_ADDRESS(Address));
/* Program double-word (64-bit) at a specified address */
FLASH_Program_DoubleWord(Address, Data);
}
else
{
/* Check the parameters */
assert_param(IS_FLASH_FAST_PROGRAM_ADDRESS(Address));
/* Fast program a 64 row double-word (64-bit) at a specified address */
FLASH_Program_Fast(Address, (uint32_t)Data);
}
}
/* return status */
return status;
}
/**
* @brief Handle FLASH interrupt request.
* @retval None
*/
void HAL_FLASH_IRQHandler(void)
{
uint32_t param = 0xFFFFFFFFU;
uint32_t error;
/* Check FLASH operation error flags */
error = (FLASH->SR & FLASH_FLAG_SR_ERRORS);
/* Clear Current operation */
CLEAR_BIT(FLASH->CR, pFlash.ProcedureOnGoing);
/* A] Set parameter for user or error callbacks */
/* check operation was a program or erase */
if ((pFlash.ProcedureOnGoing & (FLASH_TYPEPROGRAM_DOUBLEWORD | FLASH_TYPEPROGRAM_FAST)) != 0U)
{
/* return address being programmed */
param = pFlash.Address;
}
else if ((pFlash.ProcedureOnGoing & (FLASH_TYPEERASE_PAGES)) != 0U)
{
/* return page number being erased */
param = pFlash.Page;
}
else
{
/* No Procedure on-going */
/* Nothing to do, but check error if any */
}
/* B] Check errors */
if (error != 0U)
{
/*Save the error code*/
pFlash.ErrorCode |= error;
/* clear error flags */
__HAL_FLASH_CLEAR_FLAG(error);
/*Stop the procedure ongoing*/
pFlash.ProcedureOnGoing = FLASH_TYPENONE;
/* Error callback */
HAL_FLASH_OperationErrorCallback(param);
}
/* C] Check FLASH End of Operation flag */
if (__HAL_FLASH_GET_FLAG(FLASH_FLAG_EOP))
{
/* Clear FLASH End of Operation pending bit */
__HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP);
if (pFlash.ProcedureOnGoing == FLASH_TYPEERASE_PAGES)
{
/* Nb of pages to erased can be decreased */
pFlash.NbPagesToErase--;
/* Check if there are still pages to erase*/
if (pFlash.NbPagesToErase != 0U)
{
/* Increment page number */
pFlash.Page++;
FLASH_PageErase(pFlash.Page);
}
else
{
/* No more pages to erase: stop erase pages procedure */
pFlash.ProcedureOnGoing = FLASH_TYPENONE;
}
}
else
{
/*Stop the ongoing procedure */
pFlash.ProcedureOnGoing = FLASH_TYPENONE;
}
/* User callback */
HAL_FLASH_EndOfOperationCallback(param);
}
if (pFlash.ProcedureOnGoing == FLASH_TYPENONE)
{
/* Disable End of Operation and Error interrupts */
__HAL_FLASH_DISABLE_IT(FLASH_IT_EOP | FLASH_IT_OPERR);
/* Process Unlocked */
__HAL_UNLOCK(&pFlash);
}
}
/**
* @brief FLASH end of operation interrupt callback.
* @param ReturnValue The value saved in this parameter depends on the ongoing procedure
* Page Erase: Page which has been erased
* Program: Address which was selected for data program
* @retval None
*/
__weak void HAL_FLASH_EndOfOperationCallback(uint32_t ReturnValue)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(ReturnValue);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_FLASH_EndOfOperationCallback could be implemented in the user file
*/
}
/**
* @brief FLASH operation error interrupt callback.
* @param ReturnValue The value saved in this parameter depends on the ongoing procedure
* Page Erase: Page number which returned an error
* Program: Address which was selected for data program
* @retval None
*/
__weak void HAL_FLASH_OperationErrorCallback(uint32_t ReturnValue)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(ReturnValue);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_FLASH_OperationErrorCallback could be implemented in the user file
*/
}
/**
* @}
*/
/** @defgroup FLASH_Exported_Functions_Group2 Peripheral Control functions
* @brief Management functions
*
@verbatim
===============================================================================
##### Peripheral Control functions #####
===============================================================================
[..]
This subsection provides a set of functions allowing to control the FLASH
memory operations.
@endverbatim
* @{
*/
/**
* @brief Unlock the FLASH control register access.
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_FLASH_Unlock(void)
{
HAL_StatusTypeDef status = HAL_OK;
if (READ_BIT(FLASH->CR, FLASH_CR_LOCK) != 0U)
{
/* Authorize the FLASH Registers access */
WRITE_REG(FLASH->KEYR, FLASH_KEY1);
WRITE_REG(FLASH->KEYR, FLASH_KEY2);
/* verify Flash is unlock */
if (READ_BIT(FLASH->CR, FLASH_CR_LOCK) != 0U)
{
status = HAL_ERROR;
}
}
return status;
}
/**
* @brief Lock the FLASH control register access.
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_FLASH_Lock(void)
{
HAL_StatusTypeDef status = HAL_OK;
/* Set the LOCK Bit to lock the FLASH Registers access */
/* @Note The lock and unlock procedure is done only using CR registers even from CPU2 */
SET_BIT(FLASH->CR, FLASH_CR_LOCK);
/* verify Flash is locked */
if (READ_BIT(FLASH->CR, FLASH_CR_LOCK) == 0U)
{
status = HAL_ERROR;
}
return status;
}
/**
* @brief Unlock the FLASH Option Bytes Registers access.
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_FLASH_OB_Unlock(void)
{
HAL_StatusTypeDef status = HAL_ERROR;
/* @Note The lock and unlock procedure is done only using CR registers even from CPU2 */
if (READ_BIT(FLASH->CR, FLASH_CR_OPTLOCK) != 0U)
{
/* Authorizes the Option Byte register programming */
WRITE_REG(FLASH->OPTKEYR, FLASH_OPTKEY1);
WRITE_REG(FLASH->OPTKEYR, FLASH_OPTKEY2);
/* verify option bytes are unlocked */
if (READ_BIT(FLASH->CR, FLASH_CR_OPTLOCK) == 0U)
{
status = HAL_OK;
}
}
return status;
}
/**
* @brief Lock the FLASH Option Bytes Registers access.
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_FLASH_OB_Lock(void)
{
HAL_StatusTypeDef status = HAL_OK;
/* Set the OPTLOCK Bit to lock the FLASH Option Byte Registers access */
/* @Note The lock and unlock procedure is done only using CR registers even from CPU2 */
SET_BIT(FLASH->CR, FLASH_CR_OPTLOCK);
/* verify option bytes are lock */
if (READ_BIT(FLASH->CR, FLASH_CR_OPTLOCK) == 0U)
{
status = HAL_ERROR;
}
return status;
}
/**
* @brief Launch the option byte loading.
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_FLASH_OB_Launch(void)
{
/* Set the bit to force the option byte reloading */
/* The OB launch is done from the same register either from CPU1 or CPU2 */
SET_BIT(FLASH->CR, FLASH_CR_OBL_LAUNCH);
/* We should not reach here : Option byte launch generates Option byte reset
so return error */
return HAL_ERROR;
}
/**
* @}
*/
/** @defgroup FLASH_Exported_Functions_Group3 Peripheral State and Errors functions
* @brief Peripheral Errors functions
*
@verbatim
===============================================================================
##### Peripheral Errors functions #####
===============================================================================
[..]
This subsection permits to get in run-time Errors of the FLASH peripheral.
@endverbatim
* @{
*/
/**
* @brief Get the specific FLASH error flag.
* @retval FLASH_ErrorCode The returned value can be
* @arg @ref HAL_FLASH_ERROR_NONE No error set
* @arg @ref HAL_FLASH_ERROR_OP FLASH Operation error
* @arg @ref HAL_FLASH_ERROR_PROG FLASH Programming error
* @arg @ref HAL_FLASH_ERROR_WRP FLASH Write protection error
* @arg @ref HAL_FLASH_ERROR_PGA FLASH Programming alignment error
* @arg @ref HAL_FLASH_ERROR_SIZ FLASH Size error
* @arg @ref HAL_FLASH_ERROR_PGS FLASH Programming sequence error
* @arg @ref HAL_FLASH_ERROR_MIS FLASH Fast programming data miss error
* @arg @ref HAL_FLASH_ERROR_FAST FLASH Fast programming error
* @arg @ref HAL_FLASH_ERROR_RD FLASH Read Protection error (PCROP)
* @arg @ref HAL_FLASH_ERROR_OPTV FLASH Option validity error
*/
uint32_t HAL_FLASH_GetError(void)
{
return pFlash.ErrorCode;
}
/**
* @}
*/
/**
* @}
*/
/* Private functions ---------------------------------------------------------*/
/** @addtogroup FLASH_Private_Functions
* @{
*/
/**
* @brief Wait for a FLASH operation to complete.
* @param Timeout Maximum flash operation timeout
* @retval HAL_StatusTypeDef HAL Status
*/
HAL_StatusTypeDef FLASH_WaitForLastOperation(uint32_t Timeout)
{
uint32_t error;
uint32_t tickstart = HAL_GetTick();
/* Wait for the FLASH operation to complete by polling on BUSY flag to be reset.
Even if the FLASH operation fails, the BUSY flag will be reset and an error
flag will be set */
while (__HAL_FLASH_GET_FLAG(FLASH_FLAG_BSY))
{
if ((HAL_GetTick() - tickstart) >= Timeout)
{
return HAL_TIMEOUT;
}
}
/* Check FLASH operation error flags */
error = FLASH->SR;
/* Check FLASH End of Operation flag */
if ((error & FLASH_FLAG_EOP) != 0U)
{
/* Clear FLASH End of Operation pending bit */
__HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP);
}
/* Workaround for BZ 70309 :
- OPTVERR is always set at power-up due to failure of engi bytes checking
- FLASH_WaitForLastOperation() is called at the beginning of erase or program
operations, so the bit will be clear when performing first operation */
if ((error & FLASH_FLAG_OPTVERR) != 0U)
{
/* Clear FLASH OPTVERR bit */
__HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_OPTVERR);
/* Clear OPTVERR bit in "error" variable to not treat it as error */
error &= ~FLASH_FLAG_OPTVERR;
}
/* Now update error variable to only error value */
error &= FLASH_FLAG_SR_ERRORS;
/* clear error flags */
__HAL_FLASH_CLEAR_FLAG(error);
if (error != 0U)
{
/*Save the error code*/
pFlash.ErrorCode = error;
return HAL_ERROR;
}
/* Wait for control register to be written */
while (__HAL_FLASH_GET_FLAG(FLASH_FLAG_CFGBSY))
{
if ((HAL_GetTick() - tickstart) >= Timeout)
{
return HAL_TIMEOUT;
}
}
return HAL_OK;
}
/**
* @brief Program double-word (64-bit) at a specified address.
* @param Address Specifies the address to be programmed.
* @param Data Specifies the data to be programmed.
* @retval None
*/
static void FLASH_Program_DoubleWord(uint32_t Address, uint64_t Data)
{
/* Set PG bit */
SET_BIT(FLASH->CR, FLASH_CR_PG);
/* Program first word */
*(uint32_t *)Address = (uint32_t)Data;
/* Barrier to ensure programming is performed in 2 steps, in right order
(independently of compiler optimization behavior) */
__ISB();
/* Program second word */
*(uint32_t *)(Address + 4U) = (uint32_t)(Data >> 32U);
}
/**
* @brief Fast program a 32 row double-word (64-bit) at a specified address.
* @param Address Specifies the address to be programmed.
* @param DataAddress Specifies the address where the data are stored.
* @retval None
*/
static __RAM_FUNC void FLASH_Program_Fast(uint32_t Address, uint32_t DataAddress)
{
uint8_t row_index = (2 * FLASH_NB_DOUBLE_WORDS_IN_ROW);
__IO uint32_t *dest_addr = (__IO uint32_t *)Address;
__IO uint32_t *src_addr = (__IO uint32_t *)DataAddress;
uint32_t primask_bit;
/* Set FSTPG bit */
SET_BIT(FLASH->CR, FLASH_CR_FSTPG);
/* Enter critical section: row programming should not be longer than 7 ms */
primask_bit = __get_PRIMASK();
__disable_irq();
/* Program the double word of the row */
do
{
*dest_addr = *src_addr;
dest_addr++;
src_addr++;
row_index--;
} while (row_index != 0U);
/* wait for BSY in order to be sure that flash operation is ended before
allowing prefetch in flash. Timeout does not return status, as it will
be anyway done later */
while (__HAL_FLASH_GET_FLAG(FLASH_FLAG_BSY) != 0U)
{
}
/* Exit critical section: restore previous priority mask */
__set_PRIMASK(primask_bit);
}
/**
* @}
*/
#endif /* HAL_FLASH_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,551 @@
/**
******************************************************************************
* @file stm32wbxx_hal_gpio.c
* @author MCD Application Team
* @brief GPIO HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the General Purpose Input/Output (GPIO) peripheral:
* + Initialization and de-initialization functions
* + IO operation functions
******************************************************************************
* @attention
*
* Copyright (c) 2019 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
==============================================================================
##### GPIO Peripheral features #####
==============================================================================
[..]
(+) Each port bit of the general-purpose I/O (GPIO) ports can be individually
configured by software in several modes:
(++) Input mode
(++) Analog mode
(++) Output mode
(++) Alternate function mode
(++) External interrupt/event lines
(+) During and just after reset, the alternate functions and external interrupt
lines are not active and the I/O ports are configured in input floating mode.
(+) All GPIO pins have weak internal pull-up and pull-down resistors, which can be
activated or not.
(+) In Output or Alternate mode, each IO can be configured on open-drain or push-pull
type and the IO speed can be selected depending on the VDD value.
(+) The microcontroller IO pins are connected to onboard peripherals/modules through a
multiplexer that allows only one peripheral alternate function (AF) connected
to an IO pin at a time. In this way, there can be no conflict between peripherals
sharing the same IO pin.
(+) All ports have external interrupt/event capability. To use external interrupt
lines, the port must be configured in input mode. All available GPIO pins are
connected to the 16 external interrupt/event lines from EXTI0 to EXTI15.
(+) The external interrupt/event controller consists of up to 28 edge detectors
(16 lines are connected to GPIO) for generating event/interrupt requests (each
input line can be independently configured to select the type (interrupt or event)
and the corresponding trigger event (rising or falling or both). Each line can
also be masked independently.
##### How to use this driver #####
==============================================================================
[..]
(#) Enable the GPIO AHB clock using the following function: __HAL_RCC_GPIOx_CLK_ENABLE().
(#) Configure the GPIO pin(s) using HAL_GPIO_Init().
(++) Configure the IO mode using "Mode" member from GPIO_InitTypeDef structure
(++) Activate Pull-up, Pull-down resistor using "Pull" member from GPIO_InitTypeDef
structure.
(++) In case of Output or alternate function mode selection: the speed is
configured through "Speed" member from GPIO_InitTypeDef structure.
(++) In alternate mode is selection, the alternate function connected to the IO
is configured through "Alternate" member from GPIO_InitTypeDef structure.
(++) Analog mode is required when a pin is to be used as ADC channel
or DAC output.
(++) In case of external interrupt/event selection the "Mode" member from
GPIO_InitTypeDef structure select the type (interrupt or event) and
the corresponding trigger event (rising or falling or both).
(#) In case of external interrupt/event mode selection, configure NVIC IRQ priority
mapped to the EXTI line using HAL_NVIC_SetPriority() and enable it using
HAL_NVIC_EnableIRQ().
(#) To get the level of a pin configured in input mode use HAL_GPIO_ReadPin().
(#) To set/reset the level of a pin configured in output mode use
HAL_GPIO_WritePin()/HAL_GPIO_TogglePin().
(#) To set the level of several pins and reset level of several other pins in
same cycle, use HAL_GPIO_WriteMultipleStatePin().
(#) To lock pin configuration until next reset use HAL_GPIO_LockPin().
(#) During and just after reset, the alternate functions are not
active and the GPIO pins are configured in input floating mode (except JTAG
pins).
(#) The LSE oscillator pins OSC32_IN and OSC32_OUT can be used as general purpose
(PC14 and PC15, respectively) when the LSE oscillator is off. The LSE has
priority over the GPIO function.
(#) The HSE oscillator pins OSC_IN/OSC_OUT can be used as
general purpose PH0 and PH1, respectively, when the HSE oscillator is off.
The HSE has priority over the GPIO function.
@endverbatim
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32wbxx_hal.h"
/** @addtogroup STM32WBxx_HAL_Driver
* @{
*/
/** @addtogroup GPIO
* @{
*/
/** MISRA C:2012 deviation rule has been granted for following rules:
* Rule-12.2 - Medium: RHS argument is in interval [0,INF] which is out of
* range of the shift operator in following API :
* HAL_GPIO_Init
* HAL_GPIO_DeInit
*/
#ifdef HAL_GPIO_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private defines ------------------------------------------------------------*/
/** @addtogroup GPIO_Private_Constants GPIO Private Constants
* @{
*/
#define GPIO_NUMBER (16u)
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup GPIO_Exported_Functions
* @{
*/
/** @addtogroup GPIO_Exported_Functions_Group1
* @brief Initialization and Configuration functions
*
@verbatim
===============================================================================
##### Initialization and de-initialization functions #####
===============================================================================
@endverbatim
* @{
*/
/**
* @brief Initialize the GPIOx peripheral according to the specified parameters in the GPIO_Init.
* @param GPIOx where x can be (A..H) to select the GPIO peripheral for STM32WBxx family
* @param GPIO_Init pointer to a GPIO_InitTypeDef structure that contains
* the configuration information for the specified GPIO peripheral.
* @retval None
*/
void HAL_GPIO_Init(GPIO_TypeDef *GPIOx, GPIO_InitTypeDef *GPIO_Init)
{
uint32_t position = 0x00u;
uint32_t iocurrent;
uint32_t temp;
/* Check the parameters */
assert_param(IS_GPIO_ALL_INSTANCE(GPIOx));
assert_param(IS_GPIO_PIN(GPIO_Init->Pin));
assert_param(IS_GPIO_MODE(GPIO_Init->Mode));
assert_param(IS_GPIO_PULL(GPIO_Init->Pull));
/* Configure the port pins */
while (((GPIO_Init->Pin) >> position) != 0x00u)
{
/* Get current io position */
iocurrent = (GPIO_Init->Pin) & (1uL << position);
if (iocurrent != 0x00u)
{
/*--------------------- GPIO Mode Configuration ------------------------*/
/* In case of Output or Alternate function mode selection */
if (((GPIO_Init->Mode & GPIO_MODE) == MODE_OUTPUT) || ((GPIO_Init->Mode & GPIO_MODE) == MODE_AF))
{
/* Check the Speed parameter */
assert_param(IS_GPIO_SPEED(GPIO_Init->Speed));
/* Configure the IO Speed */
temp = GPIOx->OSPEEDR;
temp &= ~(GPIO_OSPEEDR_OSPEED0 << (position * 2u));
temp |= (GPIO_Init->Speed << (position * 2u));
GPIOx->OSPEEDR = temp;
/* Configure the IO Output Type */
temp = GPIOx->OTYPER;
temp &= ~(GPIO_OTYPER_OT0 << position) ;
temp |= (((GPIO_Init->Mode & OUTPUT_TYPE) >> OUTPUT_TYPE_Pos) << position);
GPIOx->OTYPER = temp;
}
/* Activate the Pull-up or Pull down resistor for the current IO */
if ((GPIO_Init->Mode & GPIO_MODE) != MODE_ANALOG)
{
temp = GPIOx->PUPDR;
temp &= ~(GPIO_PUPDR_PUPD0 << (position * 2U));
temp |= ((GPIO_Init->Pull) << (position * 2U));
GPIOx->PUPDR = temp;
}
/* In case of Alternate function mode selection */
if ((GPIO_Init->Mode & GPIO_MODE) == MODE_AF)
{
/* Check the Alternate function parameters */
assert_param(IS_GPIO_AF_INSTANCE(GPIOx));
assert_param(IS_GPIO_AF(GPIO_Init->Alternate));
/* Configure Alternate function mapped with the current IO */
temp = GPIOx->AFR[position >> 3u];
temp &= ~(0xFu << ((position & 0x07u) * 4u));
temp |= ((GPIO_Init->Alternate) << ((position & 0x07u) * 4u));
GPIOx->AFR[position >> 3u] = temp;
}
/* Configure IO Direction mode (Input, Output, Alternate or Analog) */
temp = GPIOx->MODER;
temp &= ~(GPIO_MODER_MODE0 << (position * 2u));
temp |= ((GPIO_Init->Mode & GPIO_MODE) << (position * 2u));
GPIOx->MODER = temp;
/*--------------------- EXTI Mode Configuration ------------------------*/
/* Configure the External Interrupt or event for the current IO */
if ((GPIO_Init->Mode & EXTI_MODE) != 0x00u)
{
temp = SYSCFG->EXTICR[position >> 2u];
temp &= ~(0x0FuL << (4u * (position & 0x03u)));
temp |= (GPIO_GET_INDEX(GPIOx) << (4u * (position & 0x03u)));
SYSCFG->EXTICR[position >> 2u] = temp;
/* Clear Rising Falling edge configuration */
temp = EXTI->RTSR1;
temp &= ~(iocurrent);
if ((GPIO_Init->Mode & TRIGGER_RISING) != 0x00u)
{
temp |= iocurrent;
}
EXTI->RTSR1 = temp;
temp = EXTI->FTSR1;
temp &= ~(iocurrent);
if ((GPIO_Init->Mode & TRIGGER_FALLING) != 0x00u)
{
temp |= iocurrent;
}
EXTI->FTSR1 = temp;
/* Clear EXTI line configuration */
temp = EXTI->IMR1;
temp &= ~(iocurrent);
if ((GPIO_Init->Mode & EXTI_IT) != 0x00u)
{
temp |= iocurrent;
}
EXTI->IMR1 = temp;
temp = EXTI->EMR1;
temp &= ~(iocurrent);
if ((GPIO_Init->Mode & EXTI_EVT) != 0x00u)
{
temp |= iocurrent;
}
EXTI->EMR1 = temp;
}
}
position++;
}
}
/**
* @brief De-initialize the GPIOx peripheral registers to their default reset values.
* @param GPIOx where x can be (A..H) to select the GPIO peripheral for STM32WBxx family
* @param GPIO_Pin specifies the port bit to be written.
* This parameter can be one of GPIO_PIN_x where x can be (0..15).
* @retval None
*/
void HAL_GPIO_DeInit(GPIO_TypeDef *GPIOx, uint32_t GPIO_Pin)
{
uint32_t position = 0x00u;
uint32_t iocurrent;
uint32_t tmp;
/* Check the parameters */
assert_param(IS_GPIO_ALL_INSTANCE(GPIOx));
assert_param(IS_GPIO_PIN(GPIO_Pin));
/* Configure the port pins */
while ((GPIO_Pin >> position) != 0x00u)
{
/* Get current io position */
iocurrent = (GPIO_Pin) & (1uL << position);
if (iocurrent != 0x00u)
{
/*------------------------- EXTI Mode Configuration --------------------*/
/* Clear the External Interrupt or Event for the current IO */
tmp = SYSCFG->EXTICR[position >> 2u];
tmp &= (0x0FUL << (4u * (position & 0x03u)));
if (tmp == (GPIO_GET_INDEX(GPIOx) << (4u * (position & 0x03u))))
{
/* Clear EXTI line configuration */
EXTI->IMR1 &= ~(iocurrent);
EXTI->EMR1 &= ~(iocurrent);
/* Clear Rising Falling edge configuration */
EXTI->RTSR1 &= ~(iocurrent);
EXTI->FTSR1 &= ~(iocurrent);
tmp = 0x0FuL << (4u * (position & 0x03u));
SYSCFG->EXTICR[position >> 2u] &= ~tmp;
}
/*------------------------- GPIO Mode Configuration --------------------*/
/* Configure IO in Analog Mode */
GPIOx->MODER |= (GPIO_MODER_MODE0 << (position * 2u));
/* Configure the default Alternate Function in current IO */
GPIOx->AFR[position >> 3u] &= ~(0xFu << ((position & 0x07u) * 4u)) ;
/* Deactivate the Pull-up and Pull-down resistor for the current IO */
GPIOx->PUPDR &= ~(GPIO_PUPDR_PUPD0 << (position * 2u));
/* Configure the default value IO Output Type */
GPIOx->OTYPER &= ~(GPIO_OTYPER_OT0 << position) ;
/* Configure the default value for IO Speed */
GPIOx->OSPEEDR &= ~(GPIO_OSPEEDR_OSPEED0 << (position * 2u));
}
position++;
}
}
/**
* @}
*/
/** @addtogroup GPIO_Exported_Functions_Group2
* @brief GPIO Read, Write, Toggle, Lock and EXTI management functions.
*
@verbatim
===============================================================================
##### IO operation functions #####
===============================================================================
@endverbatim
* @{
*/
/**
* @brief Read the specified input port pin.
* @param GPIOx where x can be (A..F) to select the GPIO peripheral for STM32WBxx family
* @param GPIO_Pin specifies the port bit to read.
* This parameter can be GPIO_PIN_x where x can be (0..15).
* @retval The input port pin value.
*/
GPIO_PinState HAL_GPIO_ReadPin(GPIO_TypeDef *GPIOx, uint16_t GPIO_Pin)
{
GPIO_PinState bitstatus;
/* Check the parameters */
assert_param(IS_GPIO_PIN(GPIO_Pin));
if ((GPIOx->IDR & GPIO_Pin) != 0x00u)
{
bitstatus = GPIO_PIN_SET;
}
else
{
bitstatus = GPIO_PIN_RESET;
}
return bitstatus;
}
/**
* @brief Set or clear the selected data port bit.
* @note This function uses GPIOx_BSRR and GPIOx_BRR registers to allow atomic read/modify
* accesses. In this way, there is no risk of an IRQ occurring between
* the read and the modify access.
* @param GPIOx where x can be (A..F) to select the GPIO peripheral for STM32WBxx family
* @param GPIO_Pin specifies the port bit to be written.
* This parameter can be one of GPIO_PIN_x where x can be (0..15).
* @param PinState specifies the value to be written to the selected bit.
* This parameter can be one of the GPIO_PinState enum values:
* @arg GPIO_PIN_RESET: to clear the port pin
* @arg GPIO_PIN_SET: to set the port pin
* @retval None
*/
void HAL_GPIO_WritePin(GPIO_TypeDef *GPIOx, uint16_t GPIO_Pin, GPIO_PinState PinState)
{
/* Check the parameters */
assert_param(IS_GPIO_PIN(GPIO_Pin));
assert_param(IS_GPIO_PIN_ACTION(PinState));
if (PinState != GPIO_PIN_RESET)
{
GPIOx->BSRR = (uint32_t)GPIO_Pin;
}
else
{
GPIOx->BRR = (uint32_t)GPIO_Pin;
}
}
/**
* @brief Set and clear several pins of a dedicated port in same cycle.
* @note This function uses GPIOx_BSRR and GPIOx_BRR registers to allow atomic read/modify
* accesses.
* @param GPIOx where x can be (A..F) to select the GPIO peripheral for STM32WLxx family
* @param PinReset specifies the port bits to be reset
* This parameter can be any combination of GPIO_PIN_x where x can be (0..15) or zero.
* @param PinSet specifies the port bits to be set
* This parameter can be any combination of GPIO_PIN_x where x can be (0..15) or zero.
* @note Both PinReset and PinSet combinations shall not get any common bit, else
* assert would be triggered.
* @note At least one of the two parameters used to set or reset shall be different from zero.
* @retval None
*/
void HAL_GPIO_WriteMultipleStatePin(GPIO_TypeDef *GPIOx, uint16_t PinReset, uint16_t PinSet)
{
uint32_t tmp;
/* Check the parameters */
/* Make sure at least one parameter is different from zero and that there is no common pin */
assert_param(IS_GPIO_PIN((uint32_t)PinReset | (uint32_t)PinSet));
assert_param(IS_GPIO_COMMON_PIN(PinReset, PinSet));
tmp = (((uint32_t)PinReset << 16) | PinSet);
GPIOx->BSRR = tmp;
}
/**
* @brief Toggle the specified GPIO pin.
* @param GPIOx where x can be (A..H) to select the GPIO peripheral for STM32WBxx family
* @param GPIO_Pin specifies the pin to be toggled.
* @retval None
*/
void HAL_GPIO_TogglePin(GPIO_TypeDef *GPIOx, uint16_t GPIO_Pin)
{
uint32_t odr;
/* Check the parameters */
assert_param(IS_GPIO_PIN(GPIO_Pin));
/* get current Output Data Register value */
odr = GPIOx->ODR;
/* Set selected pins that were at low level, and reset ones that were high */
GPIOx->BSRR = ((odr & GPIO_Pin) << GPIO_NUMBER) | (~odr & GPIO_Pin);
}
/**
* @brief Lock GPIO Pins configuration registers.
* @note The locked registers are GPIOx_MODER, GPIOx_OTYPER, GPIOx_OSPEEDR,
* GPIOx_PUPDR, GPIOx_AFRL and GPIOx_AFRH.
* @note The configuration of the locked GPIO pins can no longer be modified
* until the next reset.
* @param GPIOx where x can be (A..H) to select the GPIO peripheral for STM32WBxx family
* @param GPIO_Pin specifies the port bits to be locked.
* This parameter can be any combination of GPIO_PIN_x where x can be (0..15).
* @retval None
*/
HAL_StatusTypeDef HAL_GPIO_LockPin(GPIO_TypeDef *GPIOx, uint16_t GPIO_Pin)
{
__IO uint32_t tmp = GPIO_LCKR_LCKK;
/* Check the parameters */
assert_param(IS_GPIO_LOCK_INSTANCE(GPIOx));
assert_param(IS_GPIO_PIN(GPIO_Pin));
/* Apply lock key write sequence */
tmp |= GPIO_Pin;
/* Set LCKx bit(s): LCKK='1' + LCK[15-0] */
GPIOx->LCKR = tmp;
/* Reset LCKx bit(s): LCKK='0' + LCK[15-0] */
GPIOx->LCKR = GPIO_Pin;
/* Set LCKx bit(s): LCKK='1' + LCK[15-0] */
GPIOx->LCKR = tmp;
/* Read LCKK register. This read is mandatory to complete key lock sequence */
tmp = GPIOx->LCKR;
/* read again in order to confirm lock is active */
if ((GPIOx->LCKR & GPIO_LCKR_LCKK) != 0x00u)
{
return HAL_OK;
}
else
{
return HAL_ERROR;
}
}
/**
* @brief Handle EXTI interrupt request.
* @param GPIO_Pin Specifies the port pin connected to corresponding EXTI line.
* @retval None
*/
void HAL_GPIO_EXTI_IRQHandler(uint16_t GPIO_Pin)
{
/* EXTI line interrupt detected */
if (__HAL_GPIO_EXTI_GET_IT(GPIO_Pin) != 0x00u)
{
__HAL_GPIO_EXTI_CLEAR_IT(GPIO_Pin);
HAL_GPIO_EXTI_Callback(GPIO_Pin);
}
}
/**
* @brief EXTI line detection callback.
* @param GPIO_Pin Specifies the port pin connected to corresponding EXTI line.
* @retval None
*/
__weak void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(GPIO_Pin);
/* NOTE: This function should not be modified, when the callback is needed,
the HAL_GPIO_EXTI_Callback could be implemented in the user file
*/
}
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_GPIO_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/

View File

@@ -0,0 +1,369 @@
/**
******************************************************************************
* @file stm32wbxx_hal_hsem.c
* @author MCD Application Team
* @brief HSEM HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the semaphore peripheral:
* + Semaphore Take function (2-Step Procedure) , non blocking
* + Semaphore FastTake function (1-Step Procedure) , non blocking
* + Semaphore Status check
* + Semaphore Clear Key Set and Get
* + Release and release all functions
* + Semaphore notification enabling and disabling and callnack functions
* + IRQ handler management
*
*
******************************************************************************
* @attention
*
* Copyright (c) 2019 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
==============================================================================
##### How to use this driver #####
==============================================================================
[..]
(#)Take a semaphore In 2-Step mode Using function HAL_HSEM_Take. This function takes as parameters :
(++) the semaphore ID from 0 to 31
(++) the process ID from 0 to 255
(#) Fast Take semaphore In 1-Step mode Using function HAL_HSEM_FastTake. This function takes as parameter :
(++) the semaphore ID from 0_ID to 31. Note that the process ID value is implicitly assumed as zero
(#) Check if a semaphore is Taken using function HAL_HSEM_IsSemTaken. This function takes as parameter :
(++) the semaphore ID from 0_ID to 31
(++) It returns 1 if the given semaphore is taken otherwise (Free) zero
(#)Release a semaphore using function with HAL_HSEM_Release. This function takes as parameters :
(++) the semaphore ID from 0 to 31
(++) the process ID from 0 to 255:
(++) Note: If ProcessID and MasterID match, semaphore is freed, and an interrupt
may be generated when enabled (notification activated). If ProcessID or MasterID does not match,
semaphore remains taken (locked)
(#)Release all semaphores at once taken by a given Master using function HAL_HSEM_Release_All
This function takes as parameters :
(++) the Release Key (value from 0 to 0xFFFF) can be Set or Get respectively by
HAL_HSEM_SetClearKey() or HAL_HSEM_GetClearKey functions
(++) the Master ID:
(++) Note: If the Key and MasterID match, all semaphores taken by the given CPU that corresponds
to MasterID will be freed, and an interrupt may be generated when enabled (notification activated). If the
Key or the MasterID doesn't match, semaphores remains taken (locked)
(#)Semaphores Release all key functions:
(++) HAL_HSEM_SetClearKey() to set semaphore release all Key
(++) HAL_HSEM_GetClearKey() to get release all Key
(#)Semaphores notification functions :
(++) HAL_HSEM_ActivateNotification to activate a notification callback on
a given semaphores Mask (bitfield). When one or more semaphores defined by the mask are released
the callback HAL_HSEM_FreeCallback will be asserted giving as parameters a mask of the released
semaphores (bitfield).
(++) HAL_HSEM_DeactivateNotification to deactivate the notification of a given semaphores Mask (bitfield).
(++) See the description of the macro __HAL_HSEM_SEMID_TO_MASK to check how to calculate a semaphore mask
Used by the notification functions
*** HSEM HAL driver macros list ***
=============================================
[..] Below the list of most used macros in HSEM HAL driver.
(+) __HAL_HSEM_SEMID_TO_MASK: Helper macro to convert a Semaphore ID to a Mask.
[..] Example of use :
[..] mask = __HAL_HSEM_SEMID_TO_MASK(8) | __HAL_HSEM_SEMID_TO_MASK(21) | __HAL_HSEM_SEMID_TO_MASK(25).
[..] All next macros take as parameter a semaphore Mask (bitfiled) that can be constructed using __HAL_HSEM_SEMID_TO_MASK as the above example.
(+) __HAL_HSEM_ENABLE_IT: Enable the specified semaphores Mask interrupts.
(+) __HAL_HSEM_DISABLE_IT: Disable the specified semaphores Mask interrupts.
(+) __HAL_HSEM_GET_IT: Checks whether the specified semaphore interrupt has occurred or not.
(+) __HAL_HSEM_GET_FLAG: Get the semaphores status release flags.
(+) __HAL_HSEM_CLEAR_FLAG: Clear the semaphores status release flags.
@endverbatim
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32wbxx_hal.h"
/** @addtogroup STM32WBxx_HAL_Driver
* @{
*/
/** @defgroup HSEM HSEM
* @brief HSEM HAL module driver
* @{
*/
#ifdef HAL_HSEM_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
#if defined(DUAL_CORE)
/** @defgroup HSEM_Private_Constants HSEM Private Constants
* @{
*/
#ifndef HSEM_R_MASTERID
#define HSEM_R_MASTERID HSEM_R_COREID
#endif
#ifndef HSEM_RLR_MASTERID
#define HSEM_RLR_MASTERID HSEM_RLR_COREID
#endif
#ifndef HSEM_CR_MASTERID
#define HSEM_CR_MASTERID HSEM_CR_COREID
#endif
/**
* @}
*/
#endif /* DUAL_CORE */
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup HSEM_Exported_Functions HSEM Exported Functions
* @{
*/
/** @defgroup HSEM_Exported_Functions_Group1 Take and Release functions
* @brief HSEM Take and Release functions
*
@verbatim
==============================================================================
##### HSEM Take and Release functions #####
==============================================================================
[..] This section provides functions allowing to:
(+) Take a semaphore with 2 Step method
(+) Fast Take a semaphore with 1 Step method
(+) Check semaphore state Taken or not
(+) Release a semaphore
(+) Release all semaphore at once
@endverbatim
* @{
*/
/**
* @brief Take a semaphore in 2 Step mode.
* @param SemID: semaphore ID from 0 to 31
* @param ProcessID: Process ID from 0 to 255
* @retval HAL status
*/
HAL_StatusTypeDef HAL_HSEM_Take(uint32_t SemID, uint32_t ProcessID)
{
/* Check the parameters */
assert_param(IS_HSEM_SEMID(SemID));
assert_param(IS_HSEM_PROCESSID(ProcessID));
/* First step write R register with MasterID, processID and take bit=1*/
HSEM->R[SemID] = (ProcessID | HSEM_CR_COREID_CURRENT | HSEM_R_LOCK);
/* second step : read the R register . Take achieved if MasterID and processID match and take bit set to 1 */
if (HSEM->R[SemID] == (ProcessID | HSEM_CR_COREID_CURRENT | HSEM_R_LOCK))
{
/*take success when MasterID and ProcessID match and take bit set*/
return HAL_OK;
}
/* Semaphore take fails*/
return HAL_ERROR;
}
/**
* @brief Fast Take a semaphore with 1 Step mode.
* @param SemID: semaphore ID from 0 to 31
* @retval HAL status
*/
HAL_StatusTypeDef HAL_HSEM_FastTake(uint32_t SemID)
{
/* Check the parameters */
assert_param(IS_HSEM_SEMID(SemID));
/* Read the RLR register to take the semaphore */
if (HSEM->RLR[SemID] == (HSEM_CR_COREID_CURRENT | HSEM_RLR_LOCK))
{
/*take success when MasterID match and take bit set*/
return HAL_OK;
}
/* Semaphore take fails */
return HAL_ERROR;
}
/**
* @brief Check semaphore state Taken or not.
* @param SemID: semaphore ID
* @retval HAL HSEM state
*/
uint32_t HAL_HSEM_IsSemTaken(uint32_t SemID)
{
return (((HSEM->R[SemID] & HSEM_R_LOCK) != 0U) ? 1UL : 0UL);
}
/**
* @brief Release a semaphore.
* @param SemID: semaphore ID from 0 to 31
* @param ProcessID: Process ID from 0 to 255
* @retval None
*/
void HAL_HSEM_Release(uint32_t SemID, uint32_t ProcessID)
{
/* Check the parameters */
assert_param(IS_HSEM_SEMID(SemID));
assert_param(IS_HSEM_PROCESSID(ProcessID));
/* Clear the semaphore by writing to the R register : the MasterID , the processID and take bit = 0 */
HSEM->R[SemID] = (ProcessID | HSEM_CR_COREID_CURRENT);
}
/**
* @brief Release All semaphore used by a given Master .
* @param Key: Semaphore Key , value from 0 to 0xFFFF
* @param CoreID: CoreID of the CPU that is using semaphores to be released
* @retval None
*/
void HAL_HSEM_ReleaseAll(uint32_t Key, uint32_t CoreID)
{
assert_param(IS_HSEM_KEY(Key));
assert_param(IS_HSEM_COREID(CoreID));
HSEM->CR = ((Key << HSEM_CR_KEY_Pos) | (CoreID << HSEM_CR_COREID_Pos));
}
/**
* @}
*/
/** @defgroup HSEM_Exported_Functions_Group2 HSEM Set and Get Key functions
* @brief HSEM Set and Get Key functions.
*
@verbatim
==============================================================================
##### HSEM Set and Get Key functions #####
==============================================================================
[..] This section provides functions allowing to:
(+) Set semaphore Key
(+) Get semaphore Key
@endverbatim
* @{
*/
/**
* @brief Set semaphore Key .
* @param Key: Semaphore Key , value from 0 to 0xFFFF
* @retval None
*/
void HAL_HSEM_SetClearKey(uint32_t Key)
{
assert_param(IS_HSEM_KEY(Key));
MODIFY_REG(HSEM->KEYR, HSEM_KEYR_KEY, (Key << HSEM_KEYR_KEY_Pos));
}
/**
* @brief Get semaphore Key .
* @retval Semaphore Key , value from 0 to 0xFFFF
*/
uint32_t HAL_HSEM_GetClearKey(void)
{
return (HSEM->KEYR >> HSEM_KEYR_KEY_Pos);
}
/**
* @}
*/
/** @defgroup HSEM_Exported_Functions_Group3 HSEM IRQ handler management
* @brief HSEM Notification functions.
*
@verbatim
==============================================================================
##### HSEM IRQ handler management and Notification functions #####
==============================================================================
[..] This section provides HSEM IRQ handler and Notification function.
@endverbatim
* @{
*/
/**
* @brief Activate Semaphore release Notification for a given Semaphores Mask .
* @param SemMask: Mask of Released semaphores
* @retval Semaphore Key
*/
void HAL_HSEM_ActivateNotification(uint32_t SemMask)
{
HSEM_COMMON->IER |= SemMask;
}
/**
* @brief Deactivate Semaphore release Notification for a given Semaphores Mask .
* @param SemMask: Mask of Released semaphores
* @retval Semaphore Key
*/
void HAL_HSEM_DeactivateNotification(uint32_t SemMask)
{
HSEM_COMMON->IER &= ~SemMask;
}
/**
* @brief This function handles HSEM interrupt request
* @retval None
*/
void HAL_HSEM_IRQHandler(void)
{
uint32_t statusreg;
/* Get the list of masked freed semaphores*/
statusreg = HSEM_COMMON->MISR;
/*Disable Interrupts*/
HSEM_COMMON->IER &= ~((uint32_t)statusreg);
/*Clear Flags*/
HSEM_COMMON->ICR = ((uint32_t)statusreg);
/* Call FreeCallback */
HAL_HSEM_FreeCallback(statusreg);
}
/**
* @brief Semaphore Released Callback.
* @param SemMask: Mask of Released semaphores
* @retval None
*/
__weak void HAL_HSEM_FreeCallback(uint32_t SemMask)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(SemMask);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_HSEM_FreeCallback can be implemented in the user file
*/
}
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_HSEM_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,354 @@
/**
******************************************************************************
* @file stm32wbxx_hal_i2c_ex.c
* @author MCD Application Team
* @brief I2C Extended HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of I2C Extended peripheral:
* + Filter Mode Functions
* + WakeUp Mode Functions
* + FastModePlus Functions
*
******************************************************************************
* @attention
*
* Copyright (c) 2019 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
==============================================================================
##### I2C peripheral Extended features #####
==============================================================================
[..] Comparing to other previous devices, the I2C interface for STM32WBxx
devices contains the following additional features
(+) Possibility to disable or enable Analog Noise Filter
(+) Use of a configured Digital Noise Filter
(+) Disable or enable wakeup from Stop mode(s)
(+) Disable or enable Fast Mode Plus
##### How to use this driver #####
==============================================================================
[..] This driver provides functions to configure Noise Filter and Wake Up Feature
(#) Configure I2C Analog noise filter using the function HAL_I2CEx_ConfigAnalogFilter()
(#) Configure I2C Digital noise filter using the function HAL_I2CEx_ConfigDigitalFilter()
(#) Configure the enable or disable of I2C Wake Up Mode using the functions :
(++) HAL_I2CEx_EnableWakeUp()
(++) HAL_I2CEx_DisableWakeUp()
(#) Configure the enable or disable of fast mode plus driving capability using the functions :
(++) HAL_I2CEx_EnableFastModePlus()
(++) HAL_I2CEx_DisableFastModePlus()
@endverbatim
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32wbxx_hal.h"
/** @addtogroup STM32WBxx_HAL_Driver
* @{
*/
/** @defgroup I2CEx I2CEx
* @brief I2C Extended HAL module driver
* @{
*/
#ifdef HAL_I2C_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup I2CEx_Exported_Functions I2C Extended Exported Functions
* @{
*/
/** @defgroup I2CEx_Exported_Functions_Group1 Filter Mode Functions
* @brief Filter Mode Functions
*
@verbatim
===============================================================================
##### Filter Mode Functions #####
===============================================================================
[..] This section provides functions allowing to:
(+) Configure Noise Filters
@endverbatim
* @{
*/
/**
* @brief Configure I2C Analog noise filter.
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2Cx peripheral.
* @param AnalogFilter New state of the Analog filter.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_I2CEx_ConfigAnalogFilter(I2C_HandleTypeDef *hi2c, uint32_t AnalogFilter)
{
/* Check the parameters */
assert_param(IS_I2C_ALL_INSTANCE(hi2c->Instance));
assert_param(IS_I2C_ANALOG_FILTER(AnalogFilter));
if (hi2c->State == HAL_I2C_STATE_READY)
{
/* Process Locked */
__HAL_LOCK(hi2c);
hi2c->State = HAL_I2C_STATE_BUSY;
/* Disable the selected I2C peripheral */
__HAL_I2C_DISABLE(hi2c);
/* Reset I2Cx ANOFF bit */
hi2c->Instance->CR1 &= ~(I2C_CR1_ANFOFF);
/* Set analog filter bit*/
hi2c->Instance->CR1 |= AnalogFilter;
__HAL_I2C_ENABLE(hi2c);
hi2c->State = HAL_I2C_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Configure I2C Digital noise filter.
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2Cx peripheral.
* @param DigitalFilter Coefficient of digital noise filter between Min_Data=0x00 and Max_Data=0x0F.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_I2CEx_ConfigDigitalFilter(I2C_HandleTypeDef *hi2c, uint32_t DigitalFilter)
{
uint32_t tmpreg;
/* Check the parameters */
assert_param(IS_I2C_ALL_INSTANCE(hi2c->Instance));
assert_param(IS_I2C_DIGITAL_FILTER(DigitalFilter));
if (hi2c->State == HAL_I2C_STATE_READY)
{
/* Process Locked */
__HAL_LOCK(hi2c);
hi2c->State = HAL_I2C_STATE_BUSY;
/* Disable the selected I2C peripheral */
__HAL_I2C_DISABLE(hi2c);
/* Get the old register value */
tmpreg = hi2c->Instance->CR1;
/* Reset I2Cx DNF bits [11:8] */
tmpreg &= ~(I2C_CR1_DNF);
/* Set I2Cx DNF coefficient */
tmpreg |= DigitalFilter << 8U;
/* Store the new register value */
hi2c->Instance->CR1 = tmpreg;
__HAL_I2C_ENABLE(hi2c);
hi2c->State = HAL_I2C_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @}
*/
/** @defgroup I2CEx_Exported_Functions_Group2 WakeUp Mode Functions
* @brief WakeUp Mode Functions
*
@verbatim
===============================================================================
##### WakeUp Mode Functions #####
===============================================================================
[..] This section provides functions allowing to:
(+) Configure Wake Up Feature
@endverbatim
* @{
*/
/**
* @brief Enable I2C wakeup from Stop mode(s).
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2Cx peripheral.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_I2CEx_EnableWakeUp(I2C_HandleTypeDef *hi2c)
{
/* Check the parameters */
assert_param(IS_I2C_WAKEUP_FROMSTOP_INSTANCE(hi2c->Instance));
if (hi2c->State == HAL_I2C_STATE_READY)
{
/* Process Locked */
__HAL_LOCK(hi2c);
hi2c->State = HAL_I2C_STATE_BUSY;
/* Disable the selected I2C peripheral */
__HAL_I2C_DISABLE(hi2c);
/* Enable wakeup from stop mode */
hi2c->Instance->CR1 |= I2C_CR1_WUPEN;
__HAL_I2C_ENABLE(hi2c);
hi2c->State = HAL_I2C_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Disable I2C wakeup from Stop mode(s).
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2Cx peripheral.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_I2CEx_DisableWakeUp(I2C_HandleTypeDef *hi2c)
{
/* Check the parameters */
assert_param(IS_I2C_WAKEUP_FROMSTOP_INSTANCE(hi2c->Instance));
if (hi2c->State == HAL_I2C_STATE_READY)
{
/* Process Locked */
__HAL_LOCK(hi2c);
hi2c->State = HAL_I2C_STATE_BUSY;
/* Disable the selected I2C peripheral */
__HAL_I2C_DISABLE(hi2c);
/* Enable wakeup from stop mode */
hi2c->Instance->CR1 &= ~(I2C_CR1_WUPEN);
__HAL_I2C_ENABLE(hi2c);
hi2c->State = HAL_I2C_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @}
*/
/** @defgroup I2CEx_Exported_Functions_Group3 Fast Mode Plus Functions
* @brief Fast Mode Plus Functions
*
@verbatim
===============================================================================
##### Fast Mode Plus Functions #####
===============================================================================
[..] This section provides functions allowing to:
(+) Configure Fast Mode Plus
@endverbatim
* @{
*/
/**
* @brief Enable the I2C fast mode plus driving capability.
* @param ConfigFastModePlus Selects the pin.
* This parameter can be one of the @ref I2CEx_FastModePlus values
* @note For I2C1, fast mode plus driving capability can be enabled on all selected
* I2C1 pins using I2C_FASTMODEPLUS_I2C1 parameter or independently
* on each one of the following pins PB6, PB7, PB8 and PB9.
* @note For remaining I2C1 pins (PA14, PA15...) fast mode plus driving capability
* can be enabled only by using I2C_FASTMODEPLUS_I2C1 parameter.
* @note For all I2C3 pins fast mode plus driving capability can be enabled
* only by using I2C_FASTMODEPLUS_I2C3 parameter.
* @retval None
*/
void HAL_I2CEx_EnableFastModePlus(uint32_t ConfigFastModePlus)
{
/* Check the parameter */
assert_param(IS_I2C_FASTMODEPLUS(ConfigFastModePlus));
/* Enable fast mode plus driving capability for selected pin */
SET_BIT(SYSCFG->CFGR1, (uint32_t)ConfigFastModePlus);
}
/**
* @brief Disable the I2C fast mode plus driving capability.
* @param ConfigFastModePlus Selects the pin.
* This parameter can be one of the @ref I2CEx_FastModePlus values
* @note For I2C1, fast mode plus driving capability can be disabled on all selected
* I2C1 pins using I2C_FASTMODEPLUS_I2C1 parameter or independently
* on each one of the following pins PB6, PB7, PB8 and PB9.
* @note For remaining I2C1 pins (PA14, PA15...) fast mode plus driving capability
* can be disabled only by using I2C_FASTMODEPLUS_I2C1 parameter.
* @note For all I2C3 pins fast mode plus driving capability can be disabled
* only by using I2C_FASTMODEPLUS_I2C3 parameter.
* @retval None
*/
void HAL_I2CEx_DisableFastModePlus(uint32_t ConfigFastModePlus)
{
/* Check the parameter */
assert_param(IS_I2C_FASTMODEPLUS(ConfigFastModePlus));
/* Disable fast mode plus driving capability for selected pin */
CLEAR_BIT(SYSCFG->CFGR1, (uint32_t)ConfigFastModePlus);
}
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_I2C_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,331 @@
/**
******************************************************************************
* @file stm32wbxx_hal_pcd_ex.c
* @author MCD Application Team
* @brief PCD Extended HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the USB Peripheral Controller:
* + Extended features functions
*
******************************************************************************
* @attention
*
* Copyright (c) 2019 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32wbxx_hal.h"
/** @addtogroup STM32WBxx_HAL_Driver
* @{
*/
/** @defgroup PCDEx PCDEx
* @brief PCD Extended HAL module driver
* @{
*/
#ifdef HAL_PCD_MODULE_ENABLED
#if defined (USB)
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/* Private macros ------------------------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup PCDEx_Exported_Functions PCDEx Exported Functions
* @{
*/
/** @defgroup PCDEx_Exported_Functions_Group1 Peripheral Control functions
* @brief PCDEx control functions
*
@verbatim
===============================================================================
##### Extended features functions #####
===============================================================================
[..] This section provides functions allowing to:
(+) Update FIFO configuration
@endverbatim
* @{
*/
/**
* @brief Configure PMA for EP
* @param hpcd Device instance
* @param ep_addr endpoint address
* @param ep_kind endpoint Kind
* USB_SNG_BUF: Single Buffer used
* USB_DBL_BUF: Double Buffer used
* @param pmaadress: EP address in The PMA: In case of single buffer endpoint
* this parameter is 16-bit value providing the address
* in PMA allocated to endpoint.
* In case of double buffer endpoint this parameter
* is a 32-bit value providing the endpoint buffer 0 address
* in the LSB part of 32-bit value and endpoint buffer 1 address
* in the MSB part of 32-bit value.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PCDEx_PMAConfig(PCD_HandleTypeDef *hpcd, uint16_t ep_addr,
uint16_t ep_kind, uint32_t pmaadress)
{
PCD_EPTypeDef *ep;
/* initialize ep structure*/
if ((0x80U & ep_addr) == 0x80U)
{
ep = &hpcd->IN_ep[ep_addr & EP_ADDR_MSK];
}
else
{
ep = &hpcd->OUT_ep[ep_addr];
}
/* Here we check if the endpoint is single or double Buffer*/
if (ep_kind == PCD_SNG_BUF)
{
/* Single Buffer */
ep->doublebuffer = 0U;
/* Configure the PMA */
ep->pmaadress = (uint16_t)pmaadress;
}
#if (USE_USB_DOUBLE_BUFFER == 1U)
else /* USB_DBL_BUF */
{
/* Double Buffer Endpoint */
ep->doublebuffer = 1U;
/* Configure the PMA */
ep->pmaaddr0 = (uint16_t)(pmaadress & 0xFFFFU);
ep->pmaaddr1 = (uint16_t)((pmaadress & 0xFFFF0000U) >> 16);
}
#endif /* (USE_USB_DOUBLE_BUFFER == 1U) */
return HAL_OK;
}
/**
* @brief Activate BatteryCharging feature.
* @param hpcd PCD handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PCDEx_ActivateBCD(PCD_HandleTypeDef *hpcd)
{
USB_TypeDef *USBx = hpcd->Instance;
hpcd->battery_charging_active = 1U;
/* Enable BCD feature */
USBx->BCDR |= USB_BCDR_BCDEN;
/* Enable DCD : Data Contact Detect */
USBx->BCDR &= ~(USB_BCDR_PDEN);
USBx->BCDR &= ~(USB_BCDR_SDEN);
USBx->BCDR |= USB_BCDR_DCDEN;
return HAL_OK;
}
/**
* @brief Deactivate BatteryCharging feature.
* @param hpcd PCD handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PCDEx_DeActivateBCD(PCD_HandleTypeDef *hpcd)
{
USB_TypeDef *USBx = hpcd->Instance;
hpcd->battery_charging_active = 0U;
/* Disable BCD feature */
USBx->BCDR &= ~(USB_BCDR_BCDEN);
return HAL_OK;
}
/**
* @brief Handle BatteryCharging Process.
* @param hpcd PCD handle
* @retval HAL status
*/
void HAL_PCDEx_BCD_VBUSDetect(PCD_HandleTypeDef *hpcd)
{
USB_TypeDef *USBx = hpcd->Instance;
uint32_t tickstart = HAL_GetTick();
/* Wait for Min DCD Timeout */
HAL_Delay(300U);
/* Data Pin Contact ? Check Detect flag */
if ((USBx->BCDR & USB_BCDR_DCDET) == USB_BCDR_DCDET)
{
#if (USE_HAL_PCD_REGISTER_CALLBACKS == 1U)
hpcd->BCDCallback(hpcd, PCD_BCD_CONTACT_DETECTION);
#else
HAL_PCDEx_BCD_Callback(hpcd, PCD_BCD_CONTACT_DETECTION);
#endif /* USE_HAL_PCD_REGISTER_CALLBACKS */
}
/* Primary detection: checks if connected to Standard Downstream Port
(without charging capability) */
USBx->BCDR &= ~(USB_BCDR_DCDEN);
HAL_Delay(50U);
USBx->BCDR |= (USB_BCDR_PDEN);
HAL_Delay(50U);
/* If Charger detect ? */
if ((USBx->BCDR & USB_BCDR_PDET) == USB_BCDR_PDET)
{
/* Start secondary detection to check connection to Charging Downstream
Port or Dedicated Charging Port */
USBx->BCDR &= ~(USB_BCDR_PDEN);
HAL_Delay(50U);
USBx->BCDR |= (USB_BCDR_SDEN);
HAL_Delay(50U);
/* If CDP ? */
if ((USBx->BCDR & USB_BCDR_SDET) == USB_BCDR_SDET)
{
/* Dedicated Downstream Port DCP */
#if (USE_HAL_PCD_REGISTER_CALLBACKS == 1U)
hpcd->BCDCallback(hpcd, PCD_BCD_DEDICATED_CHARGING_PORT);
#else
HAL_PCDEx_BCD_Callback(hpcd, PCD_BCD_DEDICATED_CHARGING_PORT);
#endif /* USE_HAL_PCD_REGISTER_CALLBACKS */
}
else
{
/* Charging Downstream Port CDP */
#if (USE_HAL_PCD_REGISTER_CALLBACKS == 1U)
hpcd->BCDCallback(hpcd, PCD_BCD_CHARGING_DOWNSTREAM_PORT);
#else
HAL_PCDEx_BCD_Callback(hpcd, PCD_BCD_CHARGING_DOWNSTREAM_PORT);
#endif /* USE_HAL_PCD_REGISTER_CALLBACKS */
}
}
else /* NO */
{
/* Standard Downstream Port */
#if (USE_HAL_PCD_REGISTER_CALLBACKS == 1U)
hpcd->BCDCallback(hpcd, PCD_BCD_STD_DOWNSTREAM_PORT);
#else
HAL_PCDEx_BCD_Callback(hpcd, PCD_BCD_STD_DOWNSTREAM_PORT);
#endif /* USE_HAL_PCD_REGISTER_CALLBACKS */
}
/* Battery Charging capability discovery finished Start Enumeration */
(void)HAL_PCDEx_DeActivateBCD(hpcd);
/* Check for the Timeout, else start USB Device */
if ((HAL_GetTick() - tickstart) > 1000U)
{
#if (USE_HAL_PCD_REGISTER_CALLBACKS == 1U)
hpcd->BCDCallback(hpcd, PCD_BCD_ERROR);
#else
HAL_PCDEx_BCD_Callback(hpcd, PCD_BCD_ERROR);
#endif /* USE_HAL_PCD_REGISTER_CALLBACKS */
}
else
{
#if (USE_HAL_PCD_REGISTER_CALLBACKS == 1U)
hpcd->BCDCallback(hpcd, PCD_BCD_DISCOVERY_COMPLETED);
#else
HAL_PCDEx_BCD_Callback(hpcd, PCD_BCD_DISCOVERY_COMPLETED);
#endif /* USE_HAL_PCD_REGISTER_CALLBACKS */
}
}
/**
* @brief Activate LPM feature.
* @param hpcd PCD handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PCDEx_ActivateLPM(PCD_HandleTypeDef *hpcd)
{
USB_TypeDef *USBx = hpcd->Instance;
hpcd->lpm_active = 1U;
hpcd->LPM_State = LPM_L0;
USBx->LPMCSR |= USB_LPMCSR_LMPEN;
USBx->LPMCSR |= USB_LPMCSR_LPMACK;
return HAL_OK;
}
/**
* @brief Deactivate LPM feature.
* @param hpcd PCD handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PCDEx_DeActivateLPM(PCD_HandleTypeDef *hpcd)
{
USB_TypeDef *USBx = hpcd->Instance;
hpcd->lpm_active = 0U;
USBx->LPMCSR &= ~(USB_LPMCSR_LMPEN);
USBx->LPMCSR &= ~(USB_LPMCSR_LPMACK);
return HAL_OK;
}
/**
* @brief Send LPM message to user layer callback.
* @param hpcd PCD handle
* @param msg LPM message
* @retval HAL status
*/
__weak void HAL_PCDEx_LPM_Callback(PCD_HandleTypeDef *hpcd, PCD_LPM_MsgTypeDef msg)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hpcd);
UNUSED(msg);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_PCDEx_LPM_Callback could be implemented in the user file
*/
}
/**
* @brief Send BatteryCharging message to user layer callback.
* @param hpcd PCD handle
* @param msg LPM message
* @retval HAL status
*/
__weak void HAL_PCDEx_BCD_Callback(PCD_HandleTypeDef *hpcd, PCD_BCD_MsgTypeDef msg)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hpcd);
UNUSED(msg);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_PCDEx_BCD_Callback could be implemented in the user file
*/
}
/**
* @}
*/
/**
* @}
*/
#endif /* defined (USB) */
#endif /* HAL_PCD_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/

View File

@@ -0,0 +1,742 @@
/**
******************************************************************************
* @file stm32wbxx_hal_pwr.c
* @author MCD Application Team
* @brief PWR HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the Power Controller (PWR) peripheral:
* + Initialization/de-initialization functions
* + Peripheral Control functions
*
******************************************************************************
* @attention
*
* Copyright (c) 2019 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32wbxx_hal.h"
/** @addtogroup STM32WBxx_HAL_Driver
* @{
*/
/** @addtogroup PWR
* @{
*/
#ifdef HAL_PWR_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/** @addtogroup PWR_Private_Defines
* @{
*/
/** @defgroup PWR_Register_Reset_Values PWR Register Reset Values
* @{
*/
/* Definitions of PWR registers reset value */
#define PWR_CR1_RESET_VALUE (0x00000200U)
#define PWR_CR2_RESET_VALUE (0x00000000U)
#define PWR_CR3_RESET_VALUE (0x00008000U)
#define PWR_CR4_RESET_VALUE (0x00000000U)
#define PWR_CR5_RESET_VALUE (0x00004204U)
#define PWR_PUCRA_RESET_VALUE (0x00000000U)
#define PWR_PDCRA_RESET_VALUE (0x00000000U)
#define PWR_PUCRB_RESET_VALUE (0x00000000U)
#define PWR_PDCRB_RESET_VALUE (0x00000000U)
#define PWR_PUCRC_RESET_VALUE (0x00000000U)
#define PWR_PDCRC_RESET_VALUE (0x00000000U)
#define PWR_PUCRD_RESET_VALUE (0x00000000U)
#define PWR_PDCRD_RESET_VALUE (0x00000000U)
#define PWR_PUCRE_RESET_VALUE (0x00000000U)
#define PWR_PDCRE_RESET_VALUE (0x00000000U)
#define PWR_PUCRH_RESET_VALUE (0x00000000U)
#define PWR_PDCRH_RESET_VALUE (0x00000000U)
#define PWR_C2CR1_RESET_VALUE (0x00000000U)
#define PWR_C2CR3_RESET_VALUE (0x00008000U)
/**
* @}
*/
/**
* @}
*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup PWR_Exported_Functions PWR Exported Functions
* @{
*/
/** @addtogroup PWR_Exported_Functions_Group1 Initialization and de-initialization functions
* @brief Initialization and de-initialization functions
*
@verbatim
===============================================================================
##### Initialization and de-initialization functions #####
===============================================================================
[..]
@endverbatim
* @{
*/
/**
* @brief Deinitialize the HAL PWR peripheral registers to their default reset values.
* @retval None
*/
void HAL_PWR_DeInit(void)
{
/* Apply reset values to all PWR registers */
/* Note: Update of each register required since PWR global reset is not */
/* available at RCC level on this STM32 series. */
LL_PWR_WriteReg(CR1, PWR_CR1_RESET_VALUE);
LL_PWR_WriteReg(CR2, PWR_CR2_RESET_VALUE);
LL_PWR_WriteReg(CR3, PWR_CR3_RESET_VALUE);
LL_PWR_WriteReg(CR4, PWR_CR4_RESET_VALUE);
LL_PWR_WriteReg(CR5, PWR_CR5_RESET_VALUE);
LL_PWR_WriteReg(PUCRA, PWR_PUCRA_RESET_VALUE);
LL_PWR_WriteReg(PDCRA, PWR_PDCRA_RESET_VALUE);
LL_PWR_WriteReg(PUCRB, PWR_PUCRB_RESET_VALUE);
LL_PWR_WriteReg(PDCRB, PWR_PDCRB_RESET_VALUE);
LL_PWR_WriteReg(PUCRC, PWR_PUCRC_RESET_VALUE);
LL_PWR_WriteReg(PDCRC, PWR_PDCRC_RESET_VALUE);
#if defined(GPIOD)
LL_PWR_WriteReg(PUCRD, PWR_PUCRD_RESET_VALUE);
LL_PWR_WriteReg(PDCRD, PWR_PDCRD_RESET_VALUE);
#endif /* GPIOD */
LL_PWR_WriteReg(PUCRE, PWR_PUCRE_RESET_VALUE);
LL_PWR_WriteReg(PDCRE, PWR_PDCRE_RESET_VALUE);
LL_PWR_WriteReg(PUCRH, PWR_PUCRH_RESET_VALUE);
LL_PWR_WriteReg(PDCRH, PWR_PDCRH_RESET_VALUE);
LL_PWR_WriteReg(C2CR1, PWR_C2CR1_RESET_VALUE);
LL_PWR_WriteReg(C2CR3, PWR_C2CR3_RESET_VALUE);
/* Clear all flags */
#if defined(PWR_CR3_E802A) && defined(PWR_CR5_SMPSEN)
LL_PWR_WriteReg(SCR,
LL_PWR_SCR_CC2HF
| LL_PWR_SCR_CBLEAF
| LL_PWR_SCR_CCRPEF
| LL_PWR_SCR_C802AF
| LL_PWR_SCR_C802WUF
| LL_PWR_SCR_CBLEWUF
| LL_PWR_SCR_CBORHF
| LL_PWR_SCR_CSMPSFBF
| LL_PWR_SCR_CWUF);
#elif defined(PWR_CR3_E802A)
LL_PWR_WriteReg(SCR,
LL_PWR_SCR_CC2HF
| LL_PWR_SCR_CBLEAF
| LL_PWR_SCR_CCRPEF
| LL_PWR_SCR_C802AF
| LL_PWR_SCR_C802WUF
| LL_PWR_SCR_CBLEWUF
| LL_PWR_SCR_CWUF);
#elif defined(PWR_CR5_SMPSEN)
LL_PWR_WriteReg(SCR,
LL_PWR_SCR_CC2HF
| LL_PWR_SCR_CBLEAF
| LL_PWR_SCR_CCRPEF
| LL_PWR_SCR_CBLEWUF
| LL_PWR_SCR_CBORHF
| LL_PWR_SCR_CSMPSFBF
| LL_PWR_SCR_CWUF);
#else
LL_PWR_WriteReg(SCR,
LL_PWR_SCR_CC2HF
| LL_PWR_SCR_CBLEAF
| LL_PWR_SCR_CCRPEF
| LL_PWR_SCR_CBLEWUF
| LL_PWR_SCR_CWUF);
#endif
LL_PWR_WriteReg(EXTSCR,
LL_PWR_EXTSCR_CCRPF
| LL_PWR_EXTSCR_C2CSSF
| LL_PWR_EXTSCR_C1CSSF
);
}
/**
* @brief Enable access to the backup domain
* (RTC registers, RTC backup data registers).
* @note After reset, the backup domain is protected against
* possible unwanted write accesses.
* @note RTCSEL that sets the RTC clock source selection is in the RTC back-up domain.
* In order to set or modify the RTC clock, the backup domain access must be
* disabled.
* @note LSEON bit that switches on and off the LSE crystal belongs as well to the
* back-up domain.
* @retval None
*/
void HAL_PWR_EnableBkUpAccess(void)
{
SET_BIT(PWR->CR1, PWR_CR1_DBP);
}
/**
* @brief Disable access to the backup domain
* (RTC registers, RTC backup data registers).
* @retval None
*/
void HAL_PWR_DisableBkUpAccess(void)
{
CLEAR_BIT(PWR->CR1, PWR_CR1_DBP);
}
/**
* @}
*/
/** @addtogroup PWR_Exported_Functions_Group2 Peripheral Control functions
* @brief Low Power modes configuration functions
*
@verbatim
===============================================================================
##### Peripheral Control functions #####
===============================================================================
[..]
*** PVD configuration ***
=========================
[..]
(+) The PVD is used to monitor the VDD power supply by comparing it to a
threshold selected by the PVD Level (PLS[2:0] bits in PWR_CR2 register).
(+) PVDO flag is available to indicate if VDD/VDDA is higher or lower
than the PVD threshold. This event is internally connected to the EXTI
line16 and can generate an interrupt if enabled. This is done through
__HAL_PVD_EXTI_ENABLE_IT() macro.
(+) The PVD is stopped in Standby mode.
*** WakeUp pin configuration ***
================================
[..]
(+) WakeUp pins are used to wakeup the system from Standby mode or Shutdown mode.
The polarity of these pins can be set to configure event detection on high
level (rising edge) or low level (falling edge).
*** Low Power modes configuration ***
=====================================
[..]
The devices feature 8 low-power modes:
(+) Low-power Run mode: core and peripherals are running, main regulator off, low power regulator on.
(+) Sleep mode: Cortex-M4 core stopped, peripherals kept running, main and low power regulators on.
(+) Low-power Sleep mode: Cortex-M4 core stopped, peripherals kept running, main regulator off, low power regulator on.
(+) Stop 0 mode: all clocks are stopped except LSI and LSE, main and low power regulators on.
(+) Stop 1 mode: all clocks are stopped except LSI and LSE, main regulator off, low power regulator on.
(+) Stop 2 mode: all clocks are stopped except LSI and LSE, main regulator off, low power regulator on, reduced set of waking up IPs compared to Stop 1 mode.
(+) Standby mode with SRAM2a: all clocks are stopped except LSI and LSE, SRAM2a content preserved, main regulator off, low power regulator on.
Note: On devices STM32WB15xx, STM32WB10xx, STM32WB1Mxx retention is extended to SRAM1, SRAM2a, SRAM2b.
(+) Standby mode without SRAM2a: all clocks are stopped except LSI and LSE, main and low power regulators off.
(+) Shutdown mode: all clocks are stopped except LSE, main and low power regulators off.
*** Low-power run mode ***
==========================
[..]
(+) Entry: (from main run mode)
(++) set LPR bit with HAL_PWREx_EnableLowPowerRunMode() API after having decreased the system clock below 2 MHz.
(+) Exit:
(++) clear LPR bit then wait for REGLP bit to be reset with HAL_PWREx_DisableLowPowerRunMode() API. Only
then can the system clock frequency be increased above 2 MHz.
*** Sleep mode / Low-power sleep mode ***
=========================================
[..]
(+) Entry:
The Sleep mode / Low-power Sleep mode is entered thru HAL_PWR_EnterSLEEPMode() API
in specifying whether or not the regulator is forced to low-power mode and if exit is interrupt or event-triggered.
(++) PWR_MAINREGULATOR_ON: Sleep mode (regulator in main mode).
(++) PWR_LOWPOWERREGULATOR_ON: Low-power sleep (regulator in low power mode).
In the latter case, the system clock frequency must have been decreased below 2 MHz beforehand.
(++) PWR_SLEEPENTRY_WFI: enter SLEEP mode with WFI instruction
(++) PWR_SLEEPENTRY_WFE: enter SLEEP mode with WFE instruction
(+) WFI Exit:
(++) Any peripheral interrupt acknowledged by the nested vectored interrupt
controller (NVIC) or any wake-up event.
(+) WFE Exit:
(++) Any wake-up event such as an EXTI line configured in event mode.
[..] When exiting the Low-power sleep mode by issuing an interrupt or a wakeup event,
the MCU is in Low-power Run mode.
*** Stop 0, Stop 1 and Stop 2 modes ***
===============================
[..]
(+) Entry:
The Stop 0, Stop 1 or Stop 2 modes are entered thru the following API's:
(++) HAL_PWREx_EnterSTOP0Mode() for mode 0, HAL_PWREx_EnterSTOP1Mode() for mode 1, HAL_PWREx_EnterSTOP2Mode() for mode 2
or for porting reasons HAL_PWR_EnterSTOPMode().
Note: Low power Stop2 mode is not available on devices STM32WB15xx, STM32WB10xx, STM32WB1Mxx.
(+) Regulator setting (applicable to HAL_PWR_EnterSTOPMode() only):
(++) PWR_MAINREGULATOR_ON: Regulator in main mode (STOP0 mode)
(++) PWR_LOWPOWERREGULATOR_ON: Regulator in low-power mode (STOP1 mode)
(+) Exit (interrupt or event-triggered, specified when entering STOP mode):
(++) PWR_STOPENTRY_WFI: enter Stop mode with WFI instruction
(++) PWR_STOPENTRY_WFE: enter Stop mode with WFE instruction
(+) WFI Exit:
(++) Any EXTI Line (Internal or External) configured in Interrupt mode.
(++) Some specific communication peripherals (USART, LPUART, I2C) interrupts
when programmed in wakeup mode.
(+) WFE Exit:
(++) Any EXTI Line (Internal or External) configured in Event mode.
[..]
When exiting Stop 0 and Stop 1 modes, the MCU is either in Run mode or in Low-power Run mode
depending on the LPR bit setting.
When exiting Stop 2 mode, the MCU is in Run mode.
*** Standby mode ***
====================
[..] The Standby mode offers two options:
(+) option a) all clocks off except LSI and LSE, RRS bit set (keeps voltage regulator in low power mode).
SRAM and registers contents are lost except for the SRAM2 content, the RTC registers, RTC backup registers
and Standby circuitry.
(+) option b) all clocks off except LSI and LSE, RRS bit cleared (voltage regulator then disabled).
SRAM and register contents are lost except for the RTC registers, RTC backup registers
and Standby circuitry.
(++) Entry:
(+++) The Standby mode is entered thru HAL_PWR_EnterSTANDBYMode() API.
SRAM1 and register contents are lost except for registers in the Backup domain and
Standby circuitry. SRAM2 content can be preserved if the bit RRS is set in PWR_CR3 register.
To enable this feature, the user can resort to HAL_PWREx_EnableBKRAMContentRetention() API
to set RRS bit.
(++) Exit:
(+++) WKUP pin rising edge, RTC alarm or wakeup, tamper event, time-stamp event,
external reset in NRST pin, IWDG reset.
[..] After waking up from Standby mode, program execution restarts in the same way as after a Reset.
*** Shutdown mode ***
======================
[..]
In Shutdown mode,
voltage regulator is disabled, all clocks are off except LSE, RRS bit is cleared.
SRAM and registers contents are lost except for backup domain registers.
(+) Entry:
The Shutdown mode is entered thru HAL_PWREx_EnterSHUTDOWNMode() API.
(+) Exit:
(++) WKUP pin rising edge, RTC alarm or wakeup, tamper event, time-stamp event,
external reset in NRST pin.
[..] After waking up from Shutdown mode, program execution restarts in the same way as after a Reset.
*** Auto-wakeup (AWU) from low-power mode ***
=============================================
[..]
The MCU can be woken up from low-power mode by an RTC Alarm event, an RTC
Wakeup event, a tamper event or a time-stamp event, without depending on
an external interrupt (Auto-wakeup mode).
(+) RTC auto-wakeup (AWU) from the Stop, Standby and Shutdown modes
(++) To wake up from the Stop mode with an RTC alarm event, it is necessary to
configure the RTC to generate the RTC alarm using the HAL_RTC_SetAlarm_IT() function.
(++) To wake up from the Stop mode with an RTC Tamper or time stamp event, it
is necessary to configure the RTC to detect the tamper or time stamp event using the
HAL_RTCEx_SetTimeStamp_IT() or HAL_RTCEx_SetTamper_IT() functions.
(++) To wake up from the Stop mode with an RTC WakeUp event, it is necessary to
configure the RTC to generate the RTC WakeUp event using the HAL_RTCEx_SetWakeUpTimer_IT() function.
@endverbatim
* @{
*/
/**
* @brief Configure the voltage threshold detected by the Power Voltage Detector (PVD).
* @param sConfigPVD pointer to a PWR_PVDTypeDef structure that contains the PVD
* configuration information.
* @note Refer to the electrical characteristics of your device datasheet for
* more details about the voltage thresholds corresponding to each
* detection level.
* @note If "sConfigPVD->Mode" is set to PVD_MODE_IT,
* wake-up target is set by default to wake-up target CPU1.
* To select wake-up target to CPU2, additional configuration must be
* performed using macro "__HAL_PWR_PVD_EXTIC2_ENABLE_IT()"
* (and optionally, to select CPU2 only (not both CPU1 and CPU2):
* "__HAL_PWR_PVD_EXTI_DISABLE_IT()").
* @retval None
*/
HAL_StatusTypeDef HAL_PWR_ConfigPVD(PWR_PVDTypeDef *sConfigPVD)
{
/* Check the parameters */
assert_param(IS_PWR_PVD_LEVEL(sConfigPVD->PVDLevel));
assert_param(IS_PWR_PVD_MODE(sConfigPVD->Mode));
/* Set PLS bits according to PVDLevel value */
MODIFY_REG(PWR->CR2, PWR_CR2_PLS, sConfigPVD->PVDLevel);
/* Clear any previous config. Keep it clear if no event or IT mode is selected */
/* Note: On STM32WB series, power PVD event is not available on AIEC lines */
/* (only interruption is available through AIEC line 16). */
__HAL_PWR_PVD_EXTI_DISABLE_IT(); /*CPU1*/
__HAL_PWR_PVD_EXTIC2_DISABLE_IT(); /*CPU2*/
__HAL_PWR_PVD_EXTI_DISABLE_RISING_EDGE();
__HAL_PWR_PVD_EXTI_DISABLE_FALLING_EDGE();
/* Configure interrupt mode */
if ((sConfigPVD->Mode & PVD_MODE_IT) == PVD_MODE_IT)
{
/* Set CPU1 as wakeup target */
__HAL_PWR_PVD_EXTI_ENABLE_IT();
}
/* Configure the edge */
if ((sConfigPVD->Mode & PVD_RISING_EDGE) == PVD_RISING_EDGE)
{
__HAL_PWR_PVD_EXTI_ENABLE_RISING_EDGE();
}
if ((sConfigPVD->Mode & PVD_FALLING_EDGE) == PVD_FALLING_EDGE)
{
__HAL_PWR_PVD_EXTI_ENABLE_FALLING_EDGE();
}
return HAL_OK;
}
/**
* @brief Enables the Power Voltage Detector(PVD).
* @retval None
*/
void HAL_PWR_EnablePVD(void)
{
/* Enable the power voltage detector */
SET_BIT(PWR->CR2, PWR_CR2_PVDE);
}
/**
* @brief Disables the Power Voltage Detector(PVD).
* @retval None
*/
void HAL_PWR_DisablePVD(void)
{
/* Disable the power voltage detector */
CLEAR_BIT(PWR->CR2, PWR_CR2_PVDE);
}
/**
* @brief Enable the WakeUp PINx functionality.
* @param WakeUpPinPolarity Specifies which Wake-Up pin to enable.
* This parameter can be one of the following legacy values which set the default polarity
* i.e. detection on high level (rising edge):
* @arg @ref PWR_WAKEUP_PIN1, PWR_WAKEUP_PIN2, PWR_WAKEUP_PIN3, PWR_WAKEUP_PIN4, PWR_WAKEUP_PIN5
*
* or one of the following value where the user can explicitly specify the enabled pin and
* the chosen polarity:
* @arg @ref PWR_WAKEUP_PIN1_HIGH or PWR_WAKEUP_PIN1_LOW
* @arg @ref PWR_WAKEUP_PIN2_HIGH or PWR_WAKEUP_PIN2_LOW
* @arg @ref PWR_WAKEUP_PIN3_HIGH or PWR_WAKEUP_PIN3_LOW
* @arg @ref PWR_WAKEUP_PIN4_HIGH or PWR_WAKEUP_PIN4_LOW
* @arg @ref PWR_WAKEUP_PIN5_HIGH or PWR_WAKEUP_PIN5_LOW
* @note PWR_WAKEUP_PINx and PWR_WAKEUP_PINx_HIGH are equivalent.
* @retval None
*/
void HAL_PWR_EnableWakeUpPin(uint32_t WakeUpPinPolarity)
{
assert_param(IS_PWR_WAKEUP_PIN(WakeUpPinPolarity));
/* Specifies the Wake-Up pin polarity for the event detection
(rising or falling edge) */
MODIFY_REG(PWR->CR4, (PWR_CR3_EWUP & WakeUpPinPolarity), (WakeUpPinPolarity >> PWR_WUP_POLARITY_SHIFT));
/* Enable wake-up pin */
SET_BIT(PWR->CR3, (PWR_CR3_EWUP & WakeUpPinPolarity));
}
/**
* @brief Disable the WakeUp PINx functionality.
* @param WakeUpPinx Specifies the Power Wake-Up pin to disable.
* This parameter can be one of the following values:
* @arg PWR_WAKEUP_PIN1: An event on PA0 PIN wakes-up the system from Standby mode.
* @arg PWR_WAKEUP_PIN2: An event on PC13 PIN wakes-up the system from Standby mode.
* @arg PWR_WAKEUP_PIN3: An event on PC12 PIN wakes-up the system from Standby mode.
* @arg PWR_WAKEUP_PIN4: An event on PA2 PIN wakes-up the system from Standby mode.
* @arg PWR_WAKEUP_PIN5: An event on PC5 PIN wakes-up the system from Standby mode.
* @retval None
*/
void HAL_PWR_DisableWakeUpPin(uint32_t WakeUpPinx)
{
assert_param(IS_PWR_WAKEUP_PIN(WakeUpPinx));
CLEAR_BIT(PWR->CR3, (PWR_CR3_EWUP & WakeUpPinx));
}
/**
* @brief Enter Sleep or Low-power Sleep mode.
* @note In Sleep/Low-power Sleep mode, all I/O pins keep the same state as in Run mode.
* @param Regulator Specifies the regulator state in Sleep/Low-power Sleep mode.
* This parameter can be one of the following values:
* @arg @ref PWR_MAINREGULATOR_ON Sleep mode (regulator in main mode)
* @arg @ref PWR_LOWPOWERREGULATOR_ON Low-power Sleep mode (regulator in low-power mode)
* @note Low-power Sleep mode is entered from Low-power Run mode. Therefore, if not yet
* in Low-power Run mode before calling HAL_PWR_EnterSLEEPMode() with Regulator set
* to PWR_LOWPOWERREGULATOR_ON, the user can optionally configure the
* Flash in power-down mode in setting the SLEEP_PD bit in FLASH_ACR register.
* Additionally, the clock frequency must be reduced below 2 MHz.
* Setting SLEEP_PD in FLASH_ACR then appropriately reducing the clock frequency must
* be done before calling HAL_PWR_EnterSLEEPMode() API.
* @note When exiting Low-power Sleep mode, the MCU is in Low-power Run mode. To move in
* Run mode, the user must resort to HAL_PWREx_DisableLowPowerRunMode() API.
* @param SLEEPEntry Specifies if Sleep mode is entered with WFI or WFE instruction.
* This parameter can be one of the following values:
* @arg @ref PWR_SLEEPENTRY_WFI enter Sleep or Low-power Sleep mode with WFI instruction
* @arg @ref PWR_SLEEPENTRY_WFE enter Sleep or Low-power Sleep mode with WFE instruction
* @note When WFI entry is used, tick interrupt have to be disabled if not desired as
* the interrupt wake up source.
* @retval None
*/
void HAL_PWR_EnterSLEEPMode(uint32_t Regulator, uint8_t SLEEPEntry)
{
/* Check the parameters */
assert_param(IS_PWR_REGULATOR(Regulator));
assert_param(IS_PWR_SLEEP_ENTRY(SLEEPEntry));
/* Set Regulator parameter */
if (Regulator == PWR_MAINREGULATOR_ON)
{
/* If in low-power run mode at this point, exit it */
if (HAL_IS_BIT_SET(PWR->SR2, PWR_SR2_REGLPF))
{
if (HAL_PWREx_DisableLowPowerRunMode() != HAL_OK)
{
return ;
}
}
/* Regulator now in main mode. */
}
else
{
/* If in run mode, first move to low-power run mode.
The system clock frequency must be below 2 MHz at this point. */
if (HAL_IS_BIT_SET(PWR->SR2, PWR_SR2_REGLPF) == RESET)
{
HAL_PWREx_EnableLowPowerRunMode();
}
}
/* Clear SLEEPDEEP bit of Cortex System Control Register */
CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
/* Select SLEEP mode entry -------------------------------------------------*/
if (SLEEPEntry == PWR_SLEEPENTRY_WFI)
{
/* Request Wait For Interrupt */
__WFI();
}
else
{
/* Request Wait For Event */
__SEV();
__WFE();
__WFE();
}
}
/**
* @brief Enter Stop mode
* @note This API is named HAL_PWR_EnterSTOPMode to ensure compatibility with legacy code running
* on devices where only "Stop mode" is mentioned with main or low power regulator ON.
* @note In Stop mode, all I/O pins keep the same state as in Run mode.
* @note All clocks in the VCORE domain are stopped; the PLL, the MSI,
* the HSI and the HSE oscillators are disabled. Some peripherals with the wakeup capability
* (I2Cx, USARTx and LPUART) can switch on the HSI to receive a frame, and switch off the HSI
* after receiving the frame if it is not a wakeup frame. In this case, the HSI clock is propagated
* only to the peripheral requesting it.
* SRAM1, SRAM2 and register contents are preserved.
* The BOR is available.
* The voltage regulator can be configured either in normal (Stop 0) or low-power mode (Stop 1).
* @note When exiting Stop 0 or Stop 1 mode by issuing an interrupt or a wakeup event,
* the HSI RC oscillator is selected as system clock if STOPWUCK bit in RCC_CFGR register
* is set; the MSI oscillator is selected if STOPWUCK is cleared.
* @note When the voltage regulator operates in low power mode (Stop 1), an additional
* startup delay is incurred when waking up.
* By keeping the internal regulator ON during Stop mode (Stop 0), the consumption
* is higher although the startup time is reduced.
* @note Case of Stop0 mode with SMPS: Before entering Stop 0 mode with SMPS Step Down converter enabled,
* the HSI16 must be kept on by enabling HSI kernel clock (set HSIKERON register bit).
* @note According to system power policy, system entering in Stop mode
* is depending on other CPU power mode.
* @param Regulator Specifies the regulator state in Stop mode.
* This parameter can be one of the following values:
* @arg @ref PWR_MAINREGULATOR_ON Stop 0 mode (main regulator ON)
* @arg @ref PWR_LOWPOWERREGULATOR_ON Stop 1 mode (low power regulator ON)
* @param STOPEntry Specifies Stop 0, Stop 1 or Stop 2 mode is entered with WFI or WFE instruction.
* This parameter can be one of the following values:
* @arg @ref PWR_STOPENTRY_WFI Enter Stop 0 or Stop 1 mode with WFI instruction.
* @arg @ref PWR_STOPENTRY_WFE Enter Stop 0 or Stop 1 mode with WFE instruction.
* @retval None
*/
void HAL_PWR_EnterSTOPMode(uint32_t Regulator, uint8_t STOPEntry)
{
/* Check the parameters */
assert_param(IS_PWR_REGULATOR(Regulator));
if (Regulator == PWR_LOWPOWERREGULATOR_ON)
{
HAL_PWREx_EnterSTOP1Mode(STOPEntry);
}
else
{
HAL_PWREx_EnterSTOP0Mode(STOPEntry);
}
}
/**
* @brief Enter Standby mode.
* @note In Standby mode, the PLL, the HSI, the MSI and the HSE oscillators are switched
* off. The voltage regulator is disabled, except when BKRAM content is preserved
* in which case the regulator is in low-power mode.
* SRAM and register contents are lost except for registers in the Backup domain and
* Standby circuitry. BKRAM content can be preserved if the bit RRS is set in PWR_CR3 register.
* To enable this feature, the user can resort to HAL_PWREx_EnableBKRAMContentRetention() API
* to set RRS bit.
* The BOR is available.
* @note The I/Os can be configured either with a pull-up or pull-down or can be kept in analog state.
* HAL_PWREx_EnableGPIOPullUp() and HAL_PWREx_EnableGPIOPullDown() respectively enable Pull Up and
* Pull Down state, HAL_PWREx_DisableGPIOPullUp() and HAL_PWREx_DisableGPIOPullDown() disable the
* same.
* These states are effective in Standby mode only if APC bit is set through
* HAL_PWREx_EnablePullUpPullDownConfig() API.
* @note According to system power policy, system entering in Standby mode
* is depending on other CPU power mode.
* @retval None
*/
void HAL_PWR_EnterSTANDBYMode(void)
{
/* Set Stand-by mode */
MODIFY_REG(PWR->CR1, PWR_CR1_LPMS, PWR_LOWPOWERMODE_STANDBY);
/* Set SLEEPDEEP bit of Cortex System Control Register */
SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
/* This option is used to ensure that store operations are completed */
#if defined (__CC_ARM)
__force_stores();
#endif /* __CC_ARM */
/* Request Wait For Interrupt */
__WFI();
/* Following code is executed after wake up if system did not go to STANDBY
mode according to system power policy */
/* Reset SLEEPDEEP bit of Cortex System Control Register */
CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
}
/**
* @brief Indicate Sleep-On-Exit when returning from Handler mode to Thread mode.
* @note Set SLEEPONEXIT bit of SCR register. When this bit is set, the processor
* re-enters SLEEP mode when an interruption handling is over.
* Setting this bit is useful when the processor is expected to run only on
* interruptions handling.
* @retval None
*/
void HAL_PWR_EnableSleepOnExit(void)
{
/* Set SLEEPONEXIT bit of Cortex System Control Register */
SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPONEXIT_Msk));
}
/**
* @brief Disable Sleep-On-Exit feature when returning from Handler mode to Thread mode.
* @note Clear SLEEPONEXIT bit of SCR register. When this bit is set, the processor
* re-enters SLEEP mode when an interruption handling is over.
* @retval None
*/
void HAL_PWR_DisableSleepOnExit(void)
{
/* Clear SLEEPONEXIT bit of Cortex System Control Register */
CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPONEXIT_Msk));
}
/**
* @brief Enable CORTEX M4 SEVONPEND bit.
* @note Set SEVONPEND bit of SCR register. When this bit is set, this causes
* WFE to wake up when an interrupt moves from inactive to pended.
* @retval None
*/
void HAL_PWR_EnableSEVOnPend(void)
{
/* Set SEVONPEND bit of Cortex System Control Register */
SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SEVONPEND_Msk));
}
/**
* @brief Disable CORTEX M4 SEVONPEND bit.
* @note Clear SEVONPEND bit of SCR register. When this bit is set, this causes
* WFE to wake up when an interrupt moves from inactive to pended.
* @retval None
*/
void HAL_PWR_DisableSEVOnPend(void)
{
/* Clear SEVONPEND bit of Cortex System Control Register */
CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SEVONPEND_Msk));
}
/**
* @brief PWR PVD interrupt callback
* @retval None
*/
__weak void HAL_PWR_PVDCallback(void)
{
/* NOTE : This function should not be modified; when the callback is needed,
the HAL_PWR_PVDCallback can be implemented in the user file
*/
}
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_PWR_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,112 @@
/**
******************************************************************************
* @file stm32wbxx_hal_spi_ex.c
* @author MCD Application Team
* @brief Extended SPI HAL module driver.
* This file provides firmware functions to manage the following
* SPI peripheral extended functionalities :
* + IO operation functions
*
******************************************************************************
* @attention
*
* Copyright (c) 2019 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32wbxx_hal.h"
/** @addtogroup STM32WBxx_HAL_Driver
* @{
*/
/** @defgroup SPIEx SPIEx
* @brief SPI Extended HAL module driver
* @{
*/
#ifdef HAL_SPI_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private defines -----------------------------------------------------------*/
/** @defgroup SPIEx_Private_Constants SPIEx Private Constants
* @{
*/
#define SPI_FIFO_SIZE 4UL
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup SPIEx_Exported_Functions SPIEx Exported Functions
* @{
*/
/** @defgroup SPIEx_Exported_Functions_Group1 IO operation functions
* @brief Data transfers functions
*
@verbatim
==============================================================================
##### IO operation functions #####
===============================================================================
[..]
This subsection provides a set of extended functions to manage the SPI
data transfers.
(#) Rx data flush function:
(++) HAL_SPIEx_FlushRxFifo()
@endverbatim
* @{
*/
/**
* @brief Flush the RX fifo.
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for the specified SPI module.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SPIEx_FlushRxFifo(const SPI_HandleTypeDef *hspi)
{
__IO uint32_t tmpreg;
uint8_t count = 0U;
while ((hspi->Instance->SR & SPI_FLAG_FRLVL) != SPI_FRLVL_EMPTY)
{
count++;
tmpreg = hspi->Instance->DR;
UNUSED(tmpreg); /* To avoid GCC warning */
if (count == SPI_FIFO_SIZE)
{
return HAL_TIMEOUT;
}
}
return HAL_OK;
}
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_SPI_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,913 @@
/**
******************************************************************************
* @file stm32wbxx_ll_usb.c
* @author MCD Application Team
* @brief USB Low Layer HAL module driver.
*
* This file provides firmware functions to manage the following
* functionalities of the USB Peripheral Controller:
* + Initialization/de-initialization functions
* + I/O operation functions
* + Peripheral Control functions
* + Peripheral State functions
*
******************************************************************************
* @attention
*
* Copyright (c) 2019 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
==============================================================================
##### How to use this driver #####
==============================================================================
[..]
(#) Fill parameters of Init structure in USB_CfgTypeDef structure.
(#) Call USB_CoreInit() API to initialize the USB Core peripheral.
(#) The upper HAL HCD/PCD driver will call the right routines for its internal processes.
(#)NOTE: For applications not using double buffer mode, define the symbol
'USE_USB_DOUBLE_BUFFER' as 0 to reduce the driver's memory footprint.
@endverbatim
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32wbxx_hal.h"
/** @addtogroup STM32WBxx_LL_USB_DRIVER
* @{
*/
#if defined (HAL_PCD_MODULE_ENABLED) || defined (HAL_HCD_MODULE_ENABLED)
#if defined (USB)
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/**
* @brief Initializes the USB Core
* @param USBx USB Instance
* @param cfg pointer to a USB_CfgTypeDef structure that contains
* the configuration information for the specified USBx peripheral.
* @retval HAL status
*/
HAL_StatusTypeDef USB_CoreInit(USB_TypeDef *USBx, USB_CfgTypeDef cfg)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(USBx);
UNUSED(cfg);
/* NOTE : - This function is not required by USB Device FS peripheral, it is used
only by USB OTG FS peripheral.
- This function is added to ensure compatibility across platforms.
*/
return HAL_OK;
}
/**
* @brief USB_EnableGlobalInt
* Enables the controller's Global Int in the AHB Config reg
* @param USBx Selected device
* @retval HAL status
*/
HAL_StatusTypeDef USB_EnableGlobalInt(USB_TypeDef *USBx)
{
uint32_t winterruptmask;
/* Clear pending interrupts */
USBx->ISTR = 0U;
/* Set winterruptmask variable */
winterruptmask = USB_CNTR_CTRM | USB_CNTR_WKUPM |
USB_CNTR_SUSPM | USB_CNTR_ERRM |
USB_CNTR_SOFM | USB_CNTR_ESOFM |
USB_CNTR_RESETM | USB_CNTR_L1REQM;
/* Set interrupt mask */
USBx->CNTR = (uint16_t)winterruptmask;
return HAL_OK;
}
/**
* @brief USB_DisableGlobalInt
* Disable the controller's Global Int in the AHB Config reg
* @param USBx Selected device
* @retval HAL status
*/
HAL_StatusTypeDef USB_DisableGlobalInt(USB_TypeDef *USBx)
{
uint32_t winterruptmask;
/* Set winterruptmask variable */
winterruptmask = USB_CNTR_CTRM | USB_CNTR_WKUPM |
USB_CNTR_SUSPM | USB_CNTR_ERRM |
USB_CNTR_SOFM | USB_CNTR_ESOFM |
USB_CNTR_RESETM | USB_CNTR_L1REQM;
/* Clear interrupt mask */
USBx->CNTR &= (uint16_t)(~winterruptmask);
return HAL_OK;
}
/**
* @brief USB_SetCurrentMode Set functional mode
* @param USBx Selected device
* @param mode current core mode
* This parameter can be one of the these values:
* @arg USB_DEVICE_MODE Peripheral mode
* @retval HAL status
*/
HAL_StatusTypeDef USB_SetCurrentMode(USB_TypeDef *USBx, USB_ModeTypeDef mode)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(USBx);
UNUSED(mode);
/* NOTE : - This function is not required by USB Device FS peripheral, it is used
only by USB OTG FS peripheral.
- This function is added to ensure compatibility across platforms.
*/
return HAL_OK;
}
/**
* @brief USB_DevInit Initializes the USB controller registers
* for device mode
* @param USBx Selected device
* @param cfg pointer to a USB_CfgTypeDef structure that contains
* the configuration information for the specified USBx peripheral.
* @retval HAL status
*/
HAL_StatusTypeDef USB_DevInit(USB_TypeDef *USBx, USB_CfgTypeDef cfg)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(cfg);
/* Init Device */
/* CNTR_FRES = 1 */
USBx->CNTR = (uint16_t)USB_CNTR_FRES;
/* CNTR_FRES = 0 */
USBx->CNTR = 0U;
/* Clear pending interrupts */
USBx->ISTR = 0U;
/*Set Btable Address*/
USBx->BTABLE = BTABLE_ADDRESS;
return HAL_OK;
}
/**
* @brief USB_FlushTxFifo : Flush a Tx FIFO
* @param USBx : Selected device
* @param num : FIFO number
* This parameter can be a value from 1 to 15
15 means Flush all Tx FIFOs
* @retval HAL status
*/
HAL_StatusTypeDef USB_FlushTxFifo(USB_TypeDef const *USBx, uint32_t num)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(USBx);
UNUSED(num);
/* NOTE : - This function is not required by USB Device FS peripheral, it is used
only by USB OTG FS peripheral.
- This function is added to ensure compatibility across platforms.
*/
return HAL_OK;
}
/**
* @brief USB_FlushRxFifo : Flush Rx FIFO
* @param USBx : Selected device
* @retval HAL status
*/
HAL_StatusTypeDef USB_FlushRxFifo(USB_TypeDef const *USBx)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(USBx);
/* NOTE : - This function is not required by USB Device FS peripheral, it is used
only by USB OTG FS peripheral.
- This function is added to ensure compatibility across platforms.
*/
return HAL_OK;
}
#if defined (HAL_PCD_MODULE_ENABLED)
/**
* @brief Activate and configure an endpoint
* @param USBx Selected device
* @param ep pointer to endpoint structure
* @retval HAL status
*/
HAL_StatusTypeDef USB_ActivateEndpoint(USB_TypeDef *USBx, USB_EPTypeDef *ep)
{
HAL_StatusTypeDef ret = HAL_OK;
uint16_t wEpRegVal;
wEpRegVal = PCD_GET_ENDPOINT(USBx, ep->num) & USB_EP_T_MASK;
/* initialize Endpoint */
switch (ep->type)
{
case EP_TYPE_CTRL:
wEpRegVal |= USB_EP_CONTROL;
break;
case EP_TYPE_BULK:
wEpRegVal |= USB_EP_BULK;
break;
case EP_TYPE_INTR:
wEpRegVal |= USB_EP_INTERRUPT;
break;
case EP_TYPE_ISOC:
wEpRegVal |= USB_EP_ISOCHRONOUS;
break;
default:
ret = HAL_ERROR;
break;
}
PCD_SET_ENDPOINT(USBx, ep->num, (wEpRegVal | USB_EP_CTR_RX | USB_EP_CTR_TX));
PCD_SET_EP_ADDRESS(USBx, ep->num, ep->num);
if (ep->doublebuffer == 0U)
{
if (ep->is_in != 0U)
{
/*Set the endpoint Transmit buffer address */
PCD_SET_EP_TX_ADDRESS(USBx, ep->num, ep->pmaadress);
PCD_CLEAR_TX_DTOG(USBx, ep->num);
if (ep->type != EP_TYPE_ISOC)
{
/* Configure NAK status for the Endpoint */
PCD_SET_EP_TX_STATUS(USBx, ep->num, USB_EP_TX_NAK);
}
else
{
/* Configure TX Endpoint to disabled state */
PCD_SET_EP_TX_STATUS(USBx, ep->num, USB_EP_TX_DIS);
}
}
else
{
/* Set the endpoint Receive buffer address */
PCD_SET_EP_RX_ADDRESS(USBx, ep->num, ep->pmaadress);
/* Set the endpoint Receive buffer counter */
PCD_SET_EP_RX_CNT(USBx, ep->num, ep->maxpacket);
PCD_CLEAR_RX_DTOG(USBx, ep->num);
if (ep->num == 0U)
{
/* Configure VALID status for EP0 */
PCD_SET_EP_RX_STATUS(USBx, ep->num, USB_EP_RX_VALID);
}
else
{
/* Configure NAK status for OUT Endpoint */
PCD_SET_EP_RX_STATUS(USBx, ep->num, USB_EP_RX_NAK);
}
}
}
#if (USE_USB_DOUBLE_BUFFER == 1U)
/* Double Buffer */
else
{
if (ep->type == EP_TYPE_BULK)
{
/* Set bulk endpoint as double buffered */
PCD_SET_BULK_EP_DBUF(USBx, ep->num);
}
else
{
/* Set the ISOC endpoint in double buffer mode */
PCD_CLEAR_EP_KIND(USBx, ep->num);
}
/* Set buffer address for double buffered mode */
PCD_SET_EP_DBUF_ADDR(USBx, ep->num, ep->pmaaddr0, ep->pmaaddr1);
if (ep->is_in == 0U)
{
/* Clear the data toggle bits for the endpoint IN/OUT */
PCD_CLEAR_RX_DTOG(USBx, ep->num);
PCD_CLEAR_TX_DTOG(USBx, ep->num);
/* Set endpoint RX count */
PCD_SET_EP_DBUF_CNT(USBx, ep->num, ep->is_in, ep->maxpacket);
/* Set endpoint RX to valid state */
PCD_SET_EP_RX_STATUS(USBx, ep->num, USB_EP_RX_VALID);
PCD_SET_EP_TX_STATUS(USBx, ep->num, USB_EP_TX_DIS);
}
else
{
/* Clear the data toggle bits for the endpoint IN/OUT */
PCD_CLEAR_RX_DTOG(USBx, ep->num);
PCD_CLEAR_TX_DTOG(USBx, ep->num);
if (ep->type != EP_TYPE_ISOC)
{
/* Configure NAK status for the Endpoint */
PCD_SET_EP_TX_STATUS(USBx, ep->num, USB_EP_TX_NAK);
}
else
{
/* Configure TX Endpoint to disabled state */
PCD_SET_EP_TX_STATUS(USBx, ep->num, USB_EP_TX_DIS);
}
PCD_SET_EP_RX_STATUS(USBx, ep->num, USB_EP_RX_DIS);
}
}
#endif /* (USE_USB_DOUBLE_BUFFER == 1U) */
return ret;
}
/**
* @brief De-activate and de-initialize an endpoint
* @param USBx Selected device
* @param ep pointer to endpoint structure
* @retval HAL status
*/
HAL_StatusTypeDef USB_DeactivateEndpoint(USB_TypeDef *USBx, USB_EPTypeDef *ep)
{
if (ep->doublebuffer == 0U)
{
if (ep->is_in != 0U)
{
PCD_CLEAR_TX_DTOG(USBx, ep->num);
/* Configure DISABLE status for the Endpoint */
PCD_SET_EP_TX_STATUS(USBx, ep->num, USB_EP_TX_DIS);
}
else
{
PCD_CLEAR_RX_DTOG(USBx, ep->num);
/* Configure DISABLE status for the Endpoint */
PCD_SET_EP_RX_STATUS(USBx, ep->num, USB_EP_RX_DIS);
}
}
#if (USE_USB_DOUBLE_BUFFER == 1U)
/* Double Buffer */
else
{
if (ep->is_in == 0U)
{
/* Clear the data toggle bits for the endpoint IN/OUT*/
PCD_CLEAR_RX_DTOG(USBx, ep->num);
PCD_CLEAR_TX_DTOG(USBx, ep->num);
/* Reset value of the data toggle bits for the endpoint out*/
PCD_TX_DTOG(USBx, ep->num);
PCD_SET_EP_RX_STATUS(USBx, ep->num, USB_EP_RX_DIS);
PCD_SET_EP_TX_STATUS(USBx, ep->num, USB_EP_TX_DIS);
}
else
{
/* Clear the data toggle bits for the endpoint IN/OUT*/
PCD_CLEAR_RX_DTOG(USBx, ep->num);
PCD_CLEAR_TX_DTOG(USBx, ep->num);
PCD_RX_DTOG(USBx, ep->num);
/* Configure DISABLE status for the Endpoint*/
PCD_SET_EP_TX_STATUS(USBx, ep->num, USB_EP_TX_DIS);
PCD_SET_EP_RX_STATUS(USBx, ep->num, USB_EP_RX_DIS);
}
}
#endif /* (USE_USB_DOUBLE_BUFFER == 1U) */
return HAL_OK;
}
/**
* @brief USB_EPStartXfer setup and starts a transfer over an EP
* @param USBx Selected device
* @param ep pointer to endpoint structure
* @retval HAL status
*/
HAL_StatusTypeDef USB_EPStartXfer(USB_TypeDef *USBx, USB_EPTypeDef *ep)
{
uint32_t len;
#if (USE_USB_DOUBLE_BUFFER == 1U)
uint16_t pmabuffer;
uint16_t wEPVal;
#endif /* (USE_USB_DOUBLE_BUFFER == 1U) */
/* IN endpoint */
if (ep->is_in == 1U)
{
/* Multi packet transfer */
if (ep->xfer_len > ep->maxpacket)
{
len = ep->maxpacket;
}
else
{
len = ep->xfer_len;
}
/* configure and validate Tx endpoint */
if (ep->doublebuffer == 0U)
{
USB_WritePMA(USBx, ep->xfer_buff, ep->pmaadress, (uint16_t)len);
PCD_SET_EP_TX_CNT(USBx, ep->num, len);
}
#if (USE_USB_DOUBLE_BUFFER == 1U)
else
{
/* double buffer bulk management */
if (ep->type == EP_TYPE_BULK)
{
if (ep->xfer_len_db > ep->maxpacket)
{
/* enable double buffer */
PCD_SET_BULK_EP_DBUF(USBx, ep->num);
/* each Time to write in PMA xfer_len_db will */
ep->xfer_len_db -= len;
/* Fill the two first buffer in the Buffer0 & Buffer1 */
if ((PCD_GET_ENDPOINT(USBx, ep->num) & USB_EP_DTOG_TX) != 0U)
{
/* Set the Double buffer counter for pmabuffer1 */
PCD_SET_EP_DBUF1_CNT(USBx, ep->num, ep->is_in, len);
pmabuffer = ep->pmaaddr1;
/* Write the user buffer to USB PMA */
USB_WritePMA(USBx, ep->xfer_buff, pmabuffer, (uint16_t)len);
ep->xfer_buff += len;
if (ep->xfer_len_db > ep->maxpacket)
{
ep->xfer_len_db -= len;
}
else
{
len = ep->xfer_len_db;
ep->xfer_len_db = 0U;
}
/* Set the Double buffer counter for pmabuffer0 */
PCD_SET_EP_DBUF0_CNT(USBx, ep->num, ep->is_in, len);
pmabuffer = ep->pmaaddr0;
/* Write the user buffer to USB PMA */
USB_WritePMA(USBx, ep->xfer_buff, pmabuffer, (uint16_t)len);
}
else
{
/* Set the Double buffer counter for pmabuffer0 */
PCD_SET_EP_DBUF0_CNT(USBx, ep->num, ep->is_in, len);
pmabuffer = ep->pmaaddr0;
/* Write the user buffer to USB PMA */
USB_WritePMA(USBx, ep->xfer_buff, pmabuffer, (uint16_t)len);
ep->xfer_buff += len;
if (ep->xfer_len_db > ep->maxpacket)
{
ep->xfer_len_db -= len;
}
else
{
len = ep->xfer_len_db;
ep->xfer_len_db = 0U;
}
/* Set the Double buffer counter for pmabuffer1 */
PCD_SET_EP_DBUF1_CNT(USBx, ep->num, ep->is_in, len);
pmabuffer = ep->pmaaddr1;
/* Write the user buffer to USB PMA */
USB_WritePMA(USBx, ep->xfer_buff, pmabuffer, (uint16_t)len);
}
}
/* auto Switch to single buffer mode when transfer <Mps no need to manage in double buffer */
else
{
len = ep->xfer_len_db;
/* disable double buffer mode for Bulk endpoint */
PCD_CLEAR_BULK_EP_DBUF(USBx, ep->num);
/* Set Tx count with nbre of byte to be transmitted */
PCD_SET_EP_TX_CNT(USBx, ep->num, len);
pmabuffer = ep->pmaaddr0;
/* Write the user buffer to USB PMA */
USB_WritePMA(USBx, ep->xfer_buff, pmabuffer, (uint16_t)len);
}
}
else /* Manage isochronous double buffer IN mode */
{
/* Each Time to write in PMA xfer_len_db will */
ep->xfer_len_db -= len;
/* Fill the data buffer */
if ((PCD_GET_ENDPOINT(USBx, ep->num) & USB_EP_DTOG_TX) != 0U)
{
/* Set the Double buffer counter for pmabuffer1 */
PCD_SET_EP_DBUF1_CNT(USBx, ep->num, ep->is_in, len);
pmabuffer = ep->pmaaddr1;
/* Write the user buffer to USB PMA */
USB_WritePMA(USBx, ep->xfer_buff, pmabuffer, (uint16_t)len);
}
else
{
/* Set the Double buffer counter for pmabuffer0 */
PCD_SET_EP_DBUF0_CNT(USBx, ep->num, ep->is_in, len);
pmabuffer = ep->pmaaddr0;
/* Write the user buffer to USB PMA */
USB_WritePMA(USBx, ep->xfer_buff, pmabuffer, (uint16_t)len);
}
}
}
#endif /* (USE_USB_DOUBLE_BUFFER == 1U) */
PCD_SET_EP_TX_STATUS(USBx, ep->num, USB_EP_TX_VALID);
}
else /* OUT endpoint */
{
if (ep->doublebuffer == 0U)
{
if ((ep->xfer_len == 0U) && (ep->type == EP_TYPE_CTRL))
{
/* This is a status out stage set the OUT_STATUS */
PCD_SET_OUT_STATUS(USBx, ep->num);
}
else
{
PCD_CLEAR_OUT_STATUS(USBx, ep->num);
}
/* Multi packet transfer */
if (ep->xfer_len > ep->maxpacket)
{
ep->xfer_len -= ep->maxpacket;
}
else
{
ep->xfer_len = 0U;
}
}
#if (USE_USB_DOUBLE_BUFFER == 1U)
else
{
/* First Transfer Coming From HAL_PCD_EP_Receive & From ISR */
/* Set the Double buffer counter */
if (ep->type == EP_TYPE_BULK)
{
/* Coming from ISR */
if (ep->xfer_count != 0U)
{
/* Update last value to check if there is blocking state */
wEPVal = PCD_GET_ENDPOINT(USBx, ep->num);
/* Blocking State */
if ((((wEPVal & USB_EP_DTOG_RX) != 0U) && ((wEPVal & USB_EP_DTOG_TX) != 0U)) ||
(((wEPVal & USB_EP_DTOG_RX) == 0U) && ((wEPVal & USB_EP_DTOG_TX) == 0U)))
{
PCD_FREE_USER_BUFFER(USBx, ep->num, 0U);
}
}
}
/* iso out double */
else if (ep->type == EP_TYPE_ISOC)
{
/* Only single packet transfer supported in FS */
ep->xfer_len = 0U;
}
else
{
return HAL_ERROR;
}
}
#endif /* (USE_USB_DOUBLE_BUFFER == 1U) */
PCD_SET_EP_RX_STATUS(USBx, ep->num, USB_EP_RX_VALID);
}
return HAL_OK;
}
/**
* @brief USB_EPSetStall set a stall condition over an EP
* @param USBx Selected device
* @param ep pointer to endpoint structure
* @retval HAL status
*/
HAL_StatusTypeDef USB_EPSetStall(USB_TypeDef *USBx, USB_EPTypeDef *ep)
{
if (ep->is_in != 0U)
{
PCD_SET_EP_TX_STATUS(USBx, ep->num, USB_EP_TX_STALL);
}
else
{
PCD_SET_EP_RX_STATUS(USBx, ep->num, USB_EP_RX_STALL);
}
return HAL_OK;
}
/**
* @brief USB_EPClearStall Clear a stall condition over an EP
* @param USBx Selected device
* @param ep pointer to endpoint structure
* @retval HAL status
*/
HAL_StatusTypeDef USB_EPClearStall(USB_TypeDef *USBx, USB_EPTypeDef *ep)
{
if (ep->is_in != 0U)
{
PCD_CLEAR_TX_DTOG(USBx, ep->num);
if (ep->type != EP_TYPE_ISOC)
{
/* Configure NAK status for the Endpoint */
PCD_SET_EP_TX_STATUS(USBx, ep->num, USB_EP_TX_NAK);
}
}
else
{
PCD_CLEAR_RX_DTOG(USBx, ep->num);
/* Configure VALID status for the Endpoint */
PCD_SET_EP_RX_STATUS(USBx, ep->num, USB_EP_RX_VALID);
}
return HAL_OK;
}
/**
* @brief USB_EPStoptXfer Stop transfer on an EP
* @param USBx usb device instance
* @param ep pointer to endpoint structure
* @retval HAL status
*/
HAL_StatusTypeDef USB_EPStopXfer(USB_TypeDef *USBx, USB_EPTypeDef *ep)
{
/* IN endpoint */
if (ep->is_in == 1U)
{
if (ep->doublebuffer == 0U)
{
if (ep->type != EP_TYPE_ISOC)
{
/* Configure NAK status for the Endpoint */
PCD_SET_EP_TX_STATUS(USBx, ep->num, USB_EP_TX_NAK);
}
else
{
/* Configure TX Endpoint to disabled state */
PCD_SET_EP_TX_STATUS(USBx, ep->num, USB_EP_TX_DIS);
}
}
}
else /* OUT endpoint */
{
if (ep->doublebuffer == 0U)
{
if (ep->type != EP_TYPE_ISOC)
{
/* Configure NAK status for the Endpoint */
PCD_SET_EP_RX_STATUS(USBx, ep->num, USB_EP_RX_NAK);
}
else
{
/* Configure RX Endpoint to disabled state */
PCD_SET_EP_RX_STATUS(USBx, ep->num, USB_EP_RX_DIS);
}
}
}
return HAL_OK;
}
#endif /* defined (HAL_PCD_MODULE_ENABLED) */
/**
* @brief USB_StopDevice Stop the usb device mode
* @param USBx Selected device
* @retval HAL status
*/
HAL_StatusTypeDef USB_StopDevice(USB_TypeDef *USBx)
{
/* disable all interrupts and force USB reset */
USBx->CNTR = (uint16_t)USB_CNTR_FRES;
/* clear interrupt status register */
USBx->ISTR = 0U;
/* switch-off device */
USBx->CNTR = (uint16_t)(USB_CNTR_FRES | USB_CNTR_PDWN);
return HAL_OK;
}
/**
* @brief USB_SetDevAddress Stop the usb device mode
* @param USBx Selected device
* @param address new device address to be assigned
* This parameter can be a value from 0 to 255
* @retval HAL status
*/
HAL_StatusTypeDef USB_SetDevAddress(USB_TypeDef *USBx, uint8_t address)
{
if (address == 0U)
{
/* set device address and enable function */
USBx->DADDR = (uint16_t)USB_DADDR_EF;
}
return HAL_OK;
}
/**
* @brief USB_DevConnect Connect the USB device by enabling the pull-up/pull-down
* @param USBx Selected device
* @retval HAL status
*/
HAL_StatusTypeDef USB_DevConnect(USB_TypeDef *USBx)
{
/* Enabling DP Pull-UP bit to Connect internal PU resistor on USB DP line */
USBx->BCDR |= (uint16_t)USB_BCDR_DPPU;
return HAL_OK;
}
/**
* @brief USB_DevDisconnect Disconnect the USB device by disabling the pull-up/pull-down
* @param USBx Selected device
* @retval HAL status
*/
HAL_StatusTypeDef USB_DevDisconnect(USB_TypeDef *USBx)
{
/* Disable DP Pull-Up bit to disconnect the Internal PU resistor on USB DP line */
USBx->BCDR &= (uint16_t)(~(USB_BCDR_DPPU));
return HAL_OK;
}
/**
* @brief USB_ReadInterrupts return the global USB interrupt status
* @param USBx Selected device
* @retval USB Global Interrupt status
*/
uint32_t USB_ReadInterrupts(USB_TypeDef const *USBx)
{
uint32_t tmpreg;
tmpreg = USBx->ISTR;
return tmpreg;
}
/**
* @brief USB_ActivateRemoteWakeup : active remote wakeup signalling
* @param USBx Selected device
* @retval HAL status
*/
HAL_StatusTypeDef USB_ActivateRemoteWakeup(USB_TypeDef *USBx)
{
USBx->CNTR |= (uint16_t)USB_CNTR_RESUME;
return HAL_OK;
}
/**
* @brief USB_DeActivateRemoteWakeup de-active remote wakeup signalling
* @param USBx Selected device
* @retval HAL status
*/
HAL_StatusTypeDef USB_DeActivateRemoteWakeup(USB_TypeDef *USBx)
{
USBx->CNTR &= (uint16_t)(~USB_CNTR_RESUME);
return HAL_OK;
}
/**
* @brief Copy a buffer from user memory area to packet memory area (PMA)
* @param USBx USB peripheral instance register address.
* @param pbUsrBuf pointer to user memory area.
* @param wPMABufAddr address into PMA.
* @param wNBytes no. of bytes to be copied.
* @retval None
*/
void USB_WritePMA(USB_TypeDef const *USBx, uint8_t *pbUsrBuf, uint16_t wPMABufAddr, uint16_t wNBytes)
{
uint32_t n = ((uint32_t)wNBytes + 1U) >> 1;
uint32_t BaseAddr = (uint32_t)USBx;
uint32_t count;
uint16_t WrVal;
__IO uint16_t *pdwVal;
uint8_t *pBuf = pbUsrBuf;
pdwVal = (__IO uint16_t *)(BaseAddr + 0x400U + ((uint32_t)wPMABufAddr * PMA_ACCESS));
for (count = n; count != 0U; count--)
{
WrVal = pBuf[0];
WrVal |= (uint16_t)pBuf[1] << 8;
*pdwVal = (WrVal & 0xFFFFU);
pdwVal++;
#if PMA_ACCESS > 1U
pdwVal++;
#endif /* PMA_ACCESS */
pBuf++;
pBuf++;
}
}
/**
* @brief Copy data from packet memory area (PMA) to user memory buffer
* @param USBx USB peripheral instance register address.
* @param pbUsrBuf pointer to user memory area.
* @param wPMABufAddr address into PMA.
* @param wNBytes no. of bytes to be copied.
* @retval None
*/
void USB_ReadPMA(USB_TypeDef const *USBx, uint8_t *pbUsrBuf, uint16_t wPMABufAddr, uint16_t wNBytes)
{
uint32_t n = (uint32_t)wNBytes >> 1;
uint32_t BaseAddr = (uint32_t)USBx;
uint32_t count;
uint32_t RdVal;
__IO uint16_t *pdwVal;
uint8_t *pBuf = pbUsrBuf;
pdwVal = (__IO uint16_t *)(BaseAddr + 0x400U + ((uint32_t)wPMABufAddr * PMA_ACCESS));
for (count = n; count != 0U; count--)
{
RdVal = *(__IO uint16_t *)pdwVal;
pdwVal++;
*pBuf = (uint8_t)((RdVal >> 0) & 0xFFU);
pBuf++;
*pBuf = (uint8_t)((RdVal >> 8) & 0xFFU);
pBuf++;
#if PMA_ACCESS > 1U
pdwVal++;
#endif /* PMA_ACCESS */
}
if ((wNBytes % 2U) != 0U)
{
RdVal = *pdwVal;
*pBuf = (uint8_t)((RdVal >> 0) & 0xFFU);
}
}
/**
* @}
*/
/**
* @}
*/
#endif /* defined (USB) */
#endif /* defined (HAL_PCD_MODULE_ENABLED) || defined (HAL_HCD_MODULE_ENABLED) */
/**
* @}
*/