
Introduction

The serial peripheral interface (SPI) enables easy data transfer between peripherals and the microcontroller. It has a wide range
of specific modes and possible configurations, hence the need for specific handling and settings. An optimized peripheral
handling decreases the overall system load.

This document provides useful information to users targeting specific configurations, and provides tips on how to prevent and
manage the most frequent difficulties encountered when handling SPI communication.

The comparison of different versions implemented on STM32 products can help users considering migration to a new MCU/
MPU.

The reader must be already familiar with the basic SPI principles and peripheral configuration options.

The information given here does not replace that in reference manuals and datasheets available at www.st.com, but rather
complements it. The available SPI features are product dependent, refer to reference manuals and datasheets for their detailed
description.

Guidelines for enhanced SPI communication on STM32 MCUs and MPUs

AN5543

Application note

AN5543 - Rev 4 - October 2024
For further information contact your local STMicroelectronics sales office.

www.st.com

http://www.st.com

1 General information

This document applies to STM32 Arm®-based devices.

Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

AN5543
General information

AN5543 - Rev 4 page 2/24

2 Released versions

The SPI peripheral for STM32 devices has evolved over time. The following table summarizes the main
differences between active versions.

Table 1. Main SPI features on STM32 devices

Feature/Version 1.2.x 1.3.x 2.x.x(1) 3.x.x(1)

STM32 series F1, F2, F4, L0,
L1

C0, F0, F3, F7, G0, G4, L4,
L4+, L5, U0, WB, WL H7, MP1 H5, MP2, U3, U5,

WBA

Data size 8- or 16-bit 4- to 16-bit 4- to 16/32-bit

Tx & Rx FIFOs No 2x 4-byte 2x 4- to 32-byte

Data packing by data-register access No Yes

Data packing by packets No Yes

Dual clock domain (APB and kernel) No Yes

Programmable transfer counters No Yes

Underrun detection/configuration No Yes

Autonomous operation in low-power
modes No Yes(2) Yes(3)

Master transfer suspension No Yes

Master automatic suspension No Yes

Flushing content of FIFOs No Yes

Master data/SS interleaving No Yes

GPIOs alternate function control when
SPI is disabled No Yes

Configuration protection by locking No Yes

Swap of MOSI/MISO, reversed SS logic No Yes

RDY signal option with suspension No Yes

Master input data sampling delay No Yes(3)

1. Derivative instances exist where data size configuration or some other features can be limited. Size of the FIFOs and I2S
audio specific protocol support always depend on the instance implementation.

2. Limited capability; not fully supported.
3. Dependent upon implementation, not available on all products.

2.1 Differences between versions
The different SPI versions have some similarities, as an example, all of them feature DMS and the capability to
wake up from low-power mode. Some features, such as the inter-IC sound (I2S) support and the enhanced slave-
select modes, are supported as option. The main differences are related to data size, data buffering, dual-clock
domain, and programmable transfer counters, described in the following subsections.

Data size

Data size can be fixed and multiplied by 8-bit, or can be adjustable by bit.

Data buffering of Tx and Rx streams

The earlier versions support only single register pair to handle both the streams, while more recent versions use a
set of registers collected at dedicated FIFOs.

Dual-clock domain

The older versions use a single-peripheral clock source, which feeds both the peripheral interface and the kernel.

AN5543
Released versions

AN5543 - Rev 4 page 3/24

More recent versions feature an autonomous run at low-power mode under kernel or also under external clock
when the system peripheral interface clock is stopped (refer to Figure 1). This capability is enabled because in
recent versions the kernel clock is separated from the clock feeding the system peripheral bus (APB) interface.

Programmable transfer counters

The specific control related to "end of transaction" actions such as slave-select (SS) management, CRC (cyclic
redundancy check) append, update of the FIFO data threshold, or termination of data streams can be performed
by a proper software action, but ideally it should be performed automatically by hardware using predefined
counters.
Earlier versions of SPI do not feature the programmable counters and DMA overtakes the task, using its settings.
The latest versions feature embedded counters, hence SPI takes over control of programmable counters action
via the SPI configuration. In these cases, the DMA role is limited to manage data transfers.

2.2 Frequency constraints
The bus bandwidth depends upon the frequency(ies) applied to the associated clock domain(s), supposing that
there is enough margin to handle all the fast data flow in time (see Section 4.1).
In systems featuring a single clock domain, the theoretical limit is up to half the APB clock applied for the
peripheral in both master and slave configurations.
On dual clock domain systems, there are no specific constraints concerning the ratio between clock feeding APB
and the kernel domains. In case of significant differences, the user must respect the number of clock periods
needed to synchronize and propagate the signals shared between the domains (such as changes of flags or
registers or data transfers). For the same reason, some functionalities can be limited when the data size is too
short, for example the underrun protection logic at slave or handling an optional RDY status signal between
master and slave.
The main factor impacting the bandwidth is the distortion of fast signals due to the capacitance of their external
connections versus the throughput of the associated internal GPIO paths and associated alternate function logic.
Temperature and low-supply voltage have an impact too: significant differences at the highest accessible
communication speed can be observed between SPI instances (or their mapping options), SPI modes, power
supply or temperature ranges. The real limits (verified by characterization or guaranteed by design) are detailed in
the datasheets.

AN5543
Released versions

AN5543 - Rev 4 page 4/24

3 Data flow handling principle

The SPI hardware interface is based on a pair of physically separated internal shift registers, which handle the
input and output serial bit streams on MOSI and MISO pins, synchronously clocked by the SCK signal.
The SPI configuration (if it operates as a slave or a master) determines which pin works as input or as output, and
whether the SCK clock source is external or internal. As shown in the figure below, data are clocked in and out
through the MISO and MOSI pins via shift registers associated with the RAM storage area providing separated Tx
and Rx buffers. In early SPI versions, each of these buffers is made by a single-data register. More recent SPI
versions feature an extended set of registers, which work under the FIFO principle. The content of the buffers is
accessible via read or write accesses to physically doubled SPI data registers allocated under a sigle common
address in the APB (PCLK) clock domain. All the other peripheral configurations and status registers are allocated
to this domain.
During transmission, once the content of the Tx shift register dedicated to data output is shifted out completely,
the oldest data is moved into it from the associated Tx buffer. The space formerly occupied is released, and the
buffer is ready to accept new data.
During reception, once the Rx shift register dedicated to data input is clocked in completely, the new data frame is
moved from it into the associated Rx buffer.
When the peripheral is configured as slave, the SCK clock is always provided by an external source. When
configured as master, the SCK clock is sourced internally from kernel (providing either the peripheral interface
APB bus clock or a specific separated kernel clock). This clock signal divided by embedded clock baud rate
generator feeds the outer serial interface of the SCK signal mastering communication with the slave nodes.

Figure 1. Simplified data flow scheme

SCK/Kernel domainPCLK domain

PCLK logic Tx buffer

SCK logic

Tx shift reg MOSI

SCK

MISO

SCK source

Config regs

Status regs

Data reg

Rx buffer

Rx shift reg

AP
B

bu
s

In full-duplex communication, the data handshake for transmission and reception is done in parallel. Each new
data frame write access precedes reading of the corresponding pattern transferred at the same time, because the
transmitted data frame must be available at the Tx buffer before its transfer begins. When no new data are
available, SPI master suspends the communication, but the slave forced to continue operation faces data
underrun. It provides invalid data even without any detection if underrun fetaure is not supported. The next data
can be written into the buffer once there is enough space to store them.
The first bit is always provided out from the Tx buffer, and the data buffered for transmission are moved into to
internal Tx shift register after its first bit is fully transferred out. That is why the value of the first transferred bit is
always dependent on the actual buffer content, while the rest of the data-frame already provided from the
associated shift register is fixed. As a consequence, data output signal can toggle independently on SCK signal
prior and during the first bit transfer period, depending upon the Tx buffer access and its content, and upon clock
configuration.

AN5543
Data flow handling principle

AN5543 - Rev 4 page 5/24

The transfer between the buffer and the shift register can take place almost immediately after the initial data is
written into the buffer at transfer start, because the buffer becomes empty as soon as the first bit of the data is
transferred. When the buffer has a FIFO with sufficient capacity, it can accept the next data almost immediately.
The receive buffer initially is always empty, as all data are copied into it after the ongoing data frames are
completed.
The following figure provides a simplified example of a continuous SPI communication handled by DMA: the size
of the data corresponds to a single DMA access of the SPI data register. The DMA write stream is completed
earlier than the read stream, while the transfer on the bus can continue after both read and write DMA streams
are completed (if CRC is applied).
Even if not necessary, it is advised to monitor the BSY or EOT/TXC flags at the end of the transfer to prevent
either a premature SPI disable or the kernel clock-source removal. In this case the ongoing flow can be corrupted
or wrongly terminated. The BSY flag becomes low between data frames if the flow is not continuous and it always
drops at slave for a single SCK clock-period between data frames (even if the SCK flow is continuous). The latest
SPI versions replace the BSY signal by the EOT and TXC flags. Single-data handling events signalized by TXE
and RXNE flags are replaced by TXP and RXP or DXP flags, which handle the data packets events. The timing of
these signals is almost the same across all versions. BSY flag monitoring is not suggested to handle the data
flow.

Figure 2. Timing of SPI data events and DMA transfer complete flags during a transfer

D1 D2b0 b0

DMA write D1 DMA write D2 DMA read D1 DMA read D2

MOSI/MISO

TXE/TXP

RXNE/RXP

DMA write HT

DMA read HT

CRC

BSY/TXC

DMA write TC

DMA read TC

AN5543
Data flow handling principle

AN5543 - Rev 4 page 6/24

4 Data flow potential problems

The most frequent problems are grouped in three categories:
• System performance and data flow

– Ratio between APB and kernel clock
– Ratio between master and slave performance
– Frequency of the SPI and of the DMA events

• Specific modes handling
– Data corruption by a premature termination
– Handling exact number of data
– SPI reconfiguration and handling of associated GPIOs
– Handling half-duplex operations via a single bidirectional data line

• Specific signals handling
– Internal interface signals
– Optional external interface signals

Specific handling of autonomous SPI operation in low power modes is out of this document scope. Version 2.x.x
is capable to drive serial bus clocking in stop mode while raising asynchronous interrupts to handle data
exchange. Version 3.x.x, additionally, can handle the data exchange between the peripheral and memory via
smart DMA if implemented in the product. This is done without need for system wake-up, due to temporal
domain's clock requests handled by the peripheral while the data transfers can be synchronized with other
peripherals by internal triggers. Refer to documents targeting LPBAM control, such as AN5645 "STM32U5 Series
power optimization using LPBAM"

4.1 System performance and data flow issues
The SPI bus is potentially fast and the system must be high-performance to handle the data flow in time.
Depending on the SPI mode, the system must prevent data overrun in reception, and data underrrun in
transmission. The ability to handle all the data efficiently can become critical when the flow (based on the SCK
clock signal) is continuous, the data frame is short, and the SCK clock is comparable or faster than the system
core clock.
A practical example is a situation when the baud rate is PCLK / 2, and data frame is shortened to 4 bits. The
system faces two SPI events within each interval of 8 PCLK periods in full Duplex-mode. In this case, if PCLK is
similar (or equal to) the system clock, there is not enough margin at system level to handle such continuous
bidirectional communication, even when all the available CPU performance is spent in an optimized program loop
polling directly the SPI flags. The system has not enough margin because it must test the associated occupancy
flags in the SPI status register, and handle the transfer between the SPI data register and the memory if the
corresponding flag is active.
See below a simplified piece of C-code loop (it assumes that R1 and R2 CPU registers keep the Tx and Rx data
pointers towards the memory, while R3 register keeps the base address of the SPI registers):
while (1) {
 if ((SPI->SR & SPI_SR_TXE) == 0) {
 SPI->DR = *tx_data++;
 }
 if ((SPI->SR & SPI_SR_RXNE) != 0) {
 *rx_data++ = SPI->DR;
 }
}

AN5543
Data flow potential problems

AN5543 - Rev 4 page 7/24

The assembled result of the compilation of the C-code is shown below:
??main_1:
 LDR R0, [R3, #+08] ;test TXE flag
 LSLS R0,R0,#+30
 BMI.N ??main_2
 LDRB R0, [R1], #+1 ;read and send next data from a memory
 STRB R0, [R3, #+12]
??main_2:
 LDR R0, [R3, #+08] ;test RXNE flag
 LSLS R0,R0,#+31
 BPL.N ??main_1
 LDRB R0, [R3, #+12] ;store next data received to a volatile memory
 STRB R0, [R2], #+1
 B.N ??main_1

Even a simplified loop of code like this cannot be executed within eight CPU cycles, despite the C-compiler is
configured for code speed optimization on this Cortex® M3 example. The execution of this loop is critical even
within 16 cycles available with a standard 8-bit data-frame configuration.
If the SPI events are handled by interrupts, the system must perform the same number of cycles to detect the
pending event and for the required memory transfer inside the interrupt service execution as in polling loop. It
spends additional cycles for service entry and return, necessary to safe and restore the interrupted main
execution context at stack. That is why a solution based on interrupts is not useful in this case.
A possible solution is to implement DMA, but the user must not overestimate the bandwidth to provide a real
solution to the problem. DMA still needs a few system cycles to perform the required data transfer, while the
execution of the related service can be postponed because another system operation is ongoing. Each DMA
transfer must first go through the bus matrix arbitration process (winner takes the matrix path to make the
transfer), hence the transfer and the associated arbitration takes up to seven system-clock cycles.
Note that due to a round-robin scheme principle applied to share the bus matrix bandwidth, the transfer request
addressed to DMA can have significant latency after it is raised by the peripheral. The latency can be caused by a
simultaneous request from another DMA channel or by the execution of a non-interruptible data-transfer
sequence performed by the CPU. Examples of such sequences are the stack context handling (either at entry to
or at return from an interrupt service, which normally takes eight cycles), or a simultaneous data-batch transfer
such as a LDMIA instruction execution, which can take up to fourteen consecutive cycles. If all these factors add
up, the delay to serve a pending DMA request can exceed few tens of system-clock cycles, and multiple 4-bit data
frames can be missed on the SPI bus.

AN5543
Data flow potential problems

AN5543 - Rev 4 page 8/24

Software or DMA unable to handle data on time

There are three main indicators indicating that data management is not done on time (by software or by DMA),
even if peripheral and system configurations are applied correctly. These are data corruption, data overrun and
data underrun.
• Data corruption (data flow is not as expected)

– Some data patterns are missing, wrongly repeated or in any way partially corrupted.
– Note that when correct order of bits is shifted by one or more bits in the frames, this situation reflects

a synchronization issue between master and slave rather than a late handling data by system.
– Some actions that help to identify data-corruption problems are:

◦ The implementation of a HW CRC checksum at the end of each transfer batch.
◦ Any data redundancy check such as repetition of the messages, plausibility check (comparison

of the message with the expected content) or any other similar predefined protocol.
• Data overrun (RxFIFO space overflow)

– A system performance issue during reception is put in evidence when an OVR error flag is raised.
– Data overrun is mainly a slave device problem.
– Data overrun can also appear on a master device configured in Receive-only mode, because the

SCK clock signal is provided continuously and independently on the data-buffering process, except
for devices featuring master automatic suspension of the communication mode when the RxFIFO is
full (see MASRX bit control in the reference manuals).

• Data underrun (TxFIFO space underflow)
– The primary cause is low system performance during transmission.
– Data underrun occurs only on slave devices because master always suspends the transmission

when its Tx data buffer becomes empty and there are no more data to transmit. A master configured
in I2S mode works differently in case of underrun.

– The most recent devices feature configurable behaviour and specific indication (via UDR flag) in case
of underrun. The device can repeat a constant pattern defined by the user or apply the latest
received pattern, behaving as a simple shift register (applicable at a multi-slave daisy-chain circular
topology). Repetition of the last transferred data frame is useful in I2S mode to achieve a smooth
audio output.

– For devices not featuring UDR flag, the underrun event is hidden. Some side effects can be visible,
such as a flow corruption by repetition of a data pattern previously transferred (the value depends
upon the design). For example, when FIFO is implemented, the oldest FIFO pattern is applied(1).

– Data underrun depends upon the timing between the moments when data to transmit are written to
the data register by slave and the start of its transfer by master. If slave manages to write the data
within its first bit transfer period in spite of the underrun condition, the new data can be accepted for
transmission, but there is a potential risk of corruption of the first transferred bit. This depends on the
LSBFIRST bit setting if the most or the least significant bit of the data frame is considered. If the write
comes later, the underrun pattern is completely transferred while new data are buffered for the next
transfer.

1. When a 32-bit TxFIFO of a slave is fully filled by 0xAA, 0xBB, 0xCC, 0xDD. and a transfer of five 8-bit patterns is applied by
master without any other update of the slave’s TxFIFO, the slave output is 0xAA, 0xBB, 0xCC, 0xDD, 0xAA.

In the SPI slave configuration, when a last valid data bit is processed out and the data register of the TxFIFO is
empty (node does not have next data to transfer), the value of the first underrun bit is taken from a previously
transferred pattern. The data correctness is unsure, as the behaviour of the MISO slave output depends on many
factors (clock-phase setting, timing between an occasional late-data write versus the beginning of the next
transfer handled by the SCK signal, value of the underrun candidate bit versus the first new valid one to transmit).
If the CPHA bit is set, the MISO keeps the level of the last valid bit transferred, and the first underrun bit appears
on the bus with the leading SCK edge of the next transaction if no new data are applied. If the CPHA bit is
cleared, the value of potential underrun bit appears on the bus right after the last data transfer is completed, even
if the underrun condition is not yet filled (valid data can still be written in time before the next data-frame
transaction starts). In this case, the MISO line propagates (with possible toggle) the correct level immediately
once the valid data is written into the data register and propagated into the empty SPI Tx buffer while node
becomes ready for the data transfer in this configuration.

AN5543
Data flow potential problems

AN5543 - Rev 4 page 9/24

A typical observation of a late data-write correlated with the next data frame transfer start is the slave output peak
toggle. This output is present prior or during the transfer of the first bit of a frame still provided by the buffer. This
situation supposes that the value of the adept underrun bit and the corresponding bit at the new data are different,
else there is no toggle and the switch between the underrun and the valid data source is not visible.
The following figure shows a typical deformation of the first bit when the software or the DMA writes late the new
data to be transmitted, while the transfer of the first bit is already ongoing (or close to the moment when the data
transfer starts). For illustration purposes, the valid bit of the next-data frame has opposite value than the underrun
candidate to highlight the change of the MISO signal. The valid bit value is sampled correctly only if the write of
the valid data preceeds the bit sampling edge, else, the underrun adept bit value is wrongly sampled. Wrong
sampling is performed at configuration of CPHA = 0 when the data write comes too late after the sampling is
performed at the beginning of the period.

Figure 3. A late write (underrun) of data while first-bit transfer is ongoing

MISO
(CPHA=0)

SCK

NO DATA TO TRASMIT (slave
provides adept of the first

underrun bit)

LATE VALID DATA WRITE
(slave starts to apply first bit of

valid data)

VALID DATA CONTINUES
(slave provides next bits of

valid data correctly)

MISO
(CPHA=1)

First bit
period

WRONG VALUE SAMPLING
(adept of the first underrun bit is

sampled)

CORRECT VALUE SAMPLING
(first bit of valid data

is sampled)

A correct management of value sampling is observed when CPHA = 1, despite the data are written with significant
delay. This is possible due to the fact that sampling is provided later at the middle of the bit period. Correct data
transaction continues for the rest of the data frame at both configuration cases because data is written at the first-
bit transaction period, so the transfer between Tx buffer and Tx shift register is still accepted.

4.1.1 Recommended methods to handle frequent SPI and DMA events
There are different possible ways to handle frequent SPI and DMA events, but their applicability depends upon
the design. Older devices do not necessarily feature data FIFOs or widely configurable data size and they have
limited configuration capabilities compared to recent devices.
The handling all SPI data events by interrupts is not the better method with fast baud rates, as repetition of these
requests is very frequent.
Optimize performance is achieved when DMA takes care of all the data flow and other specific events associated
with the transfer are polled by software or monitored by interrupts enabled by selective flags. The user must
always check the status of error flags to detect problems with bus throughput or with system performance. In
some cases, even optimized system performance is not enough for a fast SPI flow, and the user must apply
additional methods to secure sufficient bandwidth.

AN5543
Data flow potential problems

AN5543 - Rev 4 page 10/24

Some effective actions to improve the management of frequent SPI and DMA events are:
• Decrease the bus rate: the ratio between the system and the kernel clock increases.
• Increase the data size.
• Collect data into packets when the software fills in and reads out the data.
• Balance the data register access with the data size and the threshold level of the FIFOs or of the data

configuration setting. More information is detailed in the following section.
• Slow down the data rate leading to discontinuous clock by using fixed or enhanced adaptable methods of

the temporal communication suspension between provided data frames or sessions.
These actions decrease the frequency and the number of data handling events. The system performance
improves, thanks to a better management of their detection.
To decrease the latency when serving the raised events, temporarily disable interrupts or DMA channels from
other peripherals, and set up and order priorities of the DMA channels.
Suppressing interrupts minimizes the CPU contribution in the round-robin bus matrix distribution scheme. The
user must avoid automatic register refresh or memory dump windows during debug to avoid decreasing the BUS
matrix throughput. When DMA interrupts are enabled, the half DMA transfer-completion interrupt must be
suppressed if not used. Servicing this event becomes critical when a small number of continuous data is
transferred by the DMA session or when frequent DMA data-handling services face a bad system performance
(refer to the DMA HT and TC events on Figure 2).
At master side, the data rate flow can be slowed down by opting out from a continuous SCK flow (if applicable).
The latest SPI versions feature optional programmable fixed interleaving gaps between frames, or between the
SS signal that becomes active and first data transfer at session begin, and they can also implement an automatic
suspension of the master. This temporary suspension of the master’s transfers prevents data underflow and
overflow, and can be achieved by monitoring the RxFIFO occupancy (MASRX feature) or by monitoring additional
specific status-ready signal (RDY), which can be optionally provided by the slave. In oldest designs, the handling
of master continuous simplex receiver mode is problematic. It can be replaced by full duplex mode with ignored
data output when communication timing control is done by filling dummy transmission data.
Other features present in latest SPI designs, which simplify the data-handling processes are:
• Capability to set up data counters
• Capability to use an optional coupled dual-flag event to control both transmission and reception of a

common event with a single software service
A dual flag puts in evidence that both transmission and reception flags are active. When a double event like this
one is handled at master level, there is a risk that the flow becomes discontinuous. Discontinuity may occur when
new data is written and its corresponding transfer is started after the previous one is finished, hence the bus
becomes idle.
The dual-flag handling must be avoided in slave mode when the master is continuously providing a clock signal
and the packet size is set close to half of FIFO space. There is a high risk of data underrun, due to a postponed
service of the pending TXP event (which always precedes a RXP event).
The main sense of the DXP appears when targeting low-power applications, especially when the data-handling
services are cumulated and their number is decreased to minimum, which prevents system from its frequent wake
ups. The counterpart for that is slowing down the data rate.

4.1.2 Balanced handling of communication events
A correct and optimized data handling is achieved by balancing the data access with the configured data size and
packing. The user configures the threshold levels of the data buffer, which determine the frequency of data
handling events.
The data register can be read or write and can be single or multiple access (the amount of access correspond to
the number of data at the packet). The data register access is always equal to or higher than the selected data
size.
A wider access of the SPI data register can be provided by software or by DMA; the access corresponds to a
multiple of the data size. In this case, data packing is automatically applied during the read or write of its content.
For example, four data with size up to 8 bits can be read or written in parallel by a single 32-bit access of the data
register. The type of access is defined by casting the address of the data register at code level.

AN5543
Data flow potential problems

AN5543 - Rev 4 page 11/24

In recent devices, the user can additionally define longer data packets and cumulate series of data-register
accesses on a single event. The number of accesses must correspond to defined threshold of the FIFO. The
events then signal that just the packet service is available and a next sequence of repeated data accesses is
expected. For example, if a 32-bit access is applied to data register, a sequence of three of them must be applied
upon a single packet event when data packet is defined as 12x 8-bit data. This feature helps to limit the number of
data handling events and decreases the system's load in a significant way as data batch is always serviced in a
single run. Internal data exchange between data buffer and shift register is automatically handled based on one
by one data access sequences.
A TXE corresponding to a TXP event is raised once the buffer for transmission can accept the next data
respective to the complete data packet. The transmission buffer is ready once the first bit of the data which is
releasing the necessary space is transferred out.
The Tx buffer may become empty and the SCK clock signal can stop and become non continuous if the master
faces a significant latency when servicing a raised event that releases space in the transmission buffer. When the
same situation happens while the master continues the transfer, the slave faces a data underrun condition.
There is a risk of first-bit corruption whenever the service latency is close to the time needed for a single packed
data transfer, where the next data are written to the empty buffer of the slave when its first bit is already sampled.
Refer to Figure 3 for a related example. This case can also be observed at MISO toggle.
Ideally the packet size should not exceed half of the FIFO space. This configuration allows that a subsequent
additional packet to be applied early after the current packet transfer starts. This allows a big potential margin for
servicing next packet close to a whole single-packet transfer duration.
If the data packet size configuration is equal or almost equal to the overall FIFO space and if there is a continuous
flow on the bus, the available time to store next data or to read the received data becomes similar to a single-data
transfer duration. In this situation, the user must wait until the space corresponding to a complete packet is either
released at the TxFIFO during a transfer or that the space corresponding to a complete packet is fully completed
at receive data side at RxFIFO.
Under the above configuration, even a small service latency may generate a transfer problem and data packing
becomes useless. That type of configuration makes sense for interleaved SPI batches with a number of data to
be completely accommodated at FIFO space. In that case, the application has enough room to handle data once
a batch is completed before the next batch starts.
When the Full-duplex mode is applied, the number of the overall data transferred (transmitted and received) is
balanced. The transferred data goes in parallel with the common clock signal and the handling of both data
directions is shifted each time. Transmission handling must precede the reception handling, otherwise the master
does not start or continue any transaction, and the slave faces underrun whenever there is not available data
ready at the Tx buffer while a transfer is ongoing.
In recent devices, a specific dual flag DXP is applied to enable common services to handle both transmission and
reception flows together. This functionality is especially useful in low-power modes.
Some actions to cope with different timing of the both data flows are:
• Store some data for transmission in advance
• Handle the middle of the transfer by common DXP events
• Finish the session by handling the remaining received data at the end of the session (for example by an

EOT event).

Note: A DXP event interrupt is suppressed by hardware once all the data for transmission is submitted.
The following figure is an example of a TXE/TXP event service latency limit available at slave for DMA. The
example shows a continuous transfer of two consequent data configured with respect to available buffer size what
involves to write D2 in time after D1 data is released from the buffer. The data is released from the buffer once its
first bit is transferred on the bus. If D1 is a data packet, TXP signal (replacing the TXE one then) can raise later
during D1 transfer once a space large enough to accommodate a full D2 packet is released and available at the
buffer to accept new data.

AN5543
Data flow potential problems

AN5543 - Rev 4 page 12/24

Figure 4. DMA late service of TXE/TXP event

D1 D2b0 b0

DMA writes D1 DMA writes D2 late and too close to the
sampling of the b0/D2 bit

MOSI/MISO

TXE

TXE event service latency

b0/D2 sampling

DMA write TC

4.2 Handling specific SPI modes
SPI transfers are based on a predefined exact number of data. Some enhanced SPI modes are sensitive to
deterministic data-counting and require specific control-handling related actions close to the end of the data
transfer.

4.2.1 End of the bus activity detection
Specific situations that require proper detection of the bus activity-end to prevent corruption of ongoing data flow
by premature fatal terminating accesses are:
• SS signal control
• Necessity to disable the peripheral after the session is completed due to system entry into low-power

mode, the peripheral clock removal or change the peripheral configuration (for example, change of the data
direction at Half-duplex mode or setup another configuration of the SCK signal or baud rate, or simply reset
the internal state machine before next session start).

The end of the bus activity can be detected easily by RXNE or RXP flags, signaling end of last data reception.
Exceptions are when the CRC frames are upended at the end of a transfer to validate the data (refer to Figure 1),
or when SPI is used exclusively in transmission mode. In such cases, the signals to monitor the end of the bus
activity are BSY, EOT, or TXC flags. Any monitoring of DMA complete events is not applicable, as SPI can be still
transmitting (refer to Figure 2).
For BSY monitoring, additional specific measurements (such as timeout monitoring) are needed, because this flag
is not fully reliable on old devices. BSY should be cleared by hardware between data frames when
communication is not continuous or when it is fully completed; otherwise it highlights a synchronization problem
between master and slave.

4.2.2 Specific aspects when SPI is disabled
Once the end of the bus activity is detected correctly, SPI can be disabled, but consider some specific aspects
when doing so.
The FIFO content handling while SPI is disabled depends upon the design.
• On versions 1.3.x, the content of the Rx FIFO is preserved and accessible. Disabling SPI is a standard

procedure to terminate the simplex-receive modes.
• On versions 2.x.x and higher, software suspension is used to terminate whatever ongoing flow. Tx and Rx

FIFO contents are flushed, lost and impossible to access when SPI is disabled.

AN5543
Data flow potential problems

AN5543 - Rev 4 page 13/24

Another problem related to peripheral disable is the control of the associated GPIOs:
• Versions 1.x.x: the peripheral takes no control of the associated GPIOs when it is disabled. If the SPI

signals are kept in alternate function configuration, they float if not supported by external resistors.
• Versions 2.x.x and higher: the peripheral can keep the GPIO control even when it is disabled (depending

on IOs alternate function configuration managed by the AFCNTR bit) to prevent unexpected changes of the
associated master outputs especially. In the contrary, when user apply SPI configurations affecting the IOs
configured in the control keeping mode (such as change of the SCK signal polarity), new default levels are
propagated out immediately despite SPI is still disabled. Be careful with desynchronization between master
and slave, and perform the configuration change exclusively when no slave is selected.

SPI must be disabled before the system entries into Halt mode and between the transactions when SPI must be
reconfigured or to restart the internal state machine properly. Even if SPI disable between sessions is not
mandatory when configuration is not changed, it is recommended to ensure correct functionality, especially when
reconfiguration or complex functionalities (CRC calculation, counting data configured to a non standard data size,
counting data whose number is not aligned with a configured data packet, recovery from transaction suspension
done by software) are applied.
The SPI must not be disabled before the communication is fully completed, and it should be as short as possible
at slave, especially between sessions, to prevent missing the next communication start.
The most recent SPI designs are edge sensitive for hardware SS signal detection; if the master provides an active
edge of the SS while the SPI is still temporarily disabled, the slave might miss the start of the slave select-signal
and the following session. This is not the case on older SPI design where the NSS detection is level sensitive.

4.2.3 Time-critical control at the end of transfer
There are specific cases requiring a time-critical access before the transfer ends within a specific control window,
just during last data handling:
• Change of the FIFO threshold configuration to handle data not aligned correctly with data or packet size
• At the end the CRC pattern control of data validation
• Proper termination of continuous data-flow like master configured in Receive-only mode to prevent any

unexpected additional dummy-data transfer and ensure that the required data are transferred. In earlier
versions, terminate this mode requires nonstandard SPI disable access during ongoing traffic. This is the
case when SPI disable must be applied when communication is still ongoing on the bus.

It is practically impossible to provide such a control when it is based on software polling or interrupt services upon
the associated events. There is a very short time frame available during the ongoing transfer of the last data
frame, and there is a high risk of corruption when this window is missed and the required action is serviced due to
a latency outside this interval.
The available control window starts after sampling the first bit of the frame, and ends before the begin of the last
bit transfer time slot. The following figure is an example of an upend CRC frame pattern after the last data (or
handling reception end) when data is not aligned with the FIFO threshold. In these cases, once the last complete
data packet is processed, a final incomplete data must be sent. The same window is applied when continuous
clock flow in receive-only mode must be terminated properly at master to receive the expected number of data
while preventing next dummy data reception.

AN5543
Data flow potential problems

AN5543 - Rev 4 page 14/24

Figure 5. Examples of window available to perform specific control at the end of a transfer

D(n-1) D(n)b0 b0MOSI/MISO CRCbX

Control windowSampling first bit of
the D(n) data

Transfer must be terminated and optional
CRC upend control must be applied here

The transfer ends and optional
CRC upend is done correctly

Last complete packet of data b0MOSI/MISO Last not aligned databX

Control windowSampling first bit of the last
data in the packet

FIFO threshold must be changed within this
window to upend last odd data correctly

The rest of not aligned data is handled
correctly under different threshold

RXNE

If the device features programmable data counters, a specific control is done autonomously at the end of each
transfer. In these cases, the user can operate with the last not-complete packet or with a standard complete
packet. Only consistent data are applied (redundant reads give zero data, redundant writes are ignored). If the
number of data is not known, it is better to use a single-data threshold (packet), assuming that the system has
enough performance to handle on time all the data flow one by one. No packet event appears until the complete
packet is received. The user must check the FIFO occupancy flags at the end of the transfer if a not aligned
number of data is received.
As older devices does not feature embedded data counters, it is advised to use DMA and data counters instead.
DMA performs the required control action autonomously at hardware level, hence the risk to miss the available
control window is lower compared to an action performed by software. User must correctly set up the data or
DMA counters to ensure handling of proper number of data on Tx and Rx side (especially when a CRC pattern
has to be added). The size of the CRC pattern must be excluded from the data counting number and the CRC
pattern is received to RxFIFO from which it must be always flushed out by software after the transfer upended by
CRC is finished.
The following table provides an overview of the differences at the CRC settings and capabilities. More details can
be found on the corresponding product's reference manual.

AN5543
Data flow potential problems

AN5543 - Rev 4 page 15/24

Table 2. Differences of CRC control between active SPI versions

Feature/Version 1.2.x 1.3.x 2.x.x 3.x.x

Setting of DMA data counters Number of data
excluding the CRC

Number of data
excluding the CRC(1) N/A

Setting of TSIZE counter N/A Number of data

Handling the end of a not
aligned packed transfer N/A By software (via

LDMA_RX bit) Automatically by hardware

CRC size
Fixed CRC8 for 8-bit

data and CRC16 for 16-
bit data

CRC8 or CRC16 can be
applied for either 8- or

16-bit data
4-16/32 bit(2)

Flushing of the CRC pattern
from RxFIFO

Exclusively by software
read access of RxFIFO

By software read access
of RxFIFO(1) Automatically by hardware

Initialization CRC pattern Fixed to all 0s Selectable all 0s or all 1s

Reset CRC calculation Both SPI and CRC disable By SPI disable

1. In Full duplex mode, DMA Rx counter can be set to include the number of the CRC patterns (1 or 2), as DMA Tx counter
setting prevails to handle the pattern CRC transfer. The pattern is read out from the RxFIFO by DMA. This method cannot
be used in Rx-only mode, where the CRC pattern flushing is handled exclusively by software.

2. The size of the CRC pattern is defined independently from the data size, but it must be either equal to the data size, or an
integer multiple of it. It cannot exceed the maximum data size of the instance. The CRC polynomial size should be greater
than the CRC pattern size to benefit from the CRC calculator capability, otherwise the pattern is upended by some invalid
bits. To achieve full polynomial size coverage, specific additional CRC33_17 bit must be set when maximum data size is
configured for 32- or 16-bit instances. TSIZE can never be set to its maximum value when CRC is enabled.

AN5543
Data flow potential problems

AN5543 - Rev 4 page 16/24

4.2.4 Handling the Half-duplex mode
The most problematic SPI task is handling the Half-duplex mode, which requires common single-data line shared
between master and slave alternately for bidirectional transfers. This mode cumulates all the problematics listed
previously:
• Handling exact number of data at particular simplex sessions

Terminating of master-receiver working at Receive-only mode is critical when the ongoing continuous flow
must be stopped correctly. When handling CRC pattern upend or when the session is not aligned with the
configured data threshold both data-flow directions require a specific control of the correct number of
transferred data at the end of the flow.

• Checking the end of the bus activity of a particular session
The bus has to be reconfigured between sessions in order to change direction of the data line, initialize
CRC or configure the next session parameters. To do the configuration, SPI has to be temporary disabled.
This disable might corrupt the end of the ongoing session, this is why the end of the bus activity has to be
properly detected before disabling the SPI.

• Reconfiguration of the bus between sessions
A change of the data-line direction must be synchronized on master and on slave sides, but these
reconfigurations are independent, hence not fully synchronized. The reconfiguration timing is affected by
how the involved nodes recognize the end of the bus activity and by the latencies of their SPI
reconfiguration services. One node can initialize its GPIO output at common data-line while the opposite
node is not yet able to manage the reconfiguration. Then it can happen that both GPIOs outputs propagate
different output levels and compete for the line at the same time for a sure period (it depends on data being
transferred and on the line clock phase setting). It is highly recommended to implement a serial resistor at
this common data-line between the nodes. This action prevents a temporal short connection between the
outputs and limits current blowing between them when just opposite levels are matching on the line.

• Control of associated GPIOs to keep nodes synchronized
The necessity of the peripheral reconfiguration within the session requires an SPI disable. It brings
additional effects like flushing the FIFO content or loosing control of the associated GPIOs. Continuity of
SPI signals during reconfiguration of the bus must be ensured to prevent any synchronization issue
between the involved nodes. Master has to avoid any glitches on SCK and SS signal. These signals might
have to be managed by software as a general purpose outputs during the interface reconfiguration phase.
An interactive session often starts by a command (write) sequence sent by master followed by an adequate
response (writer or read) sequence when slave receives or sends data matched with the command content
(except for cases when the protocol between master and slave is fixed). The master must always give
sufficient time to the slave to reconfigure the bus, to recognize the command and to prepare the adequate
answer. It mostly requires to avoid a continuous SCK clock signal and insert an adequate pause between
such a command and data phases.

The Half-duplex mode handling is very complex. An analysis must be done to determine if the saved single data-
line and the associated GPIO pin output are worth the effort, as Full-duplex communication mode is easier to
handle. In Full-duplex communication mode, there is no need of any reconfiguration of the peripheral and the user
can focus on handling the data content at the required direction while the data at opposite direction (not
monitored) is either ignored or placed dummy.

4.3 Handling specific SPI signals
This section presents more details on handling specific internal-signals, interfaces and handling optional signals
of the SPI interface

4.3.1 Handling specific internal signals and interfaces
In older versions, the DMA overtakes partial control of SPI functionalities due to the lack of transfer counters,
therefore there is a wide interface between DMA and SPI. The most recent versions fully overtake the control
while the simplified DMA interface handles only the data transfers. The number of data involved at SPI side must
be correctly set and well balanced on both the SPI and DMA side, especially when enhanced SPI modes are
used. Note that all the DMA access is based on the TXP and RXP or EOT data threshold events. If an event is
missing (for example when incomplete data packet is done), no DMA transfer is performed.
On recent SPI versions, the Simplex SPI modes are strictly separated. There is no longer need to manage the
unused RxFIFO flushing, nor to handle its OVR errors. DMA channel enable must be prevented in the unused
direction.

AN5543
Data flow potential problems

AN5543 - Rev 4 page 17/24

When SPI is temporarily disabled, the associated GPIOs configured in alternate function output-mode at master
side must remain at defined inactive levels. This need creates a problem on old SPI versions, as the peripheral
leaves them undefined and floating.
Once the SPI is enabled, it may propagate active internal signal levels (such as empty transmit buffer status).
This propagation may force a premature DMA stream request or create a series of initial interrupt services (if
enabled in the configuration). Even a system without any FIFO could raise two consequent data requests when
SPI is enabled and data is released from the buffer once the first bit is transferred out. The buffer raises the next
data write request immediately after the transfer starts (refer to Figure 2).
The SPI enable sequence described in the product reference manual must be followed to ensure a proper events
processing and to avoid missing any event service or a dysfunctional initialization of DMA streams.
Some signals can be evaluated even with significant latency if dual-clock domain is supported. For example, data
underrun at slave side is evaluated under peripheral SCK clock domain, in consequence some traffic on the bus
is necessary to evaluate the status (few additional SCK clock signal cycles are needed). This additional traffic
makes the event to appear considerably later. Undesirable effects like unexpected data insertion may then occur
once the underrrun flag is detected or cleared.
There is an internal synchronization between the APB bus clock and the kernel clock. If there is a big difference
between them, some system responses may be processed with significant delay, causing unavailability of some
features (refer to Section 2.2: Frequency constraints).
Most of the SPI instances can wake up the system from low-power modes. If dual-clock domain is available, SPI
can autonomously communicate at low-power mode while all the necessary internal clock requests are
automatically provided at dependency on applied SPI configuration and actual FIFO status.
Recent SPI versions can autonomously initialize transfers by system triggers. This action enables a data transfer
synchronization with other peripheral events without system wake-up. The functionality and wake-up capabilities
are product-dependent, refer to the reference manual for more details.

4.3.2 Handling optional signals
Slave select (NSS/SS) is an optional SPI interface signal. This signal is useful at multi slave or multi master
topologies especially when it assigns just a single slave node for communication at time. This signal is useful
even at single master/slave systems as it permits to separate and synchronize transfers between both nodes.
Specific modes lake Slave Select pulse or TI one synchronize even each data frame.
Hardware support of the NSS master output at standard SPI Motorola mode is not ideal on old SPI versions. The
signal logic copies the SPE status and causes problems to handle its GPIO alternate function. When the SPI is
disabled, the signal is no longer propagated onto the associated GPIOs causing its floating once the SPE bit is
set to zero.
On recent SPI versions, control over the alternate function can be kept even if the SPI is disabled. Also it is
possible to select the polarity of the pin and to swap most of the MOSI and MISO signals capabilities. Recent SPI
versions only support single NSS/SS pin. This alternate function has to be replaced by standard GPIO(s) control
when handling a multi slave system or when a specific communication requires a reconfiguration of SPI within a
single session (such at Half-duplex mode when the SPI has to be disabled temporarily while SS needs to stay
active).
Recent SPI versions are edge selective in SS input hardware management mode (SSM = 0). A session can be
missed when SPI is enabled after the master has provided the active edge of the SS signal. Older designs and
SS software management mode (SSM = 1) are always level sensitive.
An optional RDY signal is featured in some SPI versions, which performs the slave's FIFOs occupancy status,
and so its capability to continue at operation without any risk of data underrun or overrun. If the master disregards
RDY and continues the transfer, the slave risks an underrun or overrun condition. On STM32 devices, the master
communication is temporarily frozen when the slave provides a not-ready status.

4.4 SPI instances with different features
On STM32 devices the same peripherals can be implemented with different configurations. The main differences
are:
• Maximum supported data size and its configurability (by bit or by multiple of bytes)
• Maximum supported polynomial or frame CRC size
• CRC configurability (by bit or by multiple of bytes)
• FIFOs capacity
• I2S support availability
• Maximum number of data in single session

AN5543
Data flow potential problems

AN5543 - Rev 4 page 18/24

• Low-power mode operation capabilities
The differences between the implemented instances are detailed in the SPI implementation table of reference
manuals.

4.5 SPI synchronization between nodes
SPI is a synchronous interface and it demands proper synchronization between the nodes to ensure correct data
handling. The only synchronization signals featured by SPI are NSS/SS, hence the user must check all
desynchronization symptoms.
Possible causes of desynchronization are a glitch on SCK line due to signal disturbance, or a wrong handling of
SCK alternate output during SPI reconfiguration.
Despite BSY flag can exceptionally hang on, monitoring its clearing can be helpful when communication becomes
idle. If it stays set, it might signal possible synchronization issues between master and slave.
Correct data shifting by one or more bits and CRC errors are consequence of synchronization problems. In these
cases, the bus must be inspected to find the cause of the abnormality, and to analyze the transferred data to find
the root cause. If a desynchronization occurs, both the master and the slave nodes must be restarted.
Recent products can support half SCK clock period delay of the MISO master input sampling. This can help to
compensate signal response delay raised, for example, when SPI bus signals are opto-isolated (refer to DRDS bit
availability in configuration registers).
Apply SPI disable between sessions. This resets the internal state machine, and corrects desynchronization
problems, if present.

AN5543
Data flow potential problems

AN5543 - Rev 4 page 19/24

Revision history

Table 3. Document revision history

Date Version Changes

30-Nov-2020 1 Initial release.

29-Jun-2021 2 Updated Table 1. Main SPI features on STM32 devices

12-Apr-2024 3

Updated document title, Introduction, Section 4: Data flow potential problems, and
Section 4.5: SPI synchronization between nodes.

Updated Table 1. Main SPI features on STM32 devices, and Table 2. Differences of
CRC control between active SPI versions.

Minor text edits across the whole document.

03-Oct-2024 4
Updated Table 1. Main SPI features on STM32 devices.

Minor text edits across the whole document.

AN5543

AN5543 - Rev 4 page 20/24

Contents

1 General information .2
2 Released versions .3

2.1 Differences between versions . 3

2.2 Frequency constraints . 4

3 Data flow handling principle .5
4 Data flow potential problems. .7

4.1 System performance and data flow issues . 7
4.1.1 Recommended methods to handle frequent SPI and DMA events 10

4.1.2 Balanced handling of communication events . 11

4.2 Handling specific SPI modes . 13
4.2.1 End of the bus activity detection . 13

4.2.2 Specific aspects when SPI is disabled . 13

4.2.3 Time-critical control at the end of transfer . 14

4.2.4 Handling the Half-duplex mode . 17

4.3 Handling specific SPI signals. 17
4.3.1 Handling specific internal signals and interfaces . 17

4.3.2 Handling optional signals . 18

4.4 SPI instances with different features. 18

4.5 SPI synchronization between nodes. 19

Revision history .20
List of tables .22
List of figures. .23

AN5543
Contents

AN5543 - Rev 4 page 21/24

List of tables
Table 1. Main SPI features on STM32 devices . 3
Table 2. Differences of CRC control between active SPI versions . 16
Table 3. Document revision history . 20

AN5543
List of tables

AN5543 - Rev 4 page 22/24

List of figures
Figure 1. Simplified data flow scheme . 5
Figure 2. Timing of SPI data events and DMA transfer complete flags during a transfer . 6
Figure 3. A late write (underrun) of data while first-bit transfer is ongoing . 10
Figure 4. DMA late service of TXE/TXP event . 13
Figure 5. Examples of window available to perform specific control at the end of a transfer . 15

AN5543
List of figures

AN5543 - Rev 4 page 23/24

IMPORTANT NOTICE – READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names
are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2024 STMicroelectronics – All rights reserved

AN5543

AN5543 - Rev 4 page 24/24

http://www.st.com/trademarks

	AN5543
	Introduction
	1 General information
	2 Released versions
	2.1 Differences between versions
	2.2 Frequency constraints

	3 Data flow handling principle
	4 Data flow potential problems
	4.1 System performance and data flow issues
	4.1.1 Recommended methods to handle frequent SPI and DMA events
	4.1.2 Balanced handling of communication events

	4.2 Handling specific SPI modes
	4.2.1 End of the bus activity detection
	4.2.2 Specific aspects when SPI is disabled
	4.2.3 Time-critical control at the end of transfer
	4.2.4 Handling the Half-duplex mode

	4.3 Handling specific SPI signals
	4.3.1 Handling specific internal signals and interfaces
	4.3.2 Handling optional signals

	4.4 SPI instances with different features
	4.5 SPI synchronization between nodes

	Revision history
	Contents
	List of tables
	List of figures

